Research Article
BibTex RIS Cite
Year 2023, Volume: 7 Issue: 1, 1 - 5, 30.06.2023
https://doi.org/10.32571/ijct.1199967

Abstract

References

  • 1. Razi, F.; Dincer, I. Renew. Sustain. Energy Rev. 2022, 168, 112763- 112775.
  • 2. Qureshi, F.; Yusuf, M.; Kamyab H.; Zaidi, S. Khalil M. J.; Khan, M. A.; Alam, M.A.; Masood F.; Bazli, L.; Chelliapan.; Abdullah, B. Sustain. Energy Technol. Assess. 2022, 53, 102677-102694.
  • 3. Wang, S.; Wu, X.; Jafarmadar S.; Singh, P.K.; Khorasani, S.; Marefati, M.; Alizadeh, A. J. Energy Storage 2022, 54, 105274- 105290.
  • 4. Zahedi, R.; Ghodusinejad, M. H.; Aslani, A.; Hachem-Vermette, C. Energy Strategy Rev. 2022, 43, 100930-100946.
  • 5. Ang, T-Z.; Salem, M.; Kamarol, M.; Das, H.S.; Nazari, M.A.; Prabaharan, N. Energy Strategy Rev. 43, 2022, 100939-100964.
  • 6. Balun Kayan, D.; Baran, T.; Menteş, A. Electrochim. Acta, 2022, 422, 140513-140520.
  • 7. Yu, Z-Y.; Duan, Y.; Feng, X-Y.; Yu, X.; Gao, M-R.; Yu, S-H. Adv. Mater. 2021, 33, 2007100-20071034. 8. Ahmed, S. F.; Mofijur, M.; Nuzhat, S.; Rafa, N.; Musharrat, A.; Lam, S.S.; Boretti, A. Int. J. Hydrog. Energy, 2022, 47(88), 37227-37255
  • 9. Vıdas, Leonardo; Castro, Rui. Applied Sciences, 2021, 11(23), 11363-11389. 10. Kamaroddin, M.F.A.; Sabli, N.; Abdullah T.A.T.; Siajam, S.I.; Abdullah, L.C.; Jalil A.A.; Ahmad, A. Membranes, 2021, 11(810), 1-28.
  • 11. Yao, R-Q.; Zhou, Y-T.; Shi, H.; Wan, W-B.; Zhang, Q-H.; Gu, L.; Zhu, Y-F.; Wen, Z.; Lang, X-Y.; Jiang, Q. Adv. Func. Mat. 2021, 31(10), 2009613-2009621.
  • 12. Liu, C.; Song, H.; Dai, Z.; Xiong, Y. Ionics, 2022, 28(3), 1311-1321.
  • 13. Cao, Z.; Song, H.; Liu, C.; Tang, W.; Liu J.; Yang, B.; Xie, W.; Yu, Z. Electrocatalysis, 2022, 13, 807–817.
  • 14. Kumar, S.S.; Lim, H. Energy Reports, 2022, 8, 13793-13813.
  • 15. Theerthagiri, J.; Lee, S. J.; Murthy, A.P.; Madhavan, J.; Choi, M.Y. Curr. Opin. Solid State Mater. Sci. 2020, 24(1), 100805-100826.
  • 16. Wu, T.; Sun, M.Z.; Huang, B.L. Rare Metals, 2022, 41, 2169-2183
  • 17. Ji, L.; Lv, C.; Chen, Z.; Huang, Z.; Zhang, C. Adv. Mater. 2018, 30(17), 1705653-1705659.
  • 18. Chen, Z.; Wei, W.; Ni, B.J. Curr. Opin. Green Sustain. Chem. 2021, 27, 100398-100405.
  • 19. Wu, H.; Feng, C.; Zhang, L.; Zhang, J.; Wilkinson, D.P. Electrochem. Energy Reviews 2021, 4(3), 473-507.
  • 20. Guo, M.; Song, S.; Zhang, S.; Yan, Y.; Zhan, K.; Yang, J.; Zhao, B. ACS Sustain. Chem. Eng. 2020, 8(19), 7436-7444.
  • 21. Trasatti, S. J. Electroanal. Chem. 1972, 39, 163-184.
  • 22. Jin, H.; Liu, X.; Chen, S.; Vasileff, A.; Li, L.; Jiao, Y.; Song, L.; Zheng, Y.; Qiao, S-Z.; ACS Energy Lett. 2019, 4, 4, 805-810
  • 23. Chang, H.; Shi, L.N.; Chen, Y.H.; Wang, P.F.; Yi, T.F. Coord. Chem. Rev. 2022, 473, 214839-214870.
  • 24. Zaher, A.; El Rouby, W.M.; Barakat, N.A. Fuel, 2020, 280, 118654.
  • 25. Liu, G.; Hou, F.; Peng, S.; Wang, X.; Fang, B. Nanomaterials 2022, 12(17), 2935-2947.
  • 26. Askari, M.B.; Rozati, S.M.; Salarizadeh, P.; Azizi, S. Ceramics International, 2022 48(11), 16123-16130.
  • 27. Karimi, A.; Kazeminezhad, I.; Naderi, L.; Shahrokhian, S. J. Phys. Chem. C., 2020, 124(8), 4393-4407.
  • 28. Wan, Z., Bai, X., Mo, H., Yang, J., Wang, Z., Zhou, L. Colloids Surf A Physicochem Eng Asp. 2021, 614, 126048-126059.
  • 29. Zhao, X.; Luo, D.; Wang, Y.; Liu, Z.H. Nano Res. 2019, 12(11), 2872-2880.
  • 30. Xu, Q.; Zang L.; Li, Z.; Shen, F.; Zhang, Y.; Sun, L.; Int. J. Hydrog. Energy, 2022, 47(91), 38571-38582.
  • 31. Wu, J.; Wang, J.; Huang, X.; Bai, H. Energy Environ. Sci. 2018, 11(5), 1280-1286.
  • 32. Rafiee, M.; Nitzsche, F.; Laliberte, J.; Hind, S.; Robitaille, F.; Labrosse, M.R. Compos. B: Eng. 2019, 164, 1-9.
  • 33. Qian, H.; Wang, J.; Yan, L. J. Bioresour. Bioprod. 2020, 5(3), 204-210.
  • 34. Nairan, A.; Liang, C.; Chiang, S.W.; Wu, Y.; Zou, P.; Khan, U.; Liu, W.; Kang F.; Guo S.; Wu, J.; Yang, C. Energy Environ. Sci. 2021, 14(3), 1594-1601.
  • 35. Murthy, A.P.; Theerthagiri, J.; Madhavan, J. J. Phys. Chem. C. 2018, 122(42), 23943-23949.
  • 36. Wu, L.; Hoof, A. J. F.; Dzade N.Y.; Gao L.; Richard M-I.; Friedrich H.; Leeuw N.H.D.; Hensen E.J.M.; Hofmann J. P. Phys. Chem. Chem. Phys. 2019, 21, 6071-6079.
  • 37. Najafi, L.;, Bellani, S.; Oropesa-Nuñez, R.; Ansaldo, A.; Prato M.; Castillo, A. E. D.R.; Bonaccorso F. Adv. Energy Mater. 2018, 8, 1703212-1703227.
  • 38. Zeng M.; Li, Y. J. Mater. Chem. A, 2015,3, 14942-14962
  • 39. Balun Kayan, D.; İlhan, M.; Koçak, D. Ionics, 2018, 24(2), 563-569.
  • 40. Wang, X.; Zhou, H.; Zhang, D.; Pi, M.; Feng, J.; Chen, S. J. Power Sources. 2018, 387, 1-8.

