Araştırma Makalesi
BibTex RIS Kaynak Göster

Alkali Pretreatment and Analysis Of Biomass Content Of Narlisaray Population and Vezir Type Cannabis Plant

Yıl 2024, Cilt: 8 Sayı: 1, 83 - 89, 05.06.2024
https://doi.org/10.32571/ijct.1328410

Öz

The cell wall of the hemp plant consists of cellulose, hemicellulose, and lignin cross-linked to these components. In such a structure, lignin is considered an undesirable byproduct in the production of textiles, paper, and biofuels from hemp. Therefore, the removal of lignin is essential for the industrial utilization of cellulose from hemp. In this study, lignin removal processes were conducted for the first time on the (native to Anatolia) Narlısaray population and the registered Vezir hemp. Alkaline (NaOH) treatment was preferred for pre-treatment due to its relatively low cost, lower energy requirements, and reduced risk factors. Structural changes before and after alkaline pre-treatment were compared using FT-IR spectra, SEM, and EDX analyses of the biomass. Examination of elemental trace values revealed that the O:C ratios of Narlısaray and Vezir fibers increased to 0.84 and 0.85, respectively. The increase in the O:C ratio indicated the removal of lignin, while the nearly identical ratios suggested that the lignin cross-linking energies in both local hemp fibers were almost the same. Additionally, SEM images provided clear information regarding the structural changes in Narlısaray and Vezir fibers before and after the lignin removal process.

Destekleyen Kurum

TUBİTAK

Proje Numarası

1919B012107603

Teşekkür

This study was supported by the Scientific and Technical Research Council of Turkey (TUBITAK) within the scope of the 2209-A Student Project. I would like to thank Hümeyra AĞIR who contributed to the study.

Kaynakça

  • 1. Schultes, R. E. Nat. Hist. 1973, 82(7), 59.
  • 2. Zimniewska, M. Materials. 2002, 15(5), 1901.
  • 3. Schumacher, A. G. D.; Pequito, S.; Pazour, J. J Clean Prod. 2020, 268, 122180.
  • 4. Amode, N. S.; Jeetah, P. Waste Biomass Valorization. 2021, 12, 1781-1802.
  • 5. Tulaphol, S.; Sun, Z.; Sathitsuksanoh, N. Advances in Bioenergy. 2021, 6(1), 301-338.
  • 6. Ehrensing, D. T. Feasibility of industrial hemp production in the United States Pacific Northwest, Station Bulletin 681; Oregon State University: Corvallis, OR, USA, 1998.
  • 7. Kraenzel, D. G.; Petry, T. A.; Nelson, B.; Anderson, M. J.; Mathern, D.; Todd, R. Industrial hemp as an alternative crop in North Dakota, North Dakota State University: Fargo, ND, USA, 1998.
  • 8. Ceyhan, V.; Türkten, H.; Yıldırım, Ç.; Canan, S. Ind. Crop. Prod. 2022, 176, 114354.
  • 9. Crônier, D.; Monties, B.; Chabbert, B. J. Agr. Food Chem. 2005, 53(21), 8279-8289.
  • 10. Thomsen, A.B.; Rasmussen, S.; Bohn, V.; Vad Nielsen, K.; Thygesen, A. Hemp Raw Materials: The effect of cultivar, growth contitions and pretreatment on the chemical composition of the fibres, Risø DTU-National Laboratory for Sustainable Energy: Roskilde, Denmark, 2005.
  • 11. Preikss, I.; Skujans, J.; Adamovics, A.; Iljins, U. Chem. Engineer Trans. 2013, 32, 1639–1643.
  • 12. Parvez, A. M.; Lewis, J. D.; Afzal, M. T. Renew. Sust. Energ. Rev. 2021, 141, 110784.
  • 13. Arora, A.; Nandal, P.; Singh, J.; Verma, M. L. Materials Science for Energy Technologies, 2020, 3, 308-318.
  • 14. Barta, Z.; Oliva, J. M.; Ballesteros, I.; Dienes, D.; Ballesteros, M.; Réczey, K. Chem Biochem Eng Q. 2010, 24(3), 331-339.
  • 15. Kuglarz, M.; Alvarado-Morales, M.; Karakashev, D.; Angelidaki, I. Bioresource Technol. 2016, 200, 639-647.
  • 16. Gunnarsson, I. B.; Kuglarz, M.; Karakashev, D.; Angelidaki, I. Bioresource Technol. 2015, 182, 58-66.
  • 17. Zhao, J.; Xu, Y.; Wang, W.; Griffin, J.; Wang, D. Bioresource Technol. 2020, 309, 123383.
  • 18. Zhao, J.; Xu, Y.; Wang, W.; Griffin, J.; Roozeboom, K.; Wang, D. Fuel. 2020, 281, 118725.
  • 19. Ji, A.; Jia, L.; Kumar, D.; Yoo, C. G. Fermentation. 2021. 7(1), 6.
  • 20. Pakarinen, A.; Zhang, J.; Brock, T.; Maijala, P.; Viikari, L. Bioresource Technol. 2012, 107, 275-281.
  • 21. Rajkumar, S.; Tjong, J.; Nayak, S. K.; Sain, M. J. Reinf. Plast. Comp. 2015, 34(10), 807-818.
  • 22. Kabir, M. M.; Wang, H.; Lau, K. T; Cardona, F. Appl. Surf. Sci. 2013, 276, 13-23.
Yıl 2024, Cilt: 8 Sayı: 1, 83 - 89, 05.06.2024
https://doi.org/10.32571/ijct.1328410

