Research Article
BibTex RIS Cite

Kinetic and analytical studies on pyrolysis of olive oil industry wastes

Year 2020, Volume: 4 Issue: 2, 162 - 170, 31.12.2020
https://doi.org/10.32571/ijct.764113

Abstract

The pyrolysis of olive pomace was carried out at two different heating rates at 500°C in the absence and presence of catalysts (commercial fluid catalytic cracking (FCC), aluminosilicate zeolite (ZSM-5) and red mud) using pyrolysis-gas chromatography/mass spectrometry (Py-GC/MS). The products obtained from biomass components in different temperature ranges by sequential pyrolysis of olive pomace were investigated. In addition, the apparent activation energy of olive pomace was calculated by thermogravimetric analysis method and determined as 105.6 kJ mole-1 by Kissinger-Akahira-Sunose (KAS) method and 110.2 kJ mole-1 by Flynn-Wall-Ozawa (FWO) method. According to Py-GC/MS results, the main components in bio-oil consists of phenolic compounds. In sequential pyrolysis, while the highest organic acid was obtained at low temperatures, phenolic compounds were formed at high temperatures. While bio-oil obtained by fast pyrolysis has higher organic acid content than that of bio-oil obtained by slow pyrolysis, slow pyrolysis bio-oil contains more furan and aliphatic ketone, aldehyde and ester. Catalytic studies revealed that catalysts were more effective in the slow pyrolysis process, which allows prolonged catalyst-pyrolysis vapor contact.

Thanks

The author would like to acknowledge for BRISK project for financial support to visit EBRI (UK) laboratories and Dr. Daniel Nowakowski for helping Py-GC/MS studies.

References

  • 1. Pradhan, P.; Mahajani, S. M.; Arora, A. Fuel Process. Technol. 2018, 181, 215-232.
  • 2. Sharifzadeh, M.; Sadeqzadeh, M.; Guo, M.; Borhani, T. N.; Konda, N. V. S. N. M.; Garcia, M. C.; Wang, L.; Hallett, J.; Shah, N. Prog. Energ. Combust. 2019, 71, 1-80.
  • 3. Wang, S.; Dai, G.; Yang, H.; Luo, Z. Prog. Energ. Combust. 2017, 62, 33-86.
  • 4. Hidayat, S.; Abu Bakar, M. S.; Yang, Y.; Phusunti, N.; Bridgwater, A. V. J. Anal. Appl. Pyrol. 2018, 134, 510-519.
  • 5. Wang, B.; Xu, F.; Zong, P.; Zhang, J.; Tian, Y.; Qiao, Y. Renew. Energ. 2019, 132, 486-496.
  • 6. Li, J.; Chen, Y.; Yang, H.; Zhu, D.; Chen, X.; Wang, X.; Chen, H. Energ. Fuel 2017, 31, 7093-7100.
  • 7. Greenhalf, C. E.; Nowakowski, D. J.; Harms, A. B.; Titiloye, J. O.; Bridgwater, A. V. A. Fuel 2013, 108, 216-230.
  • 8. Bridgeman, T. G.; Darvell, L. I.; Jones, J. M.; Williams, P. T.; Fahmi, R.; Bridgwater, a. V.; Barraclough, T.; Shield, I.; Yates, N.; Thain, S. C.; Donnison, I. S. Fuel 2007, 86, 60-72.
  • 9. Zhang, S.; Chenguang, W.; Kang, B.; Xinghua, Z.; Chiling, Y.; Renjie, D.; Longlong, M.; Changle, P. Int. J. Agric. Biol. Eng. 2017, 10 (5), 214-225.
  • 10. Zhou, M. xing; Li, W. tao; Wang, X.; Cui, M. shu; Yang, Y. P. Catal. Today 2018, 302, 169-179.
  • 11. Kaewpengkrow, P.; Atong, D.; Sricharoenchaikul, V. Bioresour. Technol. 2014, 163, 262-269.
  • 12. Li, P.; Chen, X.; Wang, X.; Shao, J.; Lin, G.; Yang, H.; Yang, Q.; Chen, H. Energ. Fuel 2017, 17, 31, 3979-3986.
  • 13. Wang, J.; Zhang, B.; Zhong, Z.; Ding, K.; Deng, A.; Min, M.; Chen, P.; Ruan, R. Energ. Convers. Manage. 2017, 139, 222-231.
  • 14. Zhang, B.; Zhong, Z.; Wang, X.; Ding, K.; Song, Z. Fuel Process. Technol. 2015, 138, 430-434.
  • 15. Fermoso, J.; Mašek, O. J. Anal. Appl. Pyrolysis 2018, 130, 249-255.
  • 16. Mishra, R. K.; Mohanty, K. Bioresour. Technol. 2018, 251, 63-74.
  • 17. Souilem, S.; El-Abbassi, A.; Kiai, H.; Hafidi, A.; Sayadi, S.; Galanakis, C. M. Recent Adv. Sustain. Manag. 2017, 1-28.
  • 18. Duman, A. K.; Özgen, G. Ö.; Üçtuğ, F. G. Sustain. Prod. Consum. 2020, 22, 126-137.
  • 19. Pratt, K. C.; Christoverson, V. Fuel 1982, 61, 460-462.
  • 20. Li S.; Xu, S.; Liu, S.; Yang, C.; Lu, Q. Fuel Process. Technol. 2004, 85, 1201-1211.
  • 21. González Martínez, M.; Ohra-aho, T.; da Silva Perez, D.; Tamminen, T.; Dupont, C. J. Anal. Appl. Pyrol. 2019, 137, 195-202.
  • 22. Greenhalf, C. E.; Nowakowski, D. J.; Harms, A. B.; Titiloye, J. O.; Bridgwater, A. V. Fuel 2012, 93, 692-702.
  • 23. Safdari, M. S.; Amini, E.; Weise, D. R.; Fletcher, T. H. Fuel 2019, 242, 295-304.
  • 24. Zhang, M.; Resende, F. L. P.; Moutsoglou, A. Fuel 2014, 116, 358-369.
  • 25. Zhou, G.; Jensen, P. A.; Le, D. M.; Knudsen, N. O.; Jensen, A. D. Green Chem. 2016, 18, 1965-1975.
  • 26. Ben, H.; Ragauskas, A. J. ACS Sustain. Chem. Eng. 2013, 1, 316-324.
  • 27. Veses, A.; Aznar, M.; López, J. M.; Callén, M. S.; Murillo, R.; García, T. Fuel 2015, 141, 17-22.
  • 28. Gupta, J.; Papadikis, K.; Kozhevnikov, I. V.; Konysheva, E. Y. J. Anal. Appl. Pyrol. 2017, 128, 35-43.
Year 2020, Volume: 4 Issue: 2, 162 - 170, 31.12.2020
https://doi.org/10.32571/ijct.764113

