Araştırma Makalesi
BibTex RIS Kaynak Göster

Calculation of the infrared spectrum of 4-Cyanostyrene by Hartree-Fock (HF) and Density Functional Theory (DFT)

Yıl 2020, Cilt: 4 Sayı: 2, 156 - 161, 31.12.2020
https://doi.org/10.32571/ijct.756992

Öz

In this study, the molecular geometry of 4-Cyanostyrene molecule was optimized by using the Hartree–Fock (HF) and density functional theory (DFT/B3LYP) with 6-311G(d,p) basis set in the ground state. After the optimization, infrared vibration bands of 4-Cyanostyrene molecule were calculated by using the Hartree–Fock (HF) and density functional theory (DFT/B3LYP) with 6-311G(d,p) basis set. The theoretically calculated vibrational frequencies were multiplied by a scalar factor to correlate to experimental results. These theoretically obtained frequencies were compared exactly with the experimental results of 4-Cyanostyrene. All calculated frequencies were discussed. Finally, the correlation graphs of the theoretical and experimental results were obtained. The results were seen to be quite compatible with each other.

Proje Numarası

Kilis 7 Aralık University, project number: 2010/02/08.

Kaynakça

  • 1. Rappaport, S. M.; Yeowell-O'Connell, K.; Bodell, W.; Yager, J. W.; Symanski, E. Cancer Res. 1996, 56 (23), 5410-5416.
  • 2. Kogevinas, M.; Ferro, G.; Andersen, A. et al. Scand. J. Work Env. Hea. 1994, 20 (4), 251-261.
  • 3. Coggon, D.; Ntani, G.; Harris, E. C.; Palmer, K. T. Occup. Environ. Med. 2015, 72 (3), 165-170.
  • 4. Christensen, M. S.; Vestergaard, J. M.; d’Amore, F. et al. Epidemiology 2018, 29 (3), 342-351.
  • 5. Collins, J. J.; Bodner, K. M.; Bus, J. S. Epidemiology 2013, 24 (2), 195-203.
  • 6. Nissen, M. S.; Stokholm, Z. A.; Christensen, M. S.; Schlünssen, V.; Vestergaard, J. M.; Iversen, I. B.; Kolstad, H. A. Occup. Environ. Med. 2018, 75 (6), 412-414.
  • 7. Cruzan, G.; Bus, J. S.; Banton, M. I.; Sarang, S. S.; Waites, R.; Layko, D. B.; Raymond, J.; Dodd, D.; Andersen, M. E. Toxicol. Sci. 2017, 159 (2), 413-421.
  • 8. Cruzan, G.; Cushman, J. R.; Andrews, L.S.; et al. J. Appl Toxicol. 2001, 21 (3), 185–198.
  • 9. Ponomarkov, V.; Tomatis, L. Scand. J. Work Environ. Hea. 1978, 4 (2), 127–135.
  • 10. Conti, B.; Maltoni, C.; Perino, G.; Ciliberti, A. Ann. NY Acad. Sci. 1988, 534 (1), 203-234.
  • 11. Hollas, J. M.; Khalilipour, E.; Thakur, S. N. J. Mol. Spectrosc. 1978, 73 (2), 240-265.
  • 12. Zilberg, S.; Haas, Y. J. Chem. Phys. 1995, 103 (1), 20-36.
  • 13. Bock, C. W.; Trachtman, M.; George, P. Chem. Phys. 1985, 83 (3), 431-443.
