BibTex RIS Cite

Gsm/Dcs Microstrip Antenna Design Using Finite Element Method

Year 2010, Volume: 2 Issue: 1, 44 - 53, 01.03.2010

Abstract

A Dual-band microstrip antenna based on split-ring elements is introduced for GSM/DCS (900/1800MHz) applications. The proposed split-ring antenna (SRA) has novel design and provides 2.3% and 3.8% impedance bandwidth performance at the respective bands without a need for additional matching networks. Also, the antenna exhibits uniform radiation patterns at each frequency band. Analysis and design of the proposed microstrip antenna are carried out by means of full-wave simulators based on the finite-element method, namely the in-house Finite Element Microstrip Antenna Simulator (FEMAS) and the commercially available High Frequency Structure Simulator (HFSS). Return-loss characteristics of the antenna using the simulators are in good agreement

References

  • [1] Yang, M., Chen, Y., A Novel U-Shaped planar microstrip antenna for dual-frequency mobile telephone communications, IEEE Trans. Antennas Propag., 49, 6, 1002-1004, 2001.
  • [2] Chen, H.-M., Chen, J.-M., Cheng, P.-S., Lin, T.-F., Feed for dual-band printed dipole antenna, Electron. Lett., 40, 21,1320-1322, 2004.
  • [3] Wong, K.-L., Lin, Y.-C. and Tseng, T.-C., Thin internal GSM/DCS patch antenna for a portable mobile terminal, IEEE Trans. Antennas Propag.,, 54, 1, 238-242, 2006.
  • [4] Lin, C.-I., Wong, K.-L., Printed monopole slot antenna for internal multiband mobile phone antenna, IEEE Trans. Antennas Propag., 55, 12, 3690-3697, 2007.
  • [5] An, J., Wang, G.-M., Zhang, C.-X. and Zeng, H.-Y., Compact circularly polarized omnidirectional microstrip antenna, Microwave Opt. Technol. Lett., 51, 11, 2643-2646, 2009.
  • [6] Wu, G.-L., Mu, W., Zhao, G. and Jiao, Y.-C., A novel design of dual circularly polarized antenna feed by L-strip, Progress In Electromagnetics Research, PIER 79, 39-46, 2008.
  • [7] Pendry, J. B., Holden, A. J., Robins, D. J. and Stewart, W. J., Magnetism from conductors and enhanced nonlinear phenomena, IEEE Trans. Microwave Theory Tech., 47, 11, 2075- 2084, 1999.
  • [8] Erdemli Y. E. and Sondas, A., Dual-polarized frequency-tunable composite left-handed slab, J. Electromagn. Waves and App., 19, 14, 1907-1918, 2005.
  • [9] Cenk, C., Sondas, A. and Erdemli, Y. E., Tunable split ring resonator microstrip filter design, in Proc. Mediterranean Microwave Symposium, Genoa, Italy, September 19-21 2006.
  • [10] Ucar, M. H. B., Sondas, A. and Erdemli, Y. E., Switchable split-ring frequency selective surfaces, PIERB, 6, 65-79, 2008.
  • [11] Basaran S. C. and Erdemli, Y. E., Dual-band split-ring antenna design for WLAN applications, Turkish J. Elec. Engin. Comp. Sci., 16, 1, 79-86, 2008.
  • [12] Basaran S. C. and Erdemli, Y. E., A dual-band split-ring monopole antenna for WLAN applications, Microwave Opt. Technol. Lett., 51, 11, 2685-2688, 2009.
  • [13] Chen, A.-C., Tang, C.-L. and Lu, H., A Loop antenna for WLAN application, IEEE Asia-Pacific Conference Proceedings, Dec. 4-7, 2005.
  • [14] Volakis, J. L., Chatterjee, A. and Kempel, L. C., Finite Element Method for Electromagnetics, IEEE Press & Oxford University Press; New York, 1998.
  • [15] Jianming, J., The Finite Element Method in Electromagnetics, John Wiley & Sons Inc; New York, 1993
  • [16] Ozdemir, T. and Volakis, J. L., A comparative sturdy of an absorber boundary condition and an artificial absorber for truncating finite element mesh, Radio Sci., 29, 255-1263, 1994.
  • [17] Jacobs, D. A. H., A generalization of the conjugate gradient method to solve complex systems, IMA J. Numerical Anal., 6, 447-452,1986.
Year 2010, Volume: 2 Issue: 1, 44 - 53, 01.03.2010

Abstract

References

  • [1] Yang, M., Chen, Y., A Novel U-Shaped planar microstrip antenna for dual-frequency mobile telephone communications, IEEE Trans. Antennas Propag., 49, 6, 1002-1004, 2001.
  • [2] Chen, H.-M., Chen, J.-M., Cheng, P.-S., Lin, T.-F., Feed for dual-band printed dipole antenna, Electron. Lett., 40, 21,1320-1322, 2004.
  • [3] Wong, K.-L., Lin, Y.-C. and Tseng, T.-C., Thin internal GSM/DCS patch antenna for a portable mobile terminal, IEEE Trans. Antennas Propag.,, 54, 1, 238-242, 2006.
  • [4] Lin, C.-I., Wong, K.-L., Printed monopole slot antenna for internal multiband mobile phone antenna, IEEE Trans. Antennas Propag., 55, 12, 3690-3697, 2007.
  • [5] An, J., Wang, G.-M., Zhang, C.-X. and Zeng, H.-Y., Compact circularly polarized omnidirectional microstrip antenna, Microwave Opt. Technol. Lett., 51, 11, 2643-2646, 2009.
  • [6] Wu, G.-L., Mu, W., Zhao, G. and Jiao, Y.-C., A novel design of dual circularly polarized antenna feed by L-strip, Progress In Electromagnetics Research, PIER 79, 39-46, 2008.
  • [7] Pendry, J. B., Holden, A. J., Robins, D. J. and Stewart, W. J., Magnetism from conductors and enhanced nonlinear phenomena, IEEE Trans. Microwave Theory Tech., 47, 11, 2075- 2084, 1999.
  • [8] Erdemli Y. E. and Sondas, A., Dual-polarized frequency-tunable composite left-handed slab, J. Electromagn. Waves and App., 19, 14, 1907-1918, 2005.
  • [9] Cenk, C., Sondas, A. and Erdemli, Y. E., Tunable split ring resonator microstrip filter design, in Proc. Mediterranean Microwave Symposium, Genoa, Italy, September 19-21 2006.
  • [10] Ucar, M. H. B., Sondas, A. and Erdemli, Y. E., Switchable split-ring frequency selective surfaces, PIERB, 6, 65-79, 2008.
  • [11] Basaran S. C. and Erdemli, Y. E., Dual-band split-ring antenna design for WLAN applications, Turkish J. Elec. Engin. Comp. Sci., 16, 1, 79-86, 2008.
  • [12] Basaran S. C. and Erdemli, Y. E., A dual-band split-ring monopole antenna for WLAN applications, Microwave Opt. Technol. Lett., 51, 11, 2685-2688, 2009.
  • [13] Chen, A.-C., Tang, C.-L. and Lu, H., A Loop antenna for WLAN application, IEEE Asia-Pacific Conference Proceedings, Dec. 4-7, 2005.
  • [14] Volakis, J. L., Chatterjee, A. and Kempel, L. C., Finite Element Method for Electromagnetics, IEEE Press & Oxford University Press; New York, 1998.
  • [15] Jianming, J., The Finite Element Method in Electromagnetics, John Wiley & Sons Inc; New York, 1993
  • [16] Ozdemir, T. and Volakis, J. L., A comparative sturdy of an absorber boundary condition and an artificial absorber for truncating finite element mesh, Radio Sci., 29, 255-1263, 1994.
  • [17] Jacobs, D. A. H., A generalization of the conjugate gradient method to solve complex systems, IMA J. Numerical Anal., 6, 447-452,1986.
There are 17 citations in total.

Details

Other ID JA65HD44BP
Journal Section Articles
Authors

S.Cumhur Başaran This is me

Publication Date March 1, 2010
Published in Issue Year 2010 Volume: 2 Issue: 1

Cite

APA Başaran, S. (2010). Gsm/Dcs Microstrip Antenna Design Using Finite Element Method. International Journal of Engineering and Applied Sciences, 2(1), 44-53.
AMA Başaran S. Gsm/Dcs Microstrip Antenna Design Using Finite Element Method. IJEAS. March 2010;2(1):44-53.
Chicago Başaran, S.Cumhur. “Gsm/Dcs Microstrip Antenna Design Using Finite Element Method”. International Journal of Engineering and Applied Sciences 2, no. 1 (March 2010): 44-53.
EndNote Başaran S (March 1, 2010) Gsm/Dcs Microstrip Antenna Design Using Finite Element Method. International Journal of Engineering and Applied Sciences 2 1 44–53.
IEEE S. Başaran, “Gsm/Dcs Microstrip Antenna Design Using Finite Element Method”, IJEAS, vol. 2, no. 1, pp. 44–53, 2010.
ISNAD Başaran, S.Cumhur. “Gsm/Dcs Microstrip Antenna Design Using Finite Element Method”. International Journal of Engineering and Applied Sciences 2/1 (March 2010), 44-53.
JAMA Başaran S. Gsm/Dcs Microstrip Antenna Design Using Finite Element Method. IJEAS. 2010;2:44–53.
MLA Başaran, S.Cumhur. “Gsm/Dcs Microstrip Antenna Design Using Finite Element Method”. International Journal of Engineering and Applied Sciences, vol. 2, no. 1, 2010, pp. 44-53.
Vancouver Başaran S. Gsm/Dcs Microstrip Antenna Design Using Finite Element Method. IJEAS. 2010;2(1):44-53.

21357