Research Article
BibTex RIS Cite

Theoretical Study of the Regioselectivity of Some Monomers: Chitin and Chitosan

Year 2024, Volume: 8 Issue: 2, 164 - 169, 31.12.2024
https://doi.org/10.32571/ijct.1491250

Abstract

Biopolymers have become more and more attractive nowadays for both experimental and theoretical studies because of their importance in our daily life. In this contribution, the electronic properties and reactivity behavior of some biomonomers; chitin and chitosan have been thoroughly investigated theoretically using density functional theory (DFT) B3LYP/6-31G(d) level of theory. The regioselectivity of these molecules has been rationalized by using both Fukui and Parr indices in order to explain and show the most probable sites to be attacked towards nucleophiles and electrophiles. For the three studied monomers, the oxygen and nitrogen atoms were found to be the most reactive sites. Parr functions and Fukui functions found to be complementary while explaining the possible regioselectivity.

References

  • Ravi Kumar, MNV. A review of chitin and chitosan applications. React. Funct. Polym. 2000, 46, 1–27.
  • Tao, Y.; Zhang, H.L.; Hu, Y.M. et al. Preparation of chitosan and water-soluble chitosan microspheres via spray-drying method to lower blood lipids in rats fed with high-fat diets. Int. J. Mol. Sci. 2013, 14 (2), 4174-4184.
  • Roberts, G.A.F. Preparation of chitin and chitosan. Chitin chemistry. Red Globe Press Press: London, 1992.
  • Chang, K.L.B.; Tsai, G.; Lee, J. et al. Heterogeneous N-deacetylation of chitin in alkaline solution. Carbohydr. Res. 1997, 303 (3), 327-332.
  • Araki, Y.; Ito, E. A pathway of chitosan formation in Mucor rouxii (enzymatic deacetylation of chitin). Eur. J. Biochem. 1975, 55(1), 71-78.
  • Martinou, A.; Kafetaopulas, D.; Bouriotis, V. Carbohydr. Res. 1995, 273 (2), 235-242.
  • Usami, Y.; Minami, S.; Okamoto, Y. et al. Carbohydr. Polym. 1997, 32 (2), 115-122.
  • Peniche, C.; Argüelles-Monal, W.; Goycoolea, F.M. Chitin and chitosan: major sources, properties and applications. In Monomers, polymers and composites from renewable resources. Elsevier: 2008.
  • Shahidi, F.; Arachchi, J.K.V.; Jeon, Y.J. Trends. Food. Sci. Technol. 1999, 10 (2), 37-51.
  • Liang, J.; Yan, H.; Zhang, J. et al. Carbohydr. Polym. 2017, 171, 300-306.
  • Wang, H.; Qian, J.; Ding, F. J. Agric. Food. Chem. 2018, 66 (2), 395-413.
  • Bamgbose, J.T.; Bamigbade, A.A.; Adewuyi, S. et al. J. Chem. Chem. Eng. 2012, 6 (3), 272-283.