Öz

Proje Numarası

1919B012107603

Kaynakça

  • 1. Schultes, R. E. Nat. Hist. 1973, 82(7), 59.
  • 2. Zimniewska, M. Materials. 2002, 15(5), 1901.
  • 3. Schumacher, A. G. D.; Pequito, S.; Pazour, J. J Clean Prod. 2020, 268, 122180.
  • 4. Amode, N. S.; Jeetah, P. Waste Biomass Valorization. 2021, 12, 1781-1802.
  • 5. Tulaphol, S.; Sun, Z.; Sathitsuksanoh, N. Advances in Bioenergy. 2021, 6(1), 301-338.
  • 6. Ehrensing, D. T. Feasibility of industrial hemp production in the United States Pacific Northwest, Station Bulletin 681; Oregon State University: Corvallis, OR, USA, 1998.
  • 7. Kraenzel, D. G.; Petry, T. A.; Nelson, B.; Anderson, M. J.; Mathern, D.; Todd, R. Industrial hemp as an alternative crop in North Dakota, North Dakota State University: Fargo, ND, USA, 1998.
  • 8. Ceyhan, V.; Türkten, H.; Yıldırım, Ç.; Canan, S. Ind. Crop. Prod. 2022, 176, 114354.
  • 9. Crônier, D.; Monties, B.; Chabbert, B. J. Agr. Food Chem. 2005, 53(21), 8279-8289.
  • 10. Thomsen, A.B.; Rasmussen, S.; Bohn, V.; Vad Nielsen, K.; Thygesen, A. Hemp Raw Materials: The effect of cultivar, growth contitions and pretreatment on the chemical composition of the fibres, Risø DTU-National Laboratory for Sustainable Energy: Roskilde, Denmark, 2005.
  • 11. Preikss, I.; Skujans, J.; Adamovics, A.; Iljins, U. Chem. Engineer Trans. 2013, 32, 1639–1643.
  • 12. Parvez, A. M.; Lewis, J. D.; Afzal, M. T. Renew. Sust. Energ. Rev. 2021, 141, 110784.
  • 13. Arora, A.; Nandal, P.; Singh, J.; Verma, M. L. Materials Science for Energy Technologies, 2020, 3, 308-318.
  • 14. Barta, Z.; Oliva, J. M.; Ballesteros, I.; Dienes, D.; Ballesteros, M.; Réczey, K. Chem Biochem Eng Q. 2010, 24(3), 331-339.
  • 15. Kuglarz, M.; Alvarado-Morales, M.; Karakashev, D.; Angelidaki, I. Bioresource Technol. 2016, 200, 639-647.
  • 16. Gunnarsson, I. B.; Kuglarz, M.; Karakashev, D.; Angelidaki, I. Bioresource Technol. 2015, 182, 58-66.
  • 17. Zhao, J.; Xu, Y.; Wang, W.; Griffin, J.; Wang, D. Bioresource Technol. 2020, 309, 123383.
  • 18. Zhao, J.; Xu, Y.; Wang, W.; Griffin, J.; Roozeboom, K.; Wang, D. Fuel. 2020, 281, 118725.
  • 19. Ji, A.; Jia, L.; Kumar, D.; Yoo, C. G. Fermentation. 2021. 7(1), 6.
  • 20. Pakarinen, A.; Zhang, J.; Brock, T.; Maijala, P.; Viikari, L. Bioresource Technol. 2012, 107, 275-281.
  • 21. Rajkumar, S.; Tjong, J.; Nayak, S. K.; Sain, M. J. Reinf. Plast. Comp. 2015, 34(10), 807-818.
  • 22. Kabir, M. M.; Wang, H.; Lau, K. T; Cardona, F. Appl. Surf. Sci. 2013, 276, 13-23.
Toplam 22 adet kaynakça vardır.

