Research Article
BibTex RIS Cite

Early Diagnoses of Acute Coroner Syndrome Based on Machine Learning Model

Year 2024, Volume: 16 Issue: 1, 16 - 32, 12.06.2024
https://doi.org/10.24107/ijeas.1380819

Abstract

Cardiovascular diseases are a leading global cause of death, particularly in low to middle-income countries. Early and accurate diagnosis of Acute Coronary Syndrome (ACS) is vital, but limited access to healthcare hinders effective management. This study utilized machine learning to develop mathematical models for ACS risk detection. Data from 249 individuals with ACS or suspected heart disease were used to construct twelve models with different parameters and classifiers. Performance indicators, including accuracy, Matthews correlation coefficient, and precision, were employed for evaluation. The Random Forest classifier demonstrated superior performance, achieving 90.45% accuracy for internal validation and 86% for external validation. Critical criteria for ACS diagnosis were CK-MB, age, coronary artery disease, and Troponin T value. The models developed in this study significantly prevent potential deaths via rapid intervention and reduce healthcare expenditures by minimizing unnecessary human resources and repeat tests.

References

  • Wilkins, E., Wilson, L., Wickramasinghe, K., Bhatnagar, P., Leal, J., Luengo-Fernandez, R., Burns, R., Rayner, M., Townsend, N., European Cardiovascular Disease Statistics 2017. European Heart Network, 2017.
  • Thomas, H., Diamond, J., Vieco, A., Chaudhuri, S., Shinnar, E., Cromer, S., Perel, P., Mensah, G. A., Narula, J., Johnson, C. O., Roth, G. A., Moran, A. E., Global Atlas of Cardiovascular Disease 2000-2016: The Path to Prevention and Control. Global heart, 13(3), 143–163, 2018.
  • World Health Organization, Cardiovascular Diseases, 2020.
  • Şencan, I., Keskinkılıç, B., Ekinci, B., Öztemel, A., Sarıoğlu, G., Çobanoğlu, N., Türkiye Kalp ve Damar Hastalıkları Önleme ve Kontrol Programı Eylem Planı (2015-2020). T.C. Türkiye Halk Sağlığı Kurumu. T.C. Sağlık Bakanlığı Yayın, 988-1-63,2015.
  • Benziger, C. P., Roth, G. A., & Moran, A. E., The Global Burden of Disease Study and the Preventable Burden of NCD. Global heart, 11(4), 393–397, 2016.
  • Lakic, D., Tasic, L. Kos, M., Economic burden of cardiovascular diseases in Serbia. Vojnosanit Pregl, 71(2),137 –143, 2014.
  • Maharaj, J.C., Reddy, M., Young Stroke Mortality in Fiji Islands: An Economic Analysis of National Human Capital Resource Loss. International Scholarly Research Notices, 802785, 2012.
  • Gaziano, T. A., Bitton, A., Anand, S., Weinstein, M. C., & International Society of Hypertension, The global cost of nonoptimal blood pressure. Journal of hypertension, 27(7), 1472–1477, 2009.
  • Balbay, Y., Gagnon-arpin, I., Malhan, S., Öksüz, M. E., Sutherland, G., Dobrescu, A., Villa, G., Ertuğrul, G., Habib, M., Modeling the burden of cardiovascular disease in Turkey. Anatol J Cardiol, 20(4), 235-240, 2018.
  • Azambuja, M.I.R., Foppa, M., Maranhao, M.F.C., Achutti, A.C., Economic burden of severe cardiovascular diseases in Brazil: an estimate based on secondary data. Arq Bras Cardiol, 91(3),163 –171, 2008.
  • Bloom, D., Cafiero, E., McGovern, M., Prettner, K., Stanciole, A., The Economic Impact of Non-Communicable Disease in China and India: Estimates, Projections, and Comparisons. The Journal of the Economics of Ageing, 4,100–111, 2013.
  • Dejaco, C., Singh, Y. P., Perel, P., Hutchings, A., Camellino, D., Mackie, S., Abril, A., Bachta, A., Balint, P., Barraclough, K., Bianconi, L., Buttgereit, F., Carsons, S., Ching, D., Cid, M., Cimmino, M., Diamantopoulos, A., Docken, W., Duftner, C., Fashanu, B., et., al. 2015 Recommendations for the management of polymyalgia rheumatica: a European League Against Rheumatism/American College of Rheumatology collaborative initiative. Arthritis & rheumatology, 67(10), 2569–2580, 2015.
  • Huyut, M. T., Automatic detection of severely and mildly infected COVID-19 patients with supervised machine learning models. IRBM, 44(1), 100725, 2023.