Hydrogen production via water electrolysis on an active electrocatalyst rGONi nanocomposite

Year 2023, Volume: 7 Issue: 1, 1 - 5, 30.06.2023
https://doi.org/10.32571/ijct.1199967

Abstract

The development of inexpensive and effective electrocatalyses are all-important for hydrogen production from water electrolysis. In this study, a facile design of a reduced graphene oxide (rGO) based electrocatalyst decorated with nickel nanoparticles is described. The voltammetric results and the hydrogen evolution reaction (HER) kinetics showed that the as-prepared nanocomposite is an effective and stable electrocatalyst for hydrogen production with a small Tafel slope of 152 mVdec-1 and long-term continuous durability (over 24 h) in 0.5 M H2SO4 solution. Also, the enhanced HER activity was confirmed by characterization results with the porous/greater electroactive surface area. The remarkable increase in electrocatalytic activity was due to the surface roughness and the synergetic chemical coupling effects between rGO and Ni nanoparticles.

References

  • 1. Razi, F.; Dincer, I. Renew. Sustain. Energy Rev. 2022, 168, 112763- 112775.
  • 2. Qureshi, F.; Yusuf, M.; Kamyab H.; Zaidi, S. Khalil M. J.; Khan, M. A.; Alam, M.A.; Masood F.; Bazli, L.; Chelliapan.; Abdullah, B. Sustain. Energy Technol. Assess. 2022, 53, 102677-102694.
  • 3. Wang, S.; Wu, X.; Jafarmadar S.; Singh, P.K.; Khorasani, S.; Marefati, M.; Alizadeh, A. J. Energy Storage 2022, 54, 105274- 105290.
  • 4. Zahedi, R.; Ghodusinejad, M. H.; Aslani, A.; Hachem-Vermette, C. Energy Strategy Rev. 2022, 43, 100930-100946.
  • 5. Ang, T-Z.; Salem, M.; Kamarol, M.; Das, H.S.; Nazari, M.A.; Prabaharan, N. Energy Strategy Rev. 43, 2022, 100939-100964.
  • 6. Balun Kayan, D.; Baran, T.; Menteş, A. Electrochim. Acta, 2022, 422, 140513-140520.
  • 7. Yu, Z-Y.; Duan, Y.; Feng, X-Y.; Yu, X.; Gao, M-R.; Yu, S-H. Adv. Mater. 2021, 33, 2007100-20071034. 8. Ahmed, S. F.; Mofijur, M.; Nuzhat, S.; Rafa, N.; Musharrat, A.; Lam, S.S.; Boretti, A. Int. J. Hydrog. Energy, 2022, 47(88), 37227-37255
  • 9. Vıdas, Leonardo; Castro, Rui. Applied Sciences, 2021, 11(23), 11363-11389. 10. Kamaroddin, M.F.A.; Sabli, N.; Abdullah T.A.T.; Siajam, S.I.; Abdullah, L.C.; Jalil A.A.; Ahmad, A. Membranes, 2021, 11(810), 1-28.
  • 11. Yao, R-Q.; Zhou, Y-T.; Shi, H.; Wan, W-B.; Zhang, Q-H.; Gu, L.; Zhu, Y-F.; Wen, Z.; Lang, X-Y.; Jiang, Q. Adv. Func. Mat. 2021, 31(10), 2009613-2009621.
  • 12. Liu, C.; Song, H.; Dai, Z.; Xiong, Y. Ionics, 2022, 28(3), 1311-1321.
  • 13. Cao, Z.; Song, H.; Liu, C.; Tang, W.; Liu J.; Yang, B.; Xie, W.; Yu, Z. Electrocatalysis, 2022, 13, 807–817.
  • 14. Kumar, S.S.; Lim, H. Energy Reports, 2022, 8, 13793-13813.
  • 15. Theerthagiri, J.; Lee, S. J.; Murthy, A.P.; Madhavan, J.; Choi, M.Y. Curr. Opin. Solid State Mater. Sci. 2020, 24(1), 100805-100826.
  • 16. Wu, T.; Sun, M.Z.; Huang, B.L. Rare Metals, 2022, 41, 2169-2183
  • 17. Ji, L.; Lv, C.; Chen, Z.; Huang, Z.; Zhang, C. Adv. Mater. 2018, 30(17), 1705653-1705659.
  • 18. Chen, Z.; Wei, W.; Ni, B.J. Curr. Opin. Green Sustain. Chem. 2021, 27, 100398-100405.
  • 19. Wu, H.; Feng, C.; Zhang, L.; Zhang, J.; Wilkinson, D.P. Electrochem. Energy Reviews 2021, 4(3), 473-507.
  • 20. Guo, M.; Song, S.; Zhang, S.; Yan, Y.; Zhan, K.; Yang, J.; Zhao, B. ACS Sustain. Chem. Eng. 2020, 8(19), 7436-7444.
  • 21. Trasatti, S. J. Electroanal. Chem. 1972, 39, 163-184.
  • 22. Jin, H.; Liu, X.; Chen, S.; Vasileff, A.; Li, L.; Jiao, Y.; Song, L.; Zheng, Y.; Qiao, S-Z.; ACS Energy Lett. 2019, 4, 4, 805-810
  • 23. Chang, H.; Shi, L.N.; Chen, Y.H.; Wang, P.F.; Yi, T.F. Coord. Chem. Rev. 2022, 473, 214839-214870.
  • 24. Zaher, A.; El Rouby, W.M.; Barakat, N.A. Fuel, 2020, 280, 118654.
  • 25. Liu, G.; Hou, F.; Peng, S.; Wang, X.; Fang, B. Nanomaterials 2022, 12(17), 2935-2947.
  • 26. Askari, M.B.; Rozati, S.M.; Salarizadeh, P.; Azizi, S. Ceramics International, 2022 48(11), 16123-16130.
  • 27. Karimi, A.; Kazeminezhad, I.; Naderi, L.; Shahrokhian, S. J. Phys. Chem. C., 2020, 124(8), 4393-4407.
  • 28. Wan, Z., Bai, X., Mo, H., Yang, J., Wang, Z., Zhou, L. Colloids Surf A Physicochem Eng Asp. 2021, 614, 126048-126059.
  • 29. Zhao, X.; Luo, D.; Wang, Y.; Liu, Z.H. Nano Res. 2019, 12(11), 2872-2880.
  • 30. Xu, Q.; Zang L.; Li, Z.; Shen, F.; Zhang, Y.; Sun, L.; Int. J. Hydrog. Energy, 2022, 47(91), 38571-38582.
  • 31. Wu, J.; Wang, J.; Huang, X.; Bai, H. Energy Environ. Sci. 2018, 11(5), 1280-1286.
  • 32. Rafiee, M.; Nitzsche, F.; Laliberte, J.; Hind, S.; Robitaille, F.; Labrosse, M.R. Compos. B: Eng. 2019, 164, 1-9.
  • 33. Qian, H.; Wang, J.; Yan, L. J. Bioresour. Bioprod. 2020, 5(3), 204-210.
  • 34. Nairan, A.; Liang, C.; Chiang, S.W.; Wu, Y.; Zou, P.; Khan, U.; Liu, W.; Kang F.; Guo S.; Wu, J.; Yang, C. Energy Environ. Sci. 2021, 14(3), 1594-1601.
  • 35. Murthy, A.P.; Theerthagiri, J.; Madhavan, J. J. Phys. Chem. C. 2018, 122(42), 23943-23949.
  • 36. Wu, L.; Hoof, A. J. F.; Dzade N.Y.; Gao L.; Richard M-I.; Friedrich H.; Leeuw N.H.D.; Hensen E.J.M.; Hofmann J. P. Phys. Chem. Chem. Phys. 2019, 21, 6071-6079.
  • 37. Najafi, L.;, Bellani, S.; Oropesa-Nuñez, R.; Ansaldo, A.; Prato M.; Castillo, A. E. D.R.; Bonaccorso F. Adv. Energy Mater. 2018, 8, 1703212-1703227.
  • 38. Zeng M.; Li, Y. J. Mater. Chem. A, 2015,3, 14942-14962
  • 39. Balun Kayan, D.; İlhan, M.; Koçak, D. Ionics, 2018, 24(2), 563-569.
  • 40. Wang, X.; Zhou, H.; Zhang, D.; Pi, M.; Feng, J.; Chen, S. J. Power Sources. 2018, 387, 1-8.
There are 38 citations in total.

Details

Primary Language English
Subjects Chemical Engineering
Journal Section Research Articles
Authors

Didem Balun Kayan 0000-0003-4297-5546

Early Pub Date September 7, 2023
Publication Date June 30, 2023
Published in Issue Year 2023 Volume: 7 Issue: 1

Cite

APA Balun Kayan, D. (2023). Hydrogen production via water electrolysis on an active electrocatalyst rGONi nanocomposite. International Journal of Chemistry and Technology, 7(1), 1-5. https://doi.org/10.32571/ijct.1199967
AMA Balun Kayan D. Hydrogen production via water electrolysis on an active electrocatalyst rGONi nanocomposite. Int. J. Chem. Technol. June 2023;7(1):1-5. doi:10.32571/ijct.1199967
Chicago Balun Kayan, Didem. “Hydrogen Production via Water Electrolysis on an Active Electrocatalyst RGONi Nanocomposite”. International Journal of Chemistry and Technology 7, no. 1 (June 2023): 1-5. https://doi.org/10.32571/ijct.1199967.
EndNote Balun Kayan D (June 1, 2023) Hydrogen production via water electrolysis on an active electrocatalyst rGONi nanocomposite. International Journal of Chemistry and Technology 7 1 1–5.
IEEE D. Balun Kayan, “Hydrogen production via water electrolysis on an active electrocatalyst rGONi nanocomposite”, Int. J. Chem. Technol., vol. 7, no. 1, pp. 1–5, 2023, doi: 10.32571/ijct.1199967.
ISNAD Balun Kayan, Didem. “Hydrogen Production via Water Electrolysis on an Active Electrocatalyst RGONi Nanocomposite”. International Journal of Chemistry and Technology 7/1 (June 2023), 1-5. https://doi.org/10.32571/ijct.1199967.
JAMA Balun Kayan D. Hydrogen production via water electrolysis on an active electrocatalyst rGONi nanocomposite. Int. J. Chem. Technol. 2023;7:1–5.
MLA Balun Kayan, Didem. “Hydrogen Production via Water Electrolysis on an Active Electrocatalyst RGONi Nanocomposite”. International Journal of Chemistry and Technology, vol. 7, no. 1, 2023, pp. 1-5, doi:10.32571/ijct.1199967.
Vancouver Balun Kayan D. Hydrogen production via water electrolysis on an active electrocatalyst rGONi nanocomposite. Int. J. Chem. Technol. 2023;7(1):1-5.