Ayrıntılar

Birincil Dil İngilizce
Konular Kimya Mühendisliği (Diğer)
Bölüm Makale
Yazarlar

Özgenur Dinçer Şahan 0000-0002-2598-4865

Nesrin Korkmaz 0000-0002-7896-1042

Ahmet Karadağ 0000-0003-4676-683X

Proje Numarası 1919B012107603
Erken Görünüm Tarihi 30 Mayıs 2024
Yayımlanma Tarihi 5 Haziran 2024
Yayımlandığı Sayı Yıl 2024 Cilt: 8 Sayı: 1

Kaynak Göster

APA Dinçer Şahan, Ö., Korkmaz, N., & Karadağ, A. (2024). Alkali Pretreatment and Analysis Of Biomass Content Of Narlisaray Population and Vezir Type Cannabis Plant. International Journal of Chemistry and Technology, 8(1), 83-89. https://doi.org/10.32571/ijct.1328410
AMA Dinçer Şahan Ö, Korkmaz N, Karadağ A. Alkali Pretreatment and Analysis Of Biomass Content Of Narlisaray Population and Vezir Type Cannabis Plant. Int. J. Chem. Technol. Haziran 2024;8(1):83-89. doi:10.32571/ijct.1328410
Chicago Dinçer Şahan, Özgenur, Nesrin Korkmaz, ve Ahmet Karadağ. “Alkali Pretreatment and Analysis Of Biomass Content Of Narlisaray Population and Vezir Type Cannabis Plant”. International Journal of Chemistry and Technology 8, sy. 1 (Haziran 2024): 83-89. https://doi.org/10.32571/ijct.1328410.
EndNote Dinçer Şahan Ö, Korkmaz N, Karadağ A (01 Haziran 2024) Alkali Pretreatment and Analysis Of Biomass Content Of Narlisaray Population and Vezir Type Cannabis Plant. International Journal of Chemistry and Technology 8 1 83–89.
IEEE Ö. Dinçer Şahan, N. Korkmaz, ve A. Karadağ, “Alkali Pretreatment and Analysis Of Biomass Content Of Narlisaray Population and Vezir Type Cannabis Plant”, Int. J. Chem. Technol., c. 8, sy. 1, ss. 83–89, 2024, doi: 10.32571/ijct.1328410.
ISNAD Dinçer Şahan, Özgenur vd. “Alkali Pretreatment and Analysis Of Biomass Content Of Narlisaray Population and Vezir Type Cannabis Plant”. International Journal of Chemistry and Technology 8/1 (Haziran 2024), 83-89. https://doi.org/10.32571/ijct.1328410.
JAMA Dinçer Şahan Ö, Korkmaz N, Karadağ A. Alkali Pretreatment and Analysis Of Biomass Content Of Narlisaray Population and Vezir Type Cannabis Plant. Int. J. Chem. Technol. 2024;8:83–89.
MLA Dinçer Şahan, Özgenur vd. “Alkali Pretreatment and Analysis Of Biomass Content Of Narlisaray Population and Vezir Type Cannabis Plant”. International Journal of Chemistry and Technology, c. 8, sy. 1, 2024, ss. 83-89, doi:10.32571/ijct.1328410.
Vancouver Dinçer Şahan Ö, Korkmaz N, Karadağ A. Alkali Pretreatment and Analysis Of Biomass Content Of Narlisaray Population and Vezir Type Cannabis Plant. Int. J. Chem. Technol. 2024;8(1):83-9.