Araştırma Makalesi
BibTex RIS Kaynak Göster

5,12-Dibromo Perilenin DFT Hesaplama Yöntemleri ile Moleküler Yapısı, Sınır Moleküler Orbitalleri, NBO, MESP ve Termodinamik Özellikleri

Yıl 2020, Cilt: 4 Sayı: 1, 49 - 59, 30.06.2020
https://doi.org/10.32571/ijct.695754

Öz

Perilen-3,4,9,10-tetrakarboksilik dianhidrit (PTCDA) uzun yıllardır endüstriyel pigmentler olarak kullanılmaktadır. Bu Perspektif, PTCDA türevlerinin sentez ve fiziksel özelliklerinin ve bunların organik elektronikteki uygulamalarının belirlenmesini önemli kılmaktadır. Gaz fazında, 5,12-Dibromoperyilen bileşiğinin kuantum kimyasal çalışması, yoğunluk fonksiyonu teorisi (DFT) -B3LYP yönteminin temel LanL2DZ ve 6-311G seti kullanılarak gerçekleştirildi. 1H-NMR, 13C-NMR, HOMO-LUMO analizi, dipol momenti, moleküler elektrostatik yüzey potansiyeli (MESP) ve molekülün doğal orbital bağı (NBO) analizi yapıldı. Sonuçlar grafikler, tablolar ve şekillerle gösterilmiştir. 1H-NMR, 13C-NMR sonuçlarının deneysel değerlerle karşılaştırılmasında B3LYP 6-311G daha başarılı sonuçlar verdi. Bileşiğin doğrusal olmayan özellikleri belirlendi.