  • Huyut, M. T., & Huyut, Z., Effect of ferritin, INR, and D-dimer immunological parameters levels as predictors of COVID-19 mortality: A strong prediction with the decision trees. Heliyon, 9(3),2023.
  • Huyut, M. T., & Üstündağ, H.. Prediction of diagnosis and prognosis of COVID-19 disease by blood gas parameters using decision trees machine learning model: a retrospective observational study. Medical gas research, 12(2), 60,2022.
  • Kannel, W. B., Coronary heart disease risk factors in the elderly. The American Journal of geriatric cardiology, 11(2), 101–107, 2002.
  • İkitimur, B., Karadağ, B., Öngen, Z., Yaşlılarda Koroner Arter Hastalığı. Turkish Journal of Geriatrics, 2,13-20, 2010.
  • Savji, N., Rockman, C. B., Skolnick, A. H., Guo, Y., Adelman, M. A., Riles, T., Berger, J. S., Association between advanced age and vascular disease in different arterial territories: a population database of over 3.6 million subjects. Journal of the American College of Cardiology, 61(16), 1736–1743, 2013.
  • Onat, A., Kaya, A., Şimşek, T., Şimşek, B., Tusun, E., Karadeniz, Y., Can, G., Twenty-five years of the TARF study: The 2015 survey and temporal trends in mortality and loss to follow-up. Turk Kardiyoloji Dernegi Arsivi, 44(5),365–370, 2016.
  • Yadav, P., Joseph, D., Joshi, P., Sakhi, P., Jha, R. and Gupta, J., Clinical Profile & Risk Factors in Acute Coronary Syndrome. National Journal of Community Medicine, 1, 150-151, 2010.
  • National Cholesterol Education Program (NCEP) Expert Panel on Detection, Evaluation, and Treatment of High Blood Cholesterol in Adults (Adult Treatment Panel III) . Third Report of the National Cholesterol Education Program (NCEP) Expert Panel on Detection, Evaluation, and Treatment of High Blood Cholesterol in Adults (Adult Treatment Panel III) final report. Circulation, 106(25), 3143–3421, 2002.
  • Chobanian, A. V., Bakris, G. L., Black, H. R., Cushman, W. C., Green, L. A., Izzo, J. L., Jr, Jones, D. W., Materson, B. J., Oparil, S., Wright, J. T., Jr, Roccella, E. J., Joint National Committee on Prevention, Detection, Evaluation, and Treatment of High Blood Pressure. National Heart, Lung, and Blood Institute, & National High Blood Pressure Education Program Coordinating Committee. Seventh report of the Joint National Committee on Prevention, Detection, Evaluation, and Treatment of High Blood Pressure. Hypertension, 42(6), 1206–1252, 2003
  • Haffner, S. M., Lehto, S., Rönnemaa, T., Pyörälä, K., & Laakso, M., Mortality from coronary heart disease in subjects with type 2 diabetes and in nondiabetic subjects with and without prior myocardial infarction. The New England journal of medicine, 339(4), 229–234,1998.
  • Christenson, R. H., Apple, F. S., Morgan, D. L., Alonsozana, G. L., Mascotti, K., Olson, M., McCormack, R. T., Wians, F. H., Jr, Keffer, J. H., & Duh, S. H., Cardiac troponin I measurement with the ACCESS immunoassay system: analytical and clinical performance characteristics. Clinical chemistry, 44(1), 52–60, 1998.
  • Wu, A. H., Feng, Y. J., Moore, R., Apple, F. S., McPherson, P. H., Buechler, K. F., & Bodor, G., Characterization of cardiac troponin subunit release into serum after acute myocardial infarction and comparison of assays for troponin T and I. American Association for Clinical Chemistry Subcommittee on cTnI Standardization. Clinical chemistry, 44, 1198–1208, 1998.
  • Bhagavan, N. V., Medical Biochemistry, Chapter 21.3, Energy supply in muscle. Canada, Acad. Pub, 122.
  • Hillis, G. S., & Fox, K., Cardiac troponins in chest pain can help in risk stratification. British Medical Journal, 319(7223), 1451-2, 1999.
  • Kocaman, S., Ratlarda deneysel olarak oluşturulacak kalp krizi ve hasarı modeli ile farklı tedavi yöntemlerinin karşılaştırmalı olarak test edilmesi. PhD Thesis, 2022.
  • Raines, E. W., & Ross, R., Smooth muscle cells and the pathogenesis of the lesions of atherosclerosis. British heart journal, 69, S30–S37, 1993.