  • 14. Frisch, M. J.; Trucks, G. W. Schlegel, H. B. et al. GAUSSIAN 09: Revision C.02 (Pittsburg, PA: Gaussian Inc.) 2009.
  • 15. Frisch, A.; Nielsen, A. B.; Holder, A. J. Gauss 09 View User Manual (Pittsburg: Gaussian Inc.) 2009.
  • 16.https://www.acros.com/DesktopModules/Acros_Search_Results/Acros_Search_Results.aspx?search_type=CatalogSearch&SearchString=4-Cyanostyrene (accessed 01.05.2020) .
  • 17. Smith, B. C. Infrared Spectral Interpretation: A Systematic Approach; CRC Press, New York, 1998.
  • 18. Rao, J. M. Organic Spectroscopy Principles and Applications, Narosa Publishing House, New Delhi, 2000.
  • 19. Kanamori, H.; Endo, Y.; Hirota, E. J. Chem. Phys. 1990, 92 (1), 197-205.
  • 20. Kim, E.; Yamamoto, S. J. Chem. Phys. 2002, 116 (24), 10713-10718.
  • 21. Tanaka, K.; Toshimitsu, M.; Harada, K.; Tanaka, T. J. Chem. Phys. 2004, 120 (8), 3604-3618.
  • 22. Shepherd, R. A.; Doyle, T. J.; Graham, W. R. M. J. Chem. Phys. 1988, 89 (5), 2738-2742.
  • 23. Tanskanen, H.; Khriachtchev, L.; Rasanen, M.; Feldman, V. I.; Sukhov, F. F.; Orlov, A. Y.; Tyurin, D. A. J. Chem. Phys. 2005, 123 (6), 064318.
  • 24. Paolucci, D. M.; Gunkelman, K.; McMahon, M. T.; McHugh, J.; Abrash, S. A. J. Phys. Chem. 1995, 99, 10506-10510.
  • 25. Forney; D.; Jacox, M. E.; Thompson, W. E. J. Mol. Spectrosc. 1995, 170, 178-214.
  • 26. Nikow; M.; Wilhelm, M. J.; Dai, H. L. J. Phys. Chem. A 2009, 113 (31), 8857-8870.
  • 27. Dollish, F. R.; Fateley, W. G.; Bentley, F. F. Characteristic Raman Frequencies of Organic Compounds; Wiley: N.Y., USA, 1974.
  • 28. Bellamy, L. J. The Infrared Spectra of Complex Molecules; Wiley: N.Y., USA, 1975.
  • 29. Lin-Vien, D.; Colthup; N. B.; Fateley; W. G.; Grasselli; J. G. The Handbook of Infrared and Raman Characteristics frequencies of Organic Molecules Academic Press: San Diego, California, 1991.
  • 30. Socrates, G. Infrared and Raman Characteristic Group Frequencies, 3rd ed.; Wiley: N.Y., USA, 2004.
  • 31. Krishnakumar, V.; Prabavathi; N. Spectrochim. Acta A 2008, 71 (12), 449-457.
  • 32. Altun, A.; Gölcük, K.; Kumru, M. J. Mol. Struc-Theochem 2003, 637, 155-169.
  • 33. Singh, S. J.; Pandey, S. M. Indian J. Pure Ap. Phy. 1974, 12, 300-304.
  • 34. Lee, S. Y. B. Korean Chem. Soc. 1998, 19 (1), 93-98.
  • 35. Wheeless, C. J.; Zhou, X.; Liu; R. J. Phys. Chem. 1995, 99 (33), 12488-12492.
Yıl 2020, Cilt: 4 Sayı: 2, 156 - 161, 31.12.2020
https://doi.org/10.32571/ijct.756992

Öz

Destekleyen Kurum

Kilis 7 Aralık Üniversitesi BAP birimi

Proje Numarası

Kilis 7 Aralık University, project number: 2010/02/08.

