Research Article
BibTex RIS Cite

Year 2025, Volume: 9 Issue: 1, 117 - 128, 24.06.2025
https://doi.org/10.32571/ijct.1688965

Abstract

References

  • 1. Sharma, M.; Singh, K.; Gautam, A. S.; Gautam, S. Aer. Sci. and Eng. 2024, 1-16.
  • 2. Chen, Q.; Bergthorson, J.; Schiemann, M. Ren. and Sus. En. Rev. 2024, 203, 114730.
  • 3. NOAA (National Oceanic and Atmospheric Administration) 2024, Understanding the basics of carbondioxide.https://research.noaa.gov/understanding-the-basics-of-carbon-dioxide/ (Accessed 19 March 2025).
  • 4. NASA (National Aeronautics and Space Administration) 2025, Carbon Dioxide. https://climate.nasa.gov/vital-signs/carbon-dioxide/?intent=121 (Accessed 19 March 2025).
  • 5. Aithal, S.; Aithal, S. 2016, Opportunities & challenges for green technology in 21st century. MPRA Paper No. 73661. https://mpra.ub.uni-muenchen.de/73661/(Accessed 19 March 2025).
  • 6. Wang X.; Zhang, T.; Nathwani, J.; Yang, F.; Shao, Q. Tech. For. and Soc. Ch. 2022, 176, 121471.
  • 7. Gronwald, M.; Van Long, N.; Roepke, L. 2017, Three Degrees of Green Paradox: The Weak, The Strong, and the Extreme Green Paradox. Centre interuniversitaire de recherche en économie quantitative. https://www.cireqmontreal.com/wp-content/uploads/cahiers/02-2017-cah.pdf (Accessed 19 March 2025).
  • 8. Herring, H. Energy. 2006, 31 (1), 10-20.
  • 9. Polimeni, J. M.; Polimeni, R. I. Eco. Comp. 2006, 3 (4), 344-353.
  • 10. Bashir, M. F.; Benjiang, M. A.; Shahbaz, M.; Shahzad, U.; Vo, X.V. Energy. 2021, 226, 120366.
  • 11. Fang, G.; Yang, K.; Tian, L.; Ma, Y. Energy. 2022, 260, 125193.
  • 12. Sackitey, G. L. Cog. Eco. & Fin. 2023, 11 (1), 2156094. 13. Mardani, A.; Streimikiene, D.; Cavallaro, F.; Loganathan, N.; Khoshnoudi, M. Sci. of the Tot. Env. 2019, 649, 31-49.
  • 14. Ozturk, İ.; Acaravci, A. Ren. and Sus. Ener. Rev. 2010, 14 (9), 3220-3225.
  • 15. Bilal, A.; Li, X.; Zhu, N.; Sharma, R.; Jahanger, A. Sustainability. 2022, 14 (1), 236.
  • 16. Oğul, B. İnö. Üni. Ulus. Sos. Bil. Der. 2022, 11 (2), 409-427.
  • 17. Kirikkaleli, D.; Ali, K. Geo. J. 2023, 58 (7), 2595-2609.
  • 18. Shan, S.; Genç, S.Y.; Kamran, H.W.; Dinca, G. J. of Env. Man. 2021, 294, 113004.
  • 19. Ahmad, N.; Youjin, L.; Žiković, S.; Belyaeva, Z. Tech. in Soc. 2023, 72, 102184.
  • 20. Khan, A.; Sampene, A.K.; Ali, S. Heliyon. 2023, 9 (6).
  • 21. Kirikkaleli, D.; Adebayo, T. S. Sus. Dev. 2021, 29 (4), 583-594.
  • 22. Adebayo, T. S.; Kırıkkaleli, D. Env., Dev. and Sus. 2021, 23 (11), 16057-16082.
  • 23. Khan, I.; Han, L.; BiBi, R.; Khan, H. Env. Sci. and Pol. Res. 2022, 29 (48), 73085-73099.
  • 24. Gunderson, R.; Yun, S. J. J. of Cle. Pro. 2017, 144, 239-247.
  • 25. Li, H.; Su, Y.; Ding, C.J.; Tian, G.G.; Wu, Z. Tech. Forec. and Soc. Ch. 2024, 207, 123562.
  • 26. Ghazouani, A.; Xia, W.; Ben Jebli, M.; Shahzad, U. Sustainability. 2020, 12 (20), 8680.
  • 27. Omodero, C.O.; Okafor, M.C.; Nmesirionye, J.A.; Abaa, E. O. Environ. Ecol. Res. 2022, 10, 1-10.
  • 28. Al Shammre, A.S.; Benhamed, A.; Ben-Salha, O.; Jaidi, Z. Systems. 2023, 11 (6), 307.
  • 29. Iyke-Ofoedu, M. I.; Takon, S. M.; Ugwunta, D. O.; Ezeaku, H. C.; Nsofor, E. S.; Egbo, O. P. J. of Cle. Pro. 2024, 444, 141210.
  • 30. Scrimgeour, F.; Oxley, L.; Fatai, K. Env. Mod. & Soft. 2005, 20 (11), 1439-1448.
  • 31. Loganathan, N.; Shahbaz, M.; Taha, R. Ren. and Sus. Ene. Rev. 2014, 38, 1083-1091. 32. Onofrei, M.; Vatamanu, A.F.; Cigu, E. Fro. in Env. Sci. 2022, 10, 934885.
  • 33. Lee, J. W.; Brahmasrene, T. Glo. Eco. Rev. 2014, 43 (2), 93-109.
  • 34. Wang, S.; Li, Q.; Fang, C.; Zhou, C. Sci. of the Tot. Env. 2016, 542, 360-371.
  • 35. Kizilkaya, O. Tur. Eco. Rev. 2017, 4 (1), 106-118.
  • 36. Cowan, W. N.; Chang, T.; Inglesi-Lotz, R.; Gupta, R. Ener. Pol. 2014, 66, 359-368.
  • 37. Bengochea-Morancho, A.; Higón-Tamarit, F.; Martínez-Zarzoso, I. Env. and Res. Eco. 2001, 19, 165-172.
  • 38. Ritchie, H. 2021, Many countries have decoupled economic growth from CO2 emissions, even if we take offshored production into account. Our World in Data.
  • 39. IEA, 2022, Türkiye. https://www.iea.org/countries/turkiye/emissions (Accessed 15 March 2025).
  • 40. Abdulkarim, M. J. of Academic Analysis (JAC). 2023, 1 (1), 1-16.
  • 41. Akdağ, N.; Tunalı, H. J. of Academic Analysis (JAC). 2024, 2 (1), 25-38.
  • 42. EDGAR, 2022, GHG Emissions of All World Countries. https://edgar.jrc.ec.europa.eu (Accessed 15 March 2025).
  • 43. OECD, 2025, Environmental tax. https://www.oecd.org/en/data/indicators/environmental-tax.html (Accessed 19 March 2025).
  • 44. World Bank Indicators, 2025, “Data”, available at: https://databank.worldbank.org/source/world-development-indicators (accessed 17 March 2025).
  • 45. Shahbaz, M.; Zeshan, M.; Afza, T. Eco. Model. 2012, 29 (6), 2310-2319.
  • 46. Bhattacharya, M.; Paramati, S. R.; Ozturk, I.; Bhattacharya, S.; Appl. Ener. 2016, (162), 733-741.
  • 47. Dickey, D. A.; Fuller, W. A. Econometrica. 1981, 49 (4), 1057-1072.
  • 48. Phillips, P. C. B.; Perron, P. Biometrika. 1988, 75, 335-346.
  • 49. Enders, W.; Lee, J. Econ. Let. 2012, 117 (1), 196-199.
  • 50. Naimoğlu, M.; Sahabi, A.M.; Özbek, S. Sosyoekonomi. 2022, 30 (53), 487-507.
  • 51. Becker, R.; Enders, W.; Lee, J. J. of Time Ser. Analy. 2006, 27 (3), 381-409.
  • 52. Sam, C. Y.; McNown, R.; Goh, S. K. Econ. Model. 2019, 80, 130-141.
  • 53. Pesaran, M. H.; Shin, Y.; Smith, R. J. J. of Ap. Econ. 2001, 16 (3), 289-326.
  • 54. Narayan, P. K. App. Econ. 2005, 37 (17), 1979-1990.
  • 55. Hansen, B. E.; Phillips, P. C. B. Adv. in Econ. 1990, 8, 225-248.
  • 56. Park, J. Y. Econometrica. 1992, 119-143.
  • 57. Stock, J. H.; Watson, M. W. Econometrica. 1993, 783-820.
  • 58. Özbek, S. Ana. Üni. Sos. Bil. Der. 2023, 23 (2), 517-536.
  • 59. Wolff, J. Glo. Pers. 2021, 2 (1), 1-5.
  • 60. Coccia, M. Tech. Fore. and Soc. Ch. 2005, 72 (8), 944-979.
  • 61. Justman, M.; Teubal, M. World Dev. 1991, 19 (9), 1167-1183.
  • 62. Çalışkan, H. K. Pro.-Soc. and Beh. Sci. 2015, 195, 649-654.
  • 63. Pohjola, M. 2000, https://ageconsearch.umn.edu/record/295500/ (Accessed 18 March 2025).
  • 64. Cavdar, S. C.; Aydin, A. D. Pro.-Soc. and Beh. Sci. 2015, 195, 1486-1495.
  • 65. Veser, M. 2023, The sustainable tech transformation: Paving the way for a greener future. https://www.ey.com/en_ch/insights/sustainability/drive-the-green-transformation-enabled-by-technologyy (Accessed 18 March 2025).
  • 66. Diaconu, M. Theo. & App. Econ. 2011, 18 (10), 127-144.
  • 67. Kane, M.; Galea, D. 2024, The role of technology in sustainable development. https://instituteofsustainabilitystudies.com/insights/guides/the-role-of-technology-in-sustainable-development/ (Accessed 18 March 2025).
  • 68. EPA (Environmental Protection Agency) 2025, Carbon Dioxide Emissions. https://www.epa.gov/ghgemissions/carbon-dioxide-emissions
  • 69. Ritchie, H.; Rosado, P.; Roser, M. 2023, CO₂ and Greenhouse Gas Emissions. https://ourworldindata.org/co2-and-greenhouse-gas-emissions (Accessed 19 March 2025).

Sustainable Intentions, Unsustainable Outcomes: Green Technologies, Environmental Taxes, and the Carbon Cost of Economic Growth

Year 2025, Volume: 9 Issue: 1, 117 - 128, 24.06.2025
https://doi.org/10.32571/ijct.1688965

Abstract

Environmental degradation has become a global issue. CO2 emissions lie at the heart of this issue. Therefore, the determinants of CO2 emissions are becoming important. This study focuses on the relationship between CO2 emissions and environmental technological innovation, environmental taxes and income for the Turkish economy. Traditional unit root tests and Fourier ADF unit root tests were used in the light of data for the period 1994-2022. Augmented ARDL method was used to determine the long-term relationship. FMOLS, DOLS and CCR were used as long-term estimators. Empirical findings revealed that environmental technical innovations, environmental taxes and increases in income increased CO2 emissions. These results showed that technological innovations and environmental measures were not successful in reducing CO2 emissions. The findings provide important insights into environmental and technology policy implementations for Türkiye, which is among the developing countries.

Ethical Statement

This study does not require ethics committee approval.

References

  • 1. Sharma, M.; Singh, K.; Gautam, A. S.; Gautam, S. Aer. Sci. and Eng. 2024, 1-16.
  • 2. Chen, Q.; Bergthorson, J.; Schiemann, M. Ren. and Sus. En. Rev. 2024, 203, 114730.
  • 3. NOAA (National Oceanic and Atmospheric Administration) 2024, Understanding the basics of carbondioxide.https://research.noaa.gov/understanding-the-basics-of-carbon-dioxide/ (Accessed 19 March 2025).
  • 4. NASA (National Aeronautics and Space Administration) 2025, Carbon Dioxide. https://climate.nasa.gov/vital-signs/carbon-dioxide/?intent=121 (Accessed 19 March 2025).
  • 5. Aithal, S.; Aithal, S. 2016, Opportunities & challenges for green technology in 21st century. MPRA Paper No. 73661. https://mpra.ub.uni-muenchen.de/73661/(Accessed 19 March 2025).
  • 6. Wang X.; Zhang, T.; Nathwani, J.; Yang, F.; Shao, Q. Tech. For. and Soc. Ch. 2022, 176, 121471.
  • 7. Gronwald, M.; Van Long, N.; Roepke, L. 2017, Three Degrees of Green Paradox: The Weak, The Strong, and the Extreme Green Paradox. Centre interuniversitaire de recherche en économie quantitative. https://www.cireqmontreal.com/wp-content/uploads/cahiers/02-2017-cah.pdf (Accessed 19 March 2025).
  • 8. Herring, H. Energy. 2006, 31 (1), 10-20.
  • 9. Polimeni, J. M.; Polimeni, R. I. Eco. Comp. 2006, 3 (4), 344-353.
  • 10. Bashir, M. F.; Benjiang, M. A.; Shahbaz, M.; Shahzad, U.; Vo, X.V. Energy. 2021, 226, 120366.
  • 11. Fang, G.; Yang, K.; Tian, L.; Ma, Y. Energy. 2022, 260, 125193.
  • 12. Sackitey, G. L. Cog. Eco. & Fin. 2023, 11 (1), 2156094. 13. Mardani, A.; Streimikiene, D.; Cavallaro, F.; Loganathan, N.; Khoshnoudi, M. Sci. of the Tot. Env. 2019, 649, 31-49.
  • 14. Ozturk, İ.; Acaravci, A. Ren. and Sus. Ener. Rev. 2010, 14 (9), 3220-3225.
  • 15. Bilal, A.; Li, X.; Zhu, N.; Sharma, R.; Jahanger, A. Sustainability. 2022, 14 (1), 236.
  • 16. Oğul, B. İnö. Üni. Ulus. Sos. Bil. Der. 2022, 11 (2), 409-427.
  • 17. Kirikkaleli, D.; Ali, K. Geo. J. 2023, 58 (7), 2595-2609.
  • 18. Shan, S.; Genç, S.Y.; Kamran, H.W.; Dinca, G. J. of Env. Man. 2021, 294, 113004.
  • 19. Ahmad, N.; Youjin, L.; Žiković, S.; Belyaeva, Z. Tech. in Soc. 2023, 72, 102184.
  • 20. Khan, A.; Sampene, A.K.; Ali, S. Heliyon. 2023, 9 (6).
  • 21. Kirikkaleli, D.; Adebayo, T. S. Sus. Dev. 2021, 29 (4), 583-594.
  • 22. Adebayo, T. S.; Kırıkkaleli, D. Env., Dev. and Sus. 2021, 23 (11), 16057-16082.
  • 23. Khan, I.; Han, L.; BiBi, R.; Khan, H. Env. Sci. and Pol. Res. 2022, 29 (48), 73085-73099.
  • 24. Gunderson, R.; Yun, S. J. J. of Cle. Pro. 2017, 144, 239-247.
  • 25. Li, H.; Su, Y.; Ding, C.J.; Tian, G.G.; Wu, Z. Tech. Forec. and Soc. Ch. 2024, 207, 123562.
  • 26. Ghazouani, A.; Xia, W.; Ben Jebli, M.; Shahzad, U. Sustainability. 2020, 12 (20), 8680.
  • 27. Omodero, C.O.; Okafor, M.C.; Nmesirionye, J.A.; Abaa, E. O. Environ. Ecol. Res. 2022, 10, 1-10.
  • 28. Al Shammre, A.S.; Benhamed, A.; Ben-Salha, O.; Jaidi, Z. Systems. 2023, 11 (6), 307.
  • 29. Iyke-Ofoedu, M. I.; Takon, S. M.; Ugwunta, D. O.; Ezeaku, H. C.; Nsofor, E. S.; Egbo, O. P. J. of Cle. Pro. 2024, 444, 141210.
  • 30. Scrimgeour, F.; Oxley, L.; Fatai, K. Env. Mod. & Soft. 2005, 20 (11), 1439-1448.
  • 31. Loganathan, N.; Shahbaz, M.; Taha, R. Ren. and Sus. Ene. Rev. 2014, 38, 1083-1091. 32. Onofrei, M.; Vatamanu, A.F.; Cigu, E. Fro. in Env. Sci. 2022, 10, 934885.
  • 33. Lee, J. W.; Brahmasrene, T. Glo. Eco. Rev. 2014, 43 (2), 93-109.
  • 34. Wang, S.; Li, Q.; Fang, C.; Zhou, C. Sci. of the Tot. Env. 2016, 542, 360-371.
  • 35. Kizilkaya, O. Tur. Eco. Rev. 2017, 4 (1), 106-118.
  • 36. Cowan, W. N.; Chang, T.; Inglesi-Lotz, R.; Gupta, R. Ener. Pol. 2014, 66, 359-368.
  • 37. Bengochea-Morancho, A.; Higón-Tamarit, F.; Martínez-Zarzoso, I. Env. and Res. Eco. 2001, 19, 165-172.
  • 38. Ritchie, H. 2021, Many countries have decoupled economic growth from CO2 emissions, even if we take offshored production into account. Our World in Data.
  • 39. IEA, 2022, Türkiye. https://www.iea.org/countries/turkiye/emissions (Accessed 15 March 2025).
  • 40. Abdulkarim, M. J. of Academic Analysis (JAC). 2023, 1 (1), 1-16.
  • 41. Akdağ, N.; Tunalı, H. J. of Academic Analysis (JAC). 2024, 2 (1), 25-38.
  • 42. EDGAR, 2022, GHG Emissions of All World Countries. https://edgar.jrc.ec.europa.eu (Accessed 15 March 2025).
  • 43. OECD, 2025, Environmental tax. https://www.oecd.org/en/data/indicators/environmental-tax.html (Accessed 19 March 2025).
  • 44. World Bank Indicators, 2025, “Data”, available at: https://databank.worldbank.org/source/world-development-indicators (accessed 17 March 2025).
  • 45. Shahbaz, M.; Zeshan, M.; Afza, T. Eco. Model. 2012, 29 (6), 2310-2319.
  • 46. Bhattacharya, M.; Paramati, S. R.; Ozturk, I.; Bhattacharya, S.; Appl. Ener. 2016, (162), 733-741.
  • 47. Dickey, D. A.; Fuller, W. A. Econometrica. 1981, 49 (4), 1057-1072.
  • 48. Phillips, P. C. B.; Perron, P. Biometrika. 1988, 75, 335-346.
  • 49. Enders, W.; Lee, J. Econ. Let. 2012, 117 (1), 196-199.
  • 50. Naimoğlu, M.; Sahabi, A.M.; Özbek, S. Sosyoekonomi. 2022, 30 (53), 487-507.
  • 51. Becker, R.; Enders, W.; Lee, J. J. of Time Ser. Analy. 2006, 27 (3), 381-409.
  • 52. Sam, C. Y.; McNown, R.; Goh, S. K. Econ. Model. 2019, 80, 130-141.
  • 53. Pesaran, M. H.; Shin, Y.; Smith, R. J. J. of Ap. Econ. 2001, 16 (3), 289-326.
  • 54. Narayan, P. K. App. Econ. 2005, 37 (17), 1979-1990.
  • 55. Hansen, B. E.; Phillips, P. C. B. Adv. in Econ. 1990, 8, 225-248.
  • 56. Park, J. Y. Econometrica. 1992, 119-143.
  • 57. Stock, J. H.; Watson, M. W. Econometrica. 1993, 783-820.
  • 58. Özbek, S. Ana. Üni. Sos. Bil. Der. 2023, 23 (2), 517-536.
  • 59. Wolff, J. Glo. Pers. 2021, 2 (1), 1-5.
  • 60. Coccia, M. Tech. Fore. and Soc. Ch. 2005, 72 (8), 944-979.
  • 61. Justman, M.; Teubal, M. World Dev. 1991, 19 (9), 1167-1183.
  • 62. Çalışkan, H. K. Pro.-Soc. and Beh. Sci. 2015, 195, 649-654.
  • 63. Pohjola, M. 2000, https://ageconsearch.umn.edu/record/295500/ (Accessed 18 March 2025).
  • 64. Cavdar, S. C.; Aydin, A. D. Pro.-Soc. and Beh. Sci. 2015, 195, 1486-1495.
  • 65. Veser, M. 2023, The sustainable tech transformation: Paving the way for a greener future. https://www.ey.com/en_ch/insights/sustainability/drive-the-green-transformation-enabled-by-technologyy (Accessed 18 March 2025).
  • 66. Diaconu, M. Theo. & App. Econ. 2011, 18 (10), 127-144.
  • 67. Kane, M.; Galea, D. 2024, The role of technology in sustainable development. https://instituteofsustainabilitystudies.com/insights/guides/the-role-of-technology-in-sustainable-development/ (Accessed 18 March 2025).
  • 68. EPA (Environmental Protection Agency) 2025, Carbon Dioxide Emissions. https://www.epa.gov/ghgemissions/carbon-dioxide-emissions
  • 69. Ritchie, H.; Rosado, P.; Roser, M. 2023, CO₂ and Greenhouse Gas Emissions. https://ourworldindata.org/co2-and-greenhouse-gas-emissions (Accessed 19 March 2025).
There are 67 citations in total.

Details

Primary Language English
Subjects Manufacturing and Industrial Engineering (Other)
Journal Section Research Articles
Authors

Sefa Özbek 0000-0002-1043-2056

Serkan Şahin 0000-0002-1927-1092

Early Pub Date June 11, 2025
Publication Date June 24, 2025
Submission Date May 1, 2025
Acceptance Date June 10, 2025
Published in Issue Year 2025 Volume: 9 Issue: 1

Cite

APA Özbek, S., & Şahin, S. (2025). Sustainable Intentions, Unsustainable Outcomes: Green Technologies, Environmental Taxes, and the Carbon Cost of Economic Growth. International Journal of Chemistry and Technology, 9(1), 117-128. https://doi.org/10.32571/ijct.1688965
AMA Özbek S, Şahin S. Sustainable Intentions, Unsustainable Outcomes: Green Technologies, Environmental Taxes, and the Carbon Cost of Economic Growth. Int. J. Chem. Technol. June 2025;9(1):117-128. doi:10.32571/ijct.1688965
Chicago Özbek, Sefa, and Serkan Şahin. “Sustainable Intentions, Unsustainable Outcomes: Green Technologies, Environmental Taxes, and the Carbon Cost of Economic Growth”. International Journal of Chemistry and Technology 9, no. 1 (June 2025): 117-28. https://doi.org/10.32571/ijct.1688965.
EndNote Özbek S, Şahin S (June 1, 2025) Sustainable Intentions, Unsustainable Outcomes: Green Technologies, Environmental Taxes, and the Carbon Cost of Economic Growth. International Journal of Chemistry and Technology 9 1 117–128.
IEEE S. Özbek and S. Şahin, “Sustainable Intentions, Unsustainable Outcomes: Green Technologies, Environmental Taxes, and the Carbon Cost of Economic Growth”, Int. J. Chem. Technol., vol. 9, no. 1, pp. 117–128, 2025, doi: 10.32571/ijct.1688965.
ISNAD Özbek, Sefa - Şahin, Serkan. “Sustainable Intentions, Unsustainable Outcomes: Green Technologies, Environmental Taxes, and the Carbon Cost of Economic Growth”. International Journal of Chemistry and Technology 9/1 (June2025), 117-128. https://doi.org/10.32571/ijct.1688965.
JAMA Özbek S, Şahin S. Sustainable Intentions, Unsustainable Outcomes: Green Technologies, Environmental Taxes, and the Carbon Cost of Economic Growth. Int. J. Chem. Technol. 2025;9:117–128.
MLA Özbek, Sefa and Serkan Şahin. “Sustainable Intentions, Unsustainable Outcomes: Green Technologies, Environmental Taxes, and the Carbon Cost of Economic Growth”. International Journal of Chemistry and Technology, vol. 9, no. 1, 2025, pp. 117-28, doi:10.32571/ijct.1688965.
Vancouver Özbek S, Şahin S. Sustainable Intentions, Unsustainable Outcomes: Green Technologies, Environmental Taxes, and the Carbon Cost of Economic Growth. Int. J. Chem. Technol. 2025;9(1):117-28.