  • Harding, S.E. Characterisation of chitosan-mucin complexes by sedimentation velocity analytical ultracentrifugation. In: Muzzarelli RAA, Peter MG eds. Chitin Handbook. European Chitin Society, 1997, 457-466.
  • Morris, G.; Kök, S.; Harding, S. et al. Biotechnol. Genet. Eng. Rev. 2010, 27 (1), 257-84.
  • Smith, A.; Perelman, M.; Hinchcliffe, M. Hum. Vaccin. Immunother. 2014, 10 (3), 797-807.
  • Nishimura, S.; Kohgo, O.; Kurita, K. et al. Macromol. 1991, 24 (17), 4745-4748.
  • Del Vigo, E.A.; Stortz, C.A.; Marino, C. Beilstein. J. Org. Chem. 2019, 15 (1), 2982-2989.
  • Wang, S.; Zhelavskyi, O.; Lee, J. et al. J. Am. Chem. Soc. 2021, 143 (44), 18592-18604.
  • Traboni, S.; Bedini, E.; Landolfi, A. et al. Catalysts. 2021, 11 (2), 1-9.
  • Wan, I.C. ; Hamlin, T.A. ; Eisink, N.N. et al. Eur. J. Org. Chem. 2021, (4), 632-636.
  • Colombo, M.I.; Rúveda, E.A.; Stortz, C.A. Org. Biomol. Chem. 2011, 9 (8), 3020-3025.
  • Van Der Vorm, S.; Hansen, T.; Van Hengst, J.M. et al. Chem. Soc. Rev. 2019, 48 (17), 4688-4706.
  • Frisch, M. J.; Trucks, G. W.; Schlegel, H. B. et al. GAUSSIAN 09: Revision A.02 (Pittsburg, PA: Gaussian Inc.) 2009.
  • Tirado-Rives, J.; Jorgensen, W.L. J. Chem. Theory. Comput. 2008, 4 (2), 297-306.
  • Zhang, I.Y.; Wu, J.; Xu, X. Chem. Comm. 2010, 46 (18), 3057-3070.
  • Yanai, T.; Tew, D.P.; Handy, N.C. Chem. Phys. Lett. 2004, 393 (1-3), 51-57.
  • Suleimanov, Y.V.; Green, W.H. J. Chem. Theory. Comput. 2015, 11(9), 4248-4259.
  • Mulliken, R.S. J. Chem. Phys. 1955, 23(10), 1833-1840.
  • Csizmadia, I.G. Theory and practice of MO calculations on organic molecules. Elsevier: 1976.
  • Chamorro, E.; Pérez, P.; Domingo, L.R. Chem. Phys. Lett. 2013, 582, 141-143.
  • Domingo, L.R.; Pérez, P.; Sáez, J.A. RSC. Adv. 2013, 3 (5), 1486-1494.
  • Ghaleb, A.; Aouidate, A.; Lakhlifi, T. et al. Russ. J. Phys. Chem. A. 2018, 92, 2464-2471.
  • Pearson, R.G. J. Mol. Struct. 1992, 255, 261-270.
  • Messaoudi, B.; Mekelleche, S.M. Lett. Org. Chem. 2011, 8, 95-103.
  • Domingo, L.R.; Chamorro, E.; Pérez, P. J. Org. Chem. 2008, 73 (12), 4615-4624.
  • Spackman, M.A.; Jayatilaka, D. Cryst. Eng. Comm. 2009, 11(1), 19-32
  • Spackman, P.R.; Turner, M.J.; McKinnon, J.J. et al. J. Appl. Crystallogr. 2021, 54 (3), 1006-1011.
  • Martin, A.D.; Hartlieb, K.J.; Sobolev, A.N. et al. Cryst. Growth. Des. 2010, 10 (12), 5302-5306.
  • Guerrab, W.; Lgaz, H. ; Kansiz, S. et al. J. Mol. Struct. 2020, 1205, 127630.
Year 2024, Volume: 8 Issue: 2, 164 - 169, 31.12.2024
https://doi.org/10.32571/ijct.1491250

Abstract

References

  • Ravi Kumar, MNV. A review of chitin and chitosan applications. React. Funct. Polym. 2000, 46, 1–27.
  • Tao, Y.; Zhang, H.L.; Hu, Y.M. et al. Preparation of chitosan and water-soluble chitosan microspheres via spray-drying method to lower blood lipids in rats fed with high-fat diets. Int. J. Mol. Sci. 2013, 14 (2), 4174-4184.
  • Roberts, G.A.F. Preparation of chitin and chitosan. Chitin chemistry. Red Globe Press Press: London, 1992.
  • Chang, K.L.B.; Tsai, G.; Lee, J. et al. Heterogeneous N-deacetylation of chitin in alkaline solution. Carbohydr. Res. 1997, 303 (3), 327-332.
  • Araki, Y.; Ito, E. A pathway of chitosan formation in Mucor rouxii (enzymatic deacetylation of chitin). Eur. J. Biochem. 1975, 55(1), 71-78.
  • Martinou, A.; Kafetaopulas, D.; Bouriotis, V. Carbohydr. Res. 1995, 273 (2), 235-242.
  • Usami, Y.; Minami, S.; Okamoto, Y. et al. Carbohydr. Polym. 1997, 32 (2), 115-122.
  • Peniche, C.; Argüelles-Monal, W.; Goycoolea, F.M. Chitin and chitosan: major sources, properties and applications. In Monomers, polymers and composites from renewable resources. Elsevier: 2008.
  • Shahidi, F.; Arachchi, J.K.V.; Jeon, Y.J. Trends. Food. Sci. Technol. 1999, 10 (2), 37-51.
  • Liang, J.; Yan, H.; Zhang, J. et al. Carbohydr. Polym. 2017, 171, 300-306.
  • Wang, H.; Qian, J.; Ding, F. J. Agric. Food. Chem. 2018, 66 (2), 395-413.
  • Bamgbose, J.T.; Bamigbade, A.A.; Adewuyi, S. et al. J. Chem. Chem. Eng. 2012, 6 (3), 272-283.
  • Harding, S.E. Characterisation of chitosan-mucin complexes by sedimentation velocity analytical ultracentrifugation. In: Muzzarelli RAA, Peter MG eds. Chitin Handbook. European Chitin Society, 1997, 457-466.
  • Morris, G.; Kök, S.; Harding, S. et al. Biotechnol. Genet. Eng. Rev. 2010, 27 (1), 257-84.
  • Smith, A.; Perelman, M.; Hinchcliffe, M. Hum. Vaccin. Immunother. 2014, 10 (3), 797-807.
  • Nishimura, S.; Kohgo, O.; Kurita, K. et al. Macromol. 1991, 24 (17), 4745-4748.
  • Del Vigo, E.A.; Stortz, C.A.; Marino, C. Beilstein. J. Org. Chem. 2019, 15 (1), 2982-2989.
  • Wang, S.; Zhelavskyi, O.; Lee, J. et al. J. Am. Chem. Soc. 2021, 143 (44), 18592-18604.
  • Traboni, S.; Bedini, E.; Landolfi, A. et al. Catalysts. 2021, 11 (2), 1-9.
  • Wan, I.C. ; Hamlin, T.A. ; Eisink, N.N. et al. Eur. J. Org. Chem. 2021, (4), 632-636.
  • Colombo, M.I.; Rúveda, E.A.; Stortz, C.A. Org. Biomol. Chem. 2011, 9 (8), 3020-3025.
  • Van Der Vorm, S.; Hansen, T.; Van Hengst, J.M. et al. Chem. Soc. Rev. 2019, 48 (17), 4688-4706.
  • Frisch, M. J.; Trucks, G. W.; Schlegel, H. B. et al. GAUSSIAN 09: Revision A.02 (Pittsburg, PA: Gaussian Inc.) 2009.
  • Tirado-Rives, J.; Jorgensen, W.L. J. Chem. Theory. Comput. 2008, 4 (2), 297-306.
  • Zhang, I.Y.; Wu, J.; Xu, X. Chem. Comm. 2010, 46 (18), 3057-3070.
  • Yanai, T.; Tew, D.P.; Handy, N.C. Chem. Phys. Lett. 2004, 393 (1-3), 51-57.
  • Suleimanov, Y.V.; Green, W.H. J. Chem. Theory. Comput. 2015, 11(9), 4248-4259.
  • Mulliken, R.S. J. Chem. Phys. 1955, 23(10), 1833-1840.
  • Csizmadia, I.G. Theory and practice of MO calculations on organic molecules. Elsevier: 1976.
  • Chamorro, E.; Pérez, P.; Domingo, L.R. Chem. Phys. Lett. 2013, 582, 141-143.
  • Domingo, L.R.; Pérez, P.; Sáez, J.A. RSC. Adv. 2013, 3 (5), 1486-1494.
  • Ghaleb, A.; Aouidate, A.; Lakhlifi, T. et al. Russ. J. Phys. Chem. A. 2018, 92, 2464-2471.
  • Pearson, R.G. J. Mol. Struct. 1992, 255, 261-270.
  • Messaoudi, B.; Mekelleche, S.M. Lett. Org. Chem. 2011, 8, 95-103.
  • Domingo, L.R.; Chamorro, E.; Pérez, P. J. Org. Chem. 2008, 73 (12), 4615-4624.
  • Spackman, M.A.; Jayatilaka, D. Cryst. Eng. Comm. 2009, 11(1), 19-32
  • Spackman, P.R.; Turner, M.J.; McKinnon, J.J. et al. J. Appl. Crystallogr. 2021, 54 (3), 1006-1011.
  • Martin, A.D.; Hartlieb, K.J.; Sobolev, A.N. et al. Cryst. Growth. Des. 2010, 10 (12), 5302-5306.
  • Guerrab, W.; Lgaz, H. ; Kansiz, S. et al. J. Mol. Struct. 2020, 1205, 127630.
There are 39 citations in total.

Details

Primary Language English
Subjects Chemical Engineering (Other)
Journal Section Research Articles
Authors

Boulanouar Messaoudı 0000-0002-5638-2234

Samir Benykhlef 0009-0000-3118-658X

Early Pub Date December 9, 2024
Publication Date December 31, 2024
Submission Date May 28, 2024
Acceptance Date August 6, 2024
Published in Issue Year 2024 Volume: 8 Issue: 2

Cite

APA Messaoudı, B., & Benykhlef, S. (2024). Theoretical Study of the Regioselectivity of Some Monomers: Chitin and Chitosan. International Journal of Chemistry and Technology, 8(2), 164-169. https://doi.org/10.32571/ijct.1491250
AMA Messaoudı B, Benykhlef S. Theoretical Study of the Regioselectivity of Some Monomers: Chitin and Chitosan. Int. J. Chem. Technol. December 2024;8(2):164-169. doi:10.32571/ijct.1491250
Chicago Messaoudı, Boulanouar, and Samir Benykhlef. “Theoretical Study of the Regioselectivity of Some Monomers: Chitin and Chitosan”. International Journal of Chemistry and Technology 8, no. 2 (December 2024): 164-69. https://doi.org/10.32571/ijct.1491250.
EndNote Messaoudı B, Benykhlef S (December 1, 2024) Theoretical Study of the Regioselectivity of Some Monomers: Chitin and Chitosan. International Journal of Chemistry and Technology 8 2 164–169.
IEEE B. Messaoudı and S. Benykhlef, “Theoretical Study of the Regioselectivity of Some Monomers: Chitin and Chitosan”, Int. J. Chem. Technol., vol. 8, no. 2, pp. 164–169, 2024, doi: 10.32571/ijct.1491250.
ISNAD Messaoudı, Boulanouar - Benykhlef, Samir. “Theoretical Study of the Regioselectivity of Some Monomers: Chitin and Chitosan”. International Journal of Chemistry and Technology 8/2 (December 2024), 164-169. https://doi.org/10.32571/ijct.1491250.
JAMA Messaoudı B, Benykhlef S. Theoretical Study of the Regioselectivity of Some Monomers: Chitin and Chitosan. Int. J. Chem. Technol. 2024;8:164–169.
MLA Messaoudı, Boulanouar and Samir Benykhlef. “Theoretical Study of the Regioselectivity of Some Monomers: Chitin and Chitosan”. International Journal of Chemistry and Technology, vol. 8, no. 2, 2024, pp. 164-9, doi:10.32571/ijct.1491250.
Vancouver Messaoudı B, Benykhlef S. Theoretical Study of the Regioselectivity of Some Monomers: Chitin and Chitosan. Int. J. Chem. Technol. 2024;8(2):164-9.