Abstract

References

  • 1. Pradhan, P.; Mahajani, S. M.; Arora, A. Fuel Process. Technol. 2018, 181, 215-232.
  • 2. Sharifzadeh, M.; Sadeqzadeh, M.; Guo, M.; Borhani, T. N.; Konda, N. V. S. N. M.; Garcia, M. C.; Wang, L.; Hallett, J.; Shah, N. Prog. Energ. Combust. 2019, 71, 1-80.
  • 3. Wang, S.; Dai, G.; Yang, H.; Luo, Z. Prog. Energ. Combust. 2017, 62, 33-86.
  • 4. Hidayat, S.; Abu Bakar, M. S.; Yang, Y.; Phusunti, N.; Bridgwater, A. V. J. Anal. Appl. Pyrol. 2018, 134, 510-519.
  • 5. Wang, B.; Xu, F.; Zong, P.; Zhang, J.; Tian, Y.; Qiao, Y. Renew. Energ. 2019, 132, 486-496.
  • 6. Li, J.; Chen, Y.; Yang, H.; Zhu, D.; Chen, X.; Wang, X.; Chen, H. Energ. Fuel 2017, 31, 7093-7100.
  • 7. Greenhalf, C. E.; Nowakowski, D. J.; Harms, A. B.; Titiloye, J. O.; Bridgwater, A. V. A. Fuel 2013, 108, 216-230.
  • 8. Bridgeman, T. G.; Darvell, L. I.; Jones, J. M.; Williams, P. T.; Fahmi, R.; Bridgwater, a. V.; Barraclough, T.; Shield, I.; Yates, N.; Thain, S. C.; Donnison, I. S. Fuel 2007, 86, 60-72.
  • 9. Zhang, S.; Chenguang, W.; Kang, B.; Xinghua, Z.; Chiling, Y.; Renjie, D.; Longlong, M.; Changle, P. Int. J. Agric. Biol. Eng. 2017, 10 (5), 214-225.
  • 10. Zhou, M. xing; Li, W. tao; Wang, X.; Cui, M. shu; Yang, Y. P. Catal. Today 2018, 302, 169-179.
  • 11. Kaewpengkrow, P.; Atong, D.; Sricharoenchaikul, V. Bioresour. Technol. 2014, 163, 262-269.
  • 12. Li, P.; Chen, X.; Wang, X.; Shao, J.; Lin, G.; Yang, H.; Yang, Q.; Chen, H. Energ. Fuel 2017, 17, 31, 3979-3986.
  • 13. Wang, J.; Zhang, B.; Zhong, Z.; Ding, K.; Deng, A.; Min, M.; Chen, P.; Ruan, R. Energ. Convers. Manage. 2017, 139, 222-231.
  • 14. Zhang, B.; Zhong, Z.; Wang, X.; Ding, K.; Song, Z. Fuel Process. Technol. 2015, 138, 430-434.
  • 15. Fermoso, J.; Mašek, O. J. Anal. Appl. Pyrolysis 2018, 130, 249-255.
  • 16. Mishra, R. K.; Mohanty, K. Bioresour. Technol. 2018, 251, 63-74.
  • 17. Souilem, S.; El-Abbassi, A.; Kiai, H.; Hafidi, A.; Sayadi, S.; Galanakis, C. M. Recent Adv. Sustain. Manag. 2017, 1-28.
  • 18. Duman, A. K.; Özgen, G. Ö.; Üçtuğ, F. G. Sustain. Prod. Consum. 2020, 22, 126-137.
  • 19. Pratt, K. C.; Christoverson, V. Fuel 1982, 61, 460-462.
  • 20. Li S.; Xu, S.; Liu, S.; Yang, C.; Lu, Q. Fuel Process. Technol. 2004, 85, 1201-1211.
  • 21. González Martínez, M.; Ohra-aho, T.; da Silva Perez, D.; Tamminen, T.; Dupont, C. J. Anal. Appl. Pyrol. 2019, 137, 195-202.
  • 22. Greenhalf, C. E.; Nowakowski, D. J.; Harms, A. B.; Titiloye, J. O.; Bridgwater, A. V. Fuel 2012, 93, 692-702.
  • 23. Safdari, M. S.; Amini, E.; Weise, D. R.; Fletcher, T. H. Fuel 2019, 242, 295-304.
  • 24. Zhang, M.; Resende, F. L. P.; Moutsoglou, A. Fuel 2014, 116, 358-369.
  • 25. Zhou, G.; Jensen, P. A.; Le, D. M.; Knudsen, N. O.; Jensen, A. D. Green Chem. 2016, 18, 1965-1975.
  • 26. Ben, H.; Ragauskas, A. J. ACS Sustain. Chem. Eng. 2013, 1, 316-324.
  • 27. Veses, A.; Aznar, M.; López, J. M.; Callén, M. S.; Murillo, R.; García, T. Fuel 2015, 141, 17-22.
  • 28. Gupta, J.; Papadikis, K.; Kozhevnikov, I. V.; Konysheva, E. Y. J. Anal. Appl. Pyrol. 2017, 128, 35-43.
There are 28 citations in total.