  • Kumbasar, D., Kalp sağlığı, 2013.
  • Gaziano T. A., Cardiovascular disease in the developing world and its cost-effective management. Circulation, 112(23), 3547–3553, 2005.
  • Knuuti, J., Wijns, W., Saraste, A., Capodanno, D., Barbato, E., Funck-Brentano, C., Prescott, E., Storey, R. F., Deaton, C., Cuisset, T., Agewall, S., Dickstein, K., Edvardsen, T., Escaned, J., Gersh, B. J., Svitil, P., Gilard, M., Hasdai, D., Hatala, R., Mahfoud, F., 2019 ESC Guidelines for the diagnosis and management of chronic coronary syndromes: The Task Force for the diagnosis and management of chronic coronary syndromes of the European Society of Cardiology (ESC). European heart journal, 41(3), 407–477, 2020.
  • Uzun, Ş., Kara, B., İşcan, B. Hemodiyalize giren kronik böbrek yetmezliği olan hastalarda uyku sorunları. Türk Nefroloji Diyaliz ve Transplantasyon Dergisi, 12(1): 61-6, 2003.
  • Kelleci Çelik, F., Karaduman, G., In silico QSAR modeling to predict the safe use of antibiotics during pregnancy. Drug and Chemical Toxicology, 1-10, 2022.
  • Frank, Eibe, Mark A. Hall, and Ian H. Witten. The WEKA workbench. Morgan Kaufmann, 2016.
  • Tang, B., He, H., Baggenstoss, P. M., Kay, S., A Bayesian classification approach using class-specific features for text categorization. IEEE Transactions on Knowledge and Data Engineering, 28(6), 1602-1606, 2016 .
  • Hogg, R.V., Tanis, E.A., Probability and Statistical Inference. Upper Saddle River, NJ: Prentice Hall, 1997.
  • Badresiya, A., Vohra, S., Teraiya, J., Performance Analysis of Supervised Techniques for Review Spam Detection. International Journal of Advanved Networking Applications, 21–24, 2014.
  • Visani, V., Jadeja, N., Modi, M., A Study on Different Machine Learning Techniques for Spam Review Detection. Conference: 2017 International Conference on Energy, Communication, Data Analytics and Soft Computing (ICECDS), 2017.
  • Swetha, K., & Ranjana, R., Breast cancer prediction using machine learning and data mining. International Journal of Scientific Research in Computer Science, Engineering and Information Technology, 6(3), 610-5, 2020.
  • Sridharan, K., & Komarasamy, G., Sentiment classification using random harmony forest and harmony gradient boosting machine. Soft Computing, 24(10), 7451-7458, 2020.
  • Wang, Z., Chegdani, F., Yalamarti, N., Takabi, B., Tai, B., El Mansori, M., & Bukkapatnam, S., Acoustic Emission Characterization of Natural Fiber Reinforced Plastic Composite Machining Using a Random Forest Machine Learning Model. Journal of Manufacturing Science and Engineering, 142(3), 031003, 2020.
  • Viera, A. J., Garrett, J. M., Understanding interobserver agreement: the kappa statistic. Family medicine, 37(5), 360-363, 2005.
  • Gerhardt, W., Katus, H. A., Ravkilde, J., Hamm, C., Jørgensen, P. J., Peheim, E., Ljungdahl, L., Löfdahl, P., S-troponin T in suspected ischemic myocardial injury compared with mass and catalytic concentrations of S-creatine kinase isoenzyme MB. Clinical chemistry, 37(8), 1405–1411, 1991.
  • Hamm, C.W., Goldmann, B.U., Heeschen, C., Kreymann, G., Berger, J., Meinertz, T., Emergency room triage of patients with acute chest pain by means of rapid testing for cardiac troponin T or troponin. New England Journal of Medicine, 337 (23), 1648-1653, 1997.
  • Ebashi, S., Kodama, A., A new protein factor promoting aggregation of tropomyosin. Journal of biochemistry, 58(1), 107–108, 1965.
  • Tahir, K., Pauley, E., Dai, X., Smith, S. C., Jr, Sweeney, C., & Stouffer, G. A., Mechanisms of ST Elevation Myocardial Infarction in Patients Hospitalized for Noncardiac Conditions. The American journal of cardiology, 123(9), 1393–1398,2019.
  • Sheehan, P., Vasikaran, S.D. The evolving clinical role of cardiac troponins and new acute myocardial infarction guidelines: Implications for the clinical laboratory. Clin Bichemist Rev, 23,52-65,2001.