Kaynakça

  • 1. Paredes-Gil, K.; Mendizabal, F.; Páez-Hernández, D.; Arratia-Pérez, R. Comput. Mater. Sci. 2017, 126, 514-527.
  • 2. Kolcu, F.; Çulhaoğlu, S.; Kaya, İ. Prog. Org. Coat. 2019, 137, 105284.
  • 3. Kucinska, M.; Frac, I.; Ulanski, J.; Makowski, T.; Nosal, A.; Gazicki-Lipman, M. Synth. Met. 2019, 250, 12-19.
  • 4. Dong, D.; Li, Q.; Hou, W.; Zhang, H. J. Mol. Struct. 2020, 1199, 127002.
  • 5. Cao, L.; Xu, L.; Zhang, D.; Zhou, Y.; Zheng, Y.; Fu, Q.; Jiang, X.-F.; Lu, F. Chem. Phys. Lett. 2017, 682, 133-139.
  • 6. Otero, R.; Vázquez De Parga, A. L.; Gallego, J. M. Surf. Sci. Rep. 2017, 72 (3), 105-145.
  • 7. Dere, A. Physica B Condens. Matter. 2018, 547, 127-133.
  • 8. Veerababu, M.; Kothandaraman, R. Electrochim. Acta. 2017, 232, 244-253.
  • 9. Djurišić, A. B.; Fritz, T.; Leo, K. Opt. Commun. 2000, 183 (1), 123-132.
  • 10. Farag, A. A. M.; Osiris, W. G.; Yahia, I. S. Synth. Met. 2011, 161 (17), 1805-1812.
  • 11. Büyükekşi, S. I; Orman, E. B.; Acar, N.; Altındal, A.; Özkaya, A. R.; Şengül, A. Dyes Pigments 2019, 161, 66-78.
  • 12. Ozser, M. E.; Mohiuddin, O. J. Mol. Struct. 2018, 1158, 145-155.
  • 13. Lathiotakis, N. N.; Kerkines, I. S. K.; Theodorakopoulos, G.; Petsalakis, I. D. Chem. Phys. Lett. 2018, 691, 388-393.
  • 14. Cabir, B.; Yildiko, U.; Ağirtaş, M. S. J. Coord. Chem. 2019, 72 (17), 2997-3011.
  • 15. Basma, A.-K.; Dinleyici, M.; Abourajab, A.; Kök, C.; Bodapati, J. B.; Uzun, D.; Koyuncu, S.; Icil, H. J Photoch Photobio A. 2020, 393, 112432..
  • 16. Solğun, D. G.; Keskin, M. S.; Yıldıko, Ü.; Ağırtaş, M. S. Chem .Pap. 2020, 74, 2389-2401.
  • 17. M. J. Frisch, G. W. T., H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, G. Scalmani, V. Barone, G. A. Petersson, H. Nakatsuji, X. Li, M. Caricato, A. Marenich, J. Bloino, B. G. Janesko, R. Gomperts, B. Mennucci, H. P. Hratchian, J. V. Ortiz, A. F. Izmaylov, J. L. Sonnenberg, D. Williams-Young, F. Ding, F. Lipparini, F. Egidi, J. Goings, B. Peng, A. Petrone, T. Henderson, D. Ranasinghe, V. G. Zakrzewski, J. Gao, N. Rega, G. Zheng, W. Liang, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, T. Vreven, K. Throssell, J. A. Montgomery, Jr., J. E. Peralta, F. Ogliaro, M. Bearpark, J. J. Heyd, E. Brothers, K. N. Kudin, V. N. Staroverov, T. Keith, R. Kobayashi, J. Normand, K. Raghavachari, A. Rendell, J. C. Burant, S. S. Iyengar, J. Tomasi, M. Cossi, J. M. Millam, M. Klene, C. Adamo, R. Cammi, J. W. Ochterski, R. L. Martin, K. Morokuma, O. Farkas, J. B. Foresman, And D. J. Fox, Gaussian 09, Revision A.02, Gaussian, Inc., Wallingford Ct, 2016.
  • 18. Khajehzadeh, M.; Moghadam, M. Spectrochim. Acta A: 2017, 180, 51-66.
  • 19. Miehlich, B.; Savin, A.; Stoll, H.; Preuss, H. Chem. Phys. Lett. 1989, 157 (3), 200-206.
  • 20. Hertwig, R. H.; Koch, W. Chem. Phys. Lett. 1997, 268 (5-6), 345-351.
  • 21. Hay, P. J.; Wadt, W. R. J. Chem. Phys. 1985, 82 (1), 270-283.
  • 22. Ülküseven, B.; Bal-Demirci, T.; Akkurt, M.; Yalçın, Ş. P.; Büyükgüngör, O. Polyhedron 2008, 27 (18), 3646-3652.
  • 23. Akkurt, M.; Yalçın, Ş.; Gürsoy, E.; Ulusoy Güzeldemirci, N.; Büyükgüngör, O. Acta Crystallogr. E. 2007, 63, O3103.
  • 24. Matussek, M.; Filapek, M.; Gancarz, P.; Krompiec, S.; Grzegorz Małecki, J.; Kotowicz, S.; Siwy, M.; Maćkowski, S.; Chrobok, A.; Schab-Balcerzak, E.; Słodek, A. Dyes Pigments 2018, 159, 590-599.
  • 25. Li, H.; Meng, J.; Sun, X. Inorg. Chem. Commun. 2019, 105, 194-198.
  • 26. Huang, C.; Barlow, S.; Marder, S. R. J. Org. Chem. 2011, 76 (8), 2386-2407.
  • 27. Pakseresht, M.; Bodapati, J. B.; Icil, H. J. Photochem. Photobiol. A. 2018, 360, 270-277.
  • 28. Wu, S.; Cheng, C.; Hou, W.; Li, Q.; Dong, D.; Gao, Y.; Liu, L.; Liang, B.; Zhang, H. Tetrahedron 2019, 75 (41), 130577.
  • 29. Yuen, J. D.; Pozdin, V. A.; Young, A. T.; Turner, B. L.; Giles, I. D.; Naciri, J.; Trammell, S. A.; Charles, P. T.; Stenger, D. A.; Daniele, M. A. Dyes Pigments 2019, 108014.
  • 30. Piosik, E.; Synak, A.; Martyński, T. Spectrochim. Acta A: Mol. Biomol. Spectrosc. 2018, 189, 374-380.
  • 31. Pekdemir, F.; Orman, E. B.; Selçuki, N. A.; Özkaya, A. R.; Salih, B.; Şengül, A. J. Photochem. Photobiol. A 2019, 379, 54-6.

Molecular structure, frontier molecular orbitals, NBO, MESP and thermodynamic properties of 5,12-dibromo perylene with DFT calculation methods

Yıl 2020, Cilt: 4 Sayı: 1, 49 - 59, 30.06.2020
https://doi.org/10.32571/ijct.695754

Öz

Perylene-3,4,9,10-tetracarboxylic dianhydride (PTCDA) has been used as industrial pigments for many years. This perspective makes it important to determine the synthesis and physical properties of PTCDA derivatives and their functional properties for application as electron acceptors in organic transistors. In the gas phase, the quantum chemical study of the 5,12-dibromoperylene compound was performed using the basic set of LanL2DZ and 6-311G of the density function theory (DFT)-B3LYP method. Because basic set of LanL2DZ and 6-311G of the density function theory (DFT)-B3LYP method are predicted to yield more efficient and verifiable results than others. 1H-NMR, 13C-NMR, HOMO-LUMO analysis, dipole moment, molecular electrostatic surface potential (MESP) and natural orbital bond (NBO) analysis of the molecule were carried out. The results were shown with graphs, tables and figures. In the comparison of 1H-NMR, 13C-NMR results with the experimental values, B3LYP 6-311G gave more successful results. The nonlinear optical properties of the compound were determined.

Kaynakça

  • 1. Paredes-Gil, K.; Mendizabal, F.; Páez-Hernández, D.; Arratia-Pérez, R. Comput. Mater. Sci. 2017, 126, 514-527.
  • 2. Kolcu, F.; Çulhaoğlu, S.; Kaya, İ. Prog. Org. Coat. 2019, 137, 105284.
  • 3. Kucinska, M.; Frac, I.; Ulanski, J.; Makowski, T.; Nosal, A.; Gazicki-Lipman, M. Synth. Met. 2019, 250, 12-19.
  • 4. Dong, D.; Li, Q.; Hou, W.; Zhang, H. J. Mol. Struct. 2020, 1199, 127002.
  • 5. Cao, L.; Xu, L.; Zhang, D.; Zhou, Y.; Zheng, Y.; Fu, Q.; Jiang, X.-F.; Lu, F. Chem. Phys. Lett. 2017, 682, 133-139.
  • 6. Otero, R.; Vázquez De Parga, A. L.; Gallego, J. M. Surf. Sci. Rep. 2017, 72 (3), 105-145.
  • 7. Dere, A. Physica B Condens. Matter. 2018, 547, 127-133.
  • 8. Veerababu, M.; Kothandaraman, R. Electrochim. Acta. 2017, 232, 244-253.
  • 9. Djurišić, A. B.; Fritz, T.; Leo, K. Opt. Commun. 2000, 183 (1), 123-132.
  • 10. Farag, A. A. M.; Osiris, W. G.; Yahia, I. S. Synth. Met. 2011, 161 (17), 1805-1812.
  • 11. Büyükekşi, S. I; Orman, E. B.; Acar, N.; Altındal, A.; Özkaya, A. R.; Şengül, A. Dyes Pigments 2019, 161, 66-78.
  • 12. Ozser, M. E.; Mohiuddin, O. J. Mol. Struct. 2018, 1158, 145-155.
  • 13. Lathiotakis, N. N.; Kerkines, I. S. K.; Theodorakopoulos, G.; Petsalakis, I. D. Chem. Phys. Lett. 2018, 691, 388-393.
  • 14. Cabir, B.; Yildiko, U.; Ağirtaş, M. S. J. Coord. Chem. 2019, 72 (17), 2997-3011.
  • 15. Basma, A.-K.; Dinleyici, M.; Abourajab, A.; Kök, C.; Bodapati, J. B.; Uzun, D.; Koyuncu, S.; Icil, H. J Photoch Photobio A. 2020, 393, 112432..
  • 16. Solğun, D. G.; Keskin, M. S.; Yıldıko, Ü.; Ağırtaş, M. S. Chem .Pap. 2020, 74, 2389-2401.
  • 17. M. J. Frisch, G. W. T., H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, G. Scalmani, V. Barone, G. A. Petersson, H. Nakatsuji, X. Li, M. Caricato, A. Marenich, J. Bloino, B. G. Janesko, R. Gomperts, B. Mennucci, H. P. Hratchian, J. V. Ortiz, A. F. Izmaylov, J. L. Sonnenberg, D. Williams-Young, F. Ding, F. Lipparini, F. Egidi, J. Goings, B. Peng, A. Petrone, T. Henderson, D. Ranasinghe, V. G. Zakrzewski, J. Gao, N. Rega, G. Zheng, W. Liang, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, T. Vreven, K. Throssell, J. A. Montgomery, Jr., J. E. Peralta, F. Ogliaro, M. Bearpark, J. J. Heyd, E. Brothers, K. N. Kudin, V. N. Staroverov, T. Keith, R. Kobayashi, J. Normand, K. Raghavachari, A. Rendell, J. C. Burant, S. S. Iyengar, J. Tomasi, M. Cossi, J. M. Millam, M. Klene, C. Adamo, R. Cammi, J. W. Ochterski, R. L. Martin, K. Morokuma, O. Farkas, J. B. Foresman, And D. J. Fox, Gaussian 09, Revision A.02, Gaussian, Inc., Wallingford Ct, 2016.
  • 18. Khajehzadeh, M.; Moghadam, M. Spectrochim. Acta A: 2017, 180, 51-66.
  • 19. Miehlich, B.; Savin, A.; Stoll, H.; Preuss, H. Chem. Phys. Lett. 1989, 157 (3), 200-206.
  • 20. Hertwig, R. H.; Koch, W. Chem. Phys. Lett. 1997, 268 (5-6), 345-351.
  • 21. Hay, P. J.; Wadt, W. R. J. Chem. Phys. 1985, 82 (1), 270-283.
  • 22. Ülküseven, B.; Bal-Demirci, T.; Akkurt, M.; Yalçın, Ş. P.; Büyükgüngör, O. Polyhedron 2008, 27 (18), 3646-3652.
  • 23. Akkurt, M.; Yalçın, Ş.; Gürsoy, E.; Ulusoy Güzeldemirci, N.; Büyükgüngör, O. Acta Crystallogr. E. 2007, 63, O3103.
  • 24. Matussek, M.; Filapek, M.; Gancarz, P.; Krompiec, S.; Grzegorz Małecki, J.; Kotowicz, S.; Siwy, M.; Maćkowski, S.; Chrobok, A.; Schab-Balcerzak, E.; Słodek, A. Dyes Pigments 2018, 159, 590-599.
  • 25. Li, H.; Meng, J.; Sun, X. Inorg. Chem. Commun. 2019, 105, 194-198.
  • 26. Huang, C.; Barlow, S.; Marder, S. R. J. Org. Chem. 2011, 76 (8), 2386-2407.
  • 27. Pakseresht, M.; Bodapati, J. B.; Icil, H. J. Photochem. Photobiol. A. 2018, 360, 270-277.
  • 28. Wu, S.; Cheng, C.; Hou, W.; Li, Q.; Dong, D.; Gao, Y.; Liu, L.; Liang, B.; Zhang, H. Tetrahedron 2019, 75 (41), 130577.
  • 29. Yuen, J. D.; Pozdin, V. A.; Young, A. T.; Turner, B. L.; Giles, I. D.; Naciri, J.; Trammell, S. A.; Charles, P. T.; Stenger, D. A.; Daniele, M. A. Dyes Pigments 2019, 108014.
  • 30. Piosik, E.; Synak, A.; Martyński, T. Spectrochim. Acta A: Mol. Biomol. Spectrosc. 2018, 189, 374-380.
  • 31. Pekdemir, F.; Orman, E. B.; Selçuki, N. A.; Özkaya, A. R.; Salih, B.; Şengül, A. J. Photochem. Photobiol. A 2019, 379, 54-6.
Toplam 31 adet kaynakça vardır.

Ayrıntılar

Birincil Dil İngilizce
Konular Kimya Mühendisliği
Bölüm Makale
Yazarlar

Murat Akman Bu kişi benim 0000-0003-3345-6445

Ahmet Çağrı Ata 0000-0002-2296-2265

Ümit Yildiko

İsmail Cakmak Bu kişi benim

Yayımlanma Tarihi 30 Haziran 2020
Yayımlandığı Sayı Yıl 2020 Cilt: 4 Sayı: 1

Kaynak Göster

APA Akman, M., Ata, A. Ç., Yildiko, Ü., Cakmak, İ. (2020). Molecular structure, frontier molecular orbitals, NBO, MESP and thermodynamic properties of 5,12-dibromo perylene with DFT calculation methods. International Journal of Chemistry and Technology, 4(1), 49-59. https://doi.org/10.32571/ijct.695754
AMA Akman M, Ata AÇ, Yildiko Ü, Cakmak İ. Molecular structure, frontier molecular orbitals, NBO, MESP and thermodynamic properties of 5,12-dibromo perylene with DFT calculation methods. Int. J. Chem. Technol. Haziran 2020;4(1):49-59. doi:10.32571/ijct.695754
Chicago Akman, Murat, Ahmet Çağrı Ata, Ümit Yildiko, ve İsmail Cakmak. “Molecular Structure, Frontier Molecular Orbitals, NBO, MESP and Thermodynamic Properties of 5,12-Dibromo Perylene With DFT Calculation Methods”. International Journal of Chemistry and Technology 4, sy. 1 (Haziran 2020): 49-59. https://doi.org/10.32571/ijct.695754.
EndNote Akman M, Ata AÇ, Yildiko Ü, Cakmak İ (01 Haziran 2020) Molecular structure, frontier molecular orbitals, NBO, MESP and thermodynamic properties of 5,12-dibromo perylene with DFT calculation methods. International Journal of Chemistry and Technology 4 1 49–59.
IEEE M. Akman, A. Ç. Ata, Ü. Yildiko, ve İ. Cakmak, “Molecular structure, frontier molecular orbitals, NBO, MESP and thermodynamic properties of 5,12-dibromo perylene with DFT calculation methods”, Int. J. Chem. Technol., c. 4, sy. 1, ss. 49–59, 2020, doi: 10.32571/ijct.695754.
ISNAD Akman, Murat vd. “Molecular Structure, Frontier Molecular Orbitals, NBO, MESP and Thermodynamic Properties of 5,12-Dibromo Perylene With DFT Calculation Methods”. International Journal of Chemistry and Technology 4/1 (Haziran 2020), 49-59. https://doi.org/10.32571/ijct.695754.
JAMA Akman M, Ata AÇ, Yildiko Ü, Cakmak İ. Molecular structure, frontier molecular orbitals, NBO, MESP and thermodynamic properties of 5,12-dibromo perylene with DFT calculation methods. Int. J. Chem. Technol. 2020;4:49–59.
MLA Akman, Murat vd. “Molecular Structure, Frontier Molecular Orbitals, NBO, MESP and Thermodynamic Properties of 5,12-Dibromo Perylene With DFT Calculation Methods”. International Journal of Chemistry and Technology, c. 4, sy. 1, 2020, ss. 49-59, doi:10.32571/ijct.695754.
Vancouver Akman M, Ata AÇ, Yildiko Ü, Cakmak İ. Molecular structure, frontier molecular orbitals, NBO, MESP and thermodynamic properties of 5,12-dibromo perylene with DFT calculation methods. Int. J. Chem. Technol. 2020;4(1):49-5.