Details

Primary Language English
Subjects Chemical Engineering
Journal Section Research Articles
Authors

Gozde Duman Tac 0000-0002-9427-8235

Publication Date December 31, 2020
Published in Issue Year 2020 Volume: 4 Issue: 2

Cite

APA Duman Tac, G. (2020). Kinetic and analytical studies on pyrolysis of olive oil industry wastes. International Journal of Chemistry and Technology, 4(2), 162-170. https://doi.org/10.32571/ijct.764113
AMA Duman Tac G. Kinetic and analytical studies on pyrolysis of olive oil industry wastes. Int. J. Chem. Technol. December 2020;4(2):162-170. doi:10.32571/ijct.764113
Chicago Duman Tac, Gozde. “Kinetic and Analytical Studies on Pyrolysis of Olive Oil Industry Wastes”. International Journal of Chemistry and Technology 4, no. 2 (December 2020): 162-70. https://doi.org/10.32571/ijct.764113.
EndNote Duman Tac G (December 1, 2020) Kinetic and analytical studies on pyrolysis of olive oil industry wastes. International Journal of Chemistry and Technology 4 2 162–170.
IEEE G. Duman Tac, “Kinetic and analytical studies on pyrolysis of olive oil industry wastes”, Int. J. Chem. Technol., vol. 4, no. 2, pp. 162–170, 2020, doi: 10.32571/ijct.764113.
ISNAD Duman Tac, Gozde. “Kinetic and Analytical Studies on Pyrolysis of Olive Oil Industry Wastes”. International Journal of Chemistry and Technology 4/2 (December 2020), 162-170. https://doi.org/10.32571/ijct.764113.
JAMA Duman Tac G. Kinetic and analytical studies on pyrolysis of olive oil industry wastes. Int. J. Chem. Technol. 2020;4:162–170.
MLA Duman Tac, Gozde. “Kinetic and Analytical Studies on Pyrolysis of Olive Oil Industry Wastes”. International Journal of Chemistry and Technology, vol. 4, no. 2, 2020, pp. 162-70, doi:10.32571/ijct.764113.
Vancouver Duman Tac G. Kinetic and analytical studies on pyrolysis of olive oil industry wastes. Int. J. Chem. Technol. 2020;4(2):162-70.