  • Reichlin, T., Hochholzer, W., Bassetti, S., Steuer, S., Stelzig, C., Hartwiger, S., Biedert, S., Schaub, N., Buerge, C., Potocki, M., Noveanu, M., Breidthardt, T., Twerenbold, R., Winkler, K., Bingisser, R., Mueller, C., Early diagnosis of myocardial infarction with sensitive cardiac troponin assays. The New England journal of medicine, 361(9), 858–867,2009.
  • Hornemann, T., Dorothea, R., Wallimann, T., Why is creatine kinase a dimer? Evidence for cooperativity between the two subunits. Biochimica et Biophysica Acta (BBA)-Protein Structure and Molecular Enzymology, 1480.1,365-373, 2000.
  • Hebert, P. R., Moser, M., Mayer, J., Glynn, R. J., & Hennekens, C. H., Recent evidence on drug therapy of mild to moderate hypertension and decreased risk of coronary heart disease. Archives of internal medicine, 153(5), 578–581,1996.
  • Campeau, L., Lesperance, J., Bourassa, M.G., Natural history of saphenous vein aortocoronary bypass grafts. Mod Concepts Cardiovasc Dis 1984,53:59-63.
  • Fitzgibbon, G. M., Kafka, H. P., Leach, A. J., Keon, W. J., Hooper, G. D., & Burton, J. R., Coronary bypass graft fate and patient outcome: angiographic follow-up of 5,065 grafts related to survival and reoperation in 1,388 patients during 25 years. Journal of the American College of Cardiology, 28(3), 616–626, 1996.
  • Labinaz, M., Mathias, J., Pieper, K., Granger, C. B., Lincoff, A. M., Moliterno, D. J., Van de Werf, F., Simes, J., White, H. D., Simoons, M. L., Califf, R. M., Topol, E. J., Armstrong, P. W., Harrington, R. A.,Outcomes of patients with acute coronary syndromes and prior percutaneous coronary intervention: a pooled analysis of three randomized clinical trials. European heart journal, 26(2), 128–136, 2005.
  • Lee, K. L., Woodlief, L. H., Topol, E. J., Weaver, W. D., Betriu, A., Col, J., Simoons, M., Aylward, P., Van de Werf, F., Califf, R. M., Predictors of 30-day mortality in the era of reperfusion for acute myocardial infarction. Results from an international trial of 41,021 patients. Circulation, 91(6), 1659–1668, 1995.
  • Karaduman, G., Kelleci Çelik, F., 2D-Quantitative structure-activity relationship modeling for risk assessment of pharmacotherapy applied during pregnancy. Journal of Applied Toxicology, 43(10), 1436-1446, 2023.
  • Erturan, A. M., Karaduman, G., Durmaz, H., Machine learning-based approach for efficient prediction of toxicity of chemical gases using feature selection. Journal of Hazardous Materials, 455, 131616, 2023.
  • Raihan, M., Islam, M. M., Ghosh, P., Shaj, S. A., Chowdhury, M. R., Mondal, S., & More, A., A comprehensive Analysis on risk prediction of acute coronary syndrome using machine learning approaches. In 2018 21st International Conference of Computer and Information Technology (ICCIT) (pp. 1-6). IEEE, 2018.
  • Ke, J., Chen, Y., Wang, X., Wu, Z., Zhang, Q., Lian, Y., & Chen, F., Machine learning-based in-hospital mortality prediction models for patients with acute coronary syndrome. The American journal of emergency medicine, 53, 127-134, 2022.
  • Huang, Z., Ge, Z., Dong, W., He, K., Duan, H., & Bath, P., Relational regularized risk prediction of acute coronary syndrome using electronic health records. Information Sciences, 465, 118-129, 2018.
  • Bouzid, Z., Faramand, Z., Gregg, R. E., Frisch, S. O., Martin‐Gill, C., Saba, S., ... & Al‐Zaiti, S., In search of an optimal subset of ECG features to augment the diagnosis of acute coronary syndrome at the emergency department. Journal of the American Heart Association, 10(3), e017871, 2021.
  • Huyut, M. T., & Ilkbahar, F., The effectiveness of blood routine parameters and some biomarkers as a potential diagnostic tool in the diagnosis and prognosis of Covid-19 disease. International Immunopharmacology, 98, 107838, 2021.
  • Huyut, M. T., Huyut, Z., Ilkbahar, F., & Mertoğlu, C., What is the impact and efficacy of routine immunological, biochemical and hematological biomarkers as predictors of COVID-19 mortality?. International Immunopharmacology, 105, 108542, 2022.
Year 2024, Volume: 16 Issue: 1, 16 - 32, 12.06.2024
https://doi.org/10.24107/ijeas.1380819