Kaynakça

  • 1. Rappaport, S. M.; Yeowell-O'Connell, K.; Bodell, W.; Yager, J. W.; Symanski, E. Cancer Res. 1996, 56 (23), 5410-5416.
  • 2. Kogevinas, M.; Ferro, G.; Andersen, A. et al. Scand. J. Work Env. Hea. 1994, 20 (4), 251-261.
  • 3. Coggon, D.; Ntani, G.; Harris, E. C.; Palmer, K. T. Occup. Environ. Med. 2015, 72 (3), 165-170.
  • 4. Christensen, M. S.; Vestergaard, J. M.; d’Amore, F. et al. Epidemiology 2018, 29 (3), 342-351.
  • 5. Collins, J. J.; Bodner, K. M.; Bus, J. S. Epidemiology 2013, 24 (2), 195-203.
  • 6. Nissen, M. S.; Stokholm, Z. A.; Christensen, M. S.; Schlünssen, V.; Vestergaard, J. M.; Iversen, I. B.; Kolstad, H. A. Occup. Environ. Med. 2018, 75 (6), 412-414.
  • 7. Cruzan, G.; Bus, J. S.; Banton, M. I.; Sarang, S. S.; Waites, R.; Layko, D. B.; Raymond, J.; Dodd, D.; Andersen, M. E. Toxicol. Sci. 2017, 159 (2), 413-421.
  • 8. Cruzan, G.; Cushman, J. R.; Andrews, L.S.; et al. J. Appl Toxicol. 2001, 21 (3), 185–198.
  • 9. Ponomarkov, V.; Tomatis, L. Scand. J. Work Environ. Hea. 1978, 4 (2), 127–135.
  • 10. Conti, B.; Maltoni, C.; Perino, G.; Ciliberti, A. Ann. NY Acad. Sci. 1988, 534 (1), 203-234.
  • 11. Hollas, J. M.; Khalilipour, E.; Thakur, S. N. J. Mol. Spectrosc. 1978, 73 (2), 240-265.
  • 12. Zilberg, S.; Haas, Y. J. Chem. Phys. 1995, 103 (1), 20-36.
  • 13. Bock, C. W.; Trachtman, M.; George, P. Chem. Phys. 1985, 83 (3), 431-443.
  • 14. Frisch, M. J.; Trucks, G. W. Schlegel, H. B. et al. GAUSSIAN 09: Revision C.02 (Pittsburg, PA: Gaussian Inc.) 2009.
  • 15. Frisch, A.; Nielsen, A. B.; Holder, A. J. Gauss 09 View User Manual (Pittsburg: Gaussian Inc.) 2009.
  • 16.https://www.acros.com/DesktopModules/Acros_Search_Results/Acros_Search_Results.aspx?search_type=CatalogSearch&SearchString=4-Cyanostyrene (accessed 01.05.2020) .
  • 17. Smith, B. C. Infrared Spectral Interpretation: A Systematic Approach; CRC Press, New York, 1998.
  • 18. Rao, J. M. Organic Spectroscopy Principles and Applications, Narosa Publishing House, New Delhi, 2000.
  • 19. Kanamori, H.; Endo, Y.; Hirota, E. J. Chem. Phys. 1990, 92 (1), 197-205.
  • 20. Kim, E.; Yamamoto, S. J. Chem. Phys. 2002, 116 (24), 10713-10718.
  • 21. Tanaka, K.; Toshimitsu, M.; Harada, K.; Tanaka, T. J. Chem. Phys. 2004, 120 (8), 3604-3618.
  • 22. Shepherd, R. A.; Doyle, T. J.; Graham, W. R. M. J. Chem. Phys. 1988, 89 (5), 2738-2742.
  • 23. Tanskanen, H.; Khriachtchev, L.; Rasanen, M.; Feldman, V. I.; Sukhov, F. F.; Orlov, A. Y.; Tyurin, D. A. J. Chem. Phys. 2005, 123 (6), 064318.
  • 24. Paolucci, D. M.; Gunkelman, K.; McMahon, M. T.; McHugh, J.; Abrash, S. A. J. Phys. Chem. 1995, 99, 10506-10510.
  • 25. Forney; D.; Jacox, M. E.; Thompson, W. E. J. Mol. Spectrosc. 1995, 170, 178-214.
  • 26. Nikow; M.; Wilhelm, M. J.; Dai, H. L. J. Phys. Chem. A 2009, 113 (31), 8857-8870.
  • 27. Dollish, F. R.; Fateley, W. G.; Bentley, F. F. Characteristic Raman Frequencies of Organic Compounds; Wiley: N.Y., USA, 1974.
  • 28. Bellamy, L. J. The Infrared Spectra of Complex Molecules; Wiley: N.Y., USA, 1975.
  • 29. Lin-Vien, D.; Colthup; N. B.; Fateley; W. G.; Grasselli; J. G. The Handbook of Infrared and Raman Characteristics frequencies of Organic Molecules Academic Press: San Diego, California, 1991.
  • 30. Socrates, G. Infrared and Raman Characteristic Group Frequencies, 3rd ed.; Wiley: N.Y., USA, 2004.
  • 31. Krishnakumar, V.; Prabavathi; N. Spectrochim. Acta A 2008, 71 (12), 449-457.
  • 32. Altun, A.; Gölcük, K.; Kumru, M. J. Mol. Struc-Theochem 2003, 637, 155-169.
  • 33. Singh, S. J.; Pandey, S. M. Indian J. Pure Ap. Phy. 1974, 12, 300-304.
  • 34. Lee, S. Y. B. Korean Chem. Soc. 1998, 19 (1), 93-98.
  • 35. Wheeless, C. J.; Zhou, X.; Liu; R. J. Phys. Chem. 1995, 99 (33), 12488-12492.
Toplam 35 adet kaynakça vardır.

Ayrıntılar

Birincil Dil İngilizce
Konular Metroloji,Uygulamalı ve Endüstriyel Fizik
Bölüm Makale
Yazarlar

Kani Arıcı 0000-0001-7947-0766

Rafet Yılmaz 0000-0003-2734-8763

Proje Numarası Kilis 7 Aralık University, project number: 2010/02/08.
Yayımlanma Tarihi 31 Aralık 2020
Yayımlandığı Sayı Yıl 2020 Cilt: 4 Sayı: 2

Kaynak Göster

APA Arıcı, K., & Yılmaz, R. (2020). Calculation of the infrared spectrum of 4-Cyanostyrene by Hartree-Fock (HF) and Density Functional Theory (DFT). International Journal of Chemistry and Technology, 4(2), 156-161. https://doi.org/10.32571/ijct.756992
AMA Arıcı K, Yılmaz R. Calculation of the infrared spectrum of 4-Cyanostyrene by Hartree-Fock (HF) and Density Functional Theory (DFT). Int. J. Chem. Technol. Aralık 2020;4(2):156-161. doi:10.32571/ijct.756992
Chicago Arıcı, Kani, ve Rafet Yılmaz. “Calculation of the Infrared Spectrum of 4-Cyanostyrene by Hartree-Fock (HF) and Density Functional Theory (DFT)”. International Journal of Chemistry and Technology 4, sy. 2 (Aralık 2020): 156-61. https://doi.org/10.32571/ijct.756992.
EndNote Arıcı K, Yılmaz R (01 Aralık 2020) Calculation of the infrared spectrum of 4-Cyanostyrene by Hartree-Fock (HF) and Density Functional Theory (DFT). International Journal of Chemistry and Technology 4 2 156–161.
IEEE K. Arıcı ve R. Yılmaz, “Calculation of the infrared spectrum of 4-Cyanostyrene by Hartree-Fock (HF) and Density Functional Theory (DFT)”, Int. J. Chem. Technol., c. 4, sy. 2, ss. 156–161, 2020, doi: 10.32571/ijct.756992.
ISNAD Arıcı, Kani - Yılmaz, Rafet. “Calculation of the Infrared Spectrum of 4-Cyanostyrene by Hartree-Fock (HF) and Density Functional Theory (DFT)”. International Journal of Chemistry and Technology 4/2 (Aralık 2020), 156-161. https://doi.org/10.32571/ijct.756992.
JAMA Arıcı K, Yılmaz R. Calculation of the infrared spectrum of 4-Cyanostyrene by Hartree-Fock (HF) and Density Functional Theory (DFT). Int. J. Chem. Technol. 2020;4:156–161.
MLA Arıcı, Kani ve Rafet Yılmaz. “Calculation of the Infrared Spectrum of 4-Cyanostyrene by Hartree-Fock (HF) and Density Functional Theory (DFT)”. International Journal of Chemistry and Technology, c. 4, sy. 2, 2020, ss. 156-61, doi:10.32571/ijct.756992.
Vancouver Arıcı K, Yılmaz R. Calculation of the infrared spectrum of 4-Cyanostyrene by Hartree-Fock (HF) and Density Functional Theory (DFT). Int. J. Chem. Technol. 2020;4(2):156-61.