Abstract

References

  • Wilkins, E., Wilson, L., Wickramasinghe, K., Bhatnagar, P., Leal, J., Luengo-Fernandez, R., Burns, R., Rayner, M., Townsend, N., European Cardiovascular Disease Statistics 2017. European Heart Network, 2017.
  • Thomas, H., Diamond, J., Vieco, A., Chaudhuri, S., Shinnar, E., Cromer, S., Perel, P., Mensah, G. A., Narula, J., Johnson, C. O., Roth, G. A., Moran, A. E., Global Atlas of Cardiovascular Disease 2000-2016: The Path to Prevention and Control. Global heart, 13(3), 143–163, 2018.
  • World Health Organization, Cardiovascular Diseases, 2020.
  • Şencan, I., Keskinkılıç, B., Ekinci, B., Öztemel, A., Sarıoğlu, G., Çobanoğlu, N., Türkiye Kalp ve Damar Hastalıkları Önleme ve Kontrol Programı Eylem Planı (2015-2020). T.C. Türkiye Halk Sağlığı Kurumu. T.C. Sağlık Bakanlığı Yayın, 988-1-63,2015.
  • Benziger, C. P., Roth, G. A., & Moran, A. E., The Global Burden of Disease Study and the Preventable Burden of NCD. Global heart, 11(4), 393–397, 2016.
  • Lakic, D., Tasic, L. Kos, M., Economic burden of cardiovascular diseases in Serbia. Vojnosanit Pregl, 71(2),137 –143, 2014.
  • Maharaj, J.C., Reddy, M., Young Stroke Mortality in Fiji Islands: An Economic Analysis of National Human Capital Resource Loss. International Scholarly Research Notices, 802785, 2012.
  • Gaziano, T. A., Bitton, A., Anand, S., Weinstein, M. C., & International Society of Hypertension, The global cost of nonoptimal blood pressure. Journal of hypertension, 27(7), 1472–1477, 2009.
  • Balbay, Y., Gagnon-arpin, I., Malhan, S., Öksüz, M. E., Sutherland, G., Dobrescu, A., Villa, G., Ertuğrul, G., Habib, M., Modeling the burden of cardiovascular disease in Turkey. Anatol J Cardiol, 20(4), 235-240, 2018.
  • Azambuja, M.I.R., Foppa, M., Maranhao, M.F.C., Achutti, A.C., Economic burden of severe cardiovascular diseases in Brazil: an estimate based on secondary data. Arq Bras Cardiol, 91(3),163 –171, 2008.
  • Bloom, D., Cafiero, E., McGovern, M., Prettner, K., Stanciole, A., The Economic Impact of Non-Communicable Disease in China and India: Estimates, Projections, and Comparisons. The Journal of the Economics of Ageing, 4,100–111, 2013.
  • Dejaco, C., Singh, Y. P., Perel, P., Hutchings, A., Camellino, D., Mackie, S., Abril, A., Bachta, A., Balint, P., Barraclough, K., Bianconi, L., Buttgereit, F., Carsons, S., Ching, D., Cid, M., Cimmino, M., Diamantopoulos, A., Docken, W., Duftner, C., Fashanu, B., et., al. 2015 Recommendations for the management of polymyalgia rheumatica: a European League Against Rheumatism/American College of Rheumatology collaborative initiative. Arthritis & rheumatology, 67(10), 2569–2580, 2015.
  • Huyut, M. T., Automatic detection of severely and mildly infected COVID-19 patients with supervised machine learning models. IRBM, 44(1), 100725, 2023.
  • Huyut, M. T., & Huyut, Z., Effect of ferritin, INR, and D-dimer immunological parameters levels as predictors of COVID-19 mortality: A strong prediction with the decision trees. Heliyon, 9(3),2023.
  • Huyut, M. T., & Üstündağ, H.. Prediction of diagnosis and prognosis of COVID-19 disease by blood gas parameters using decision trees machine learning model: a retrospective observational study. Medical gas research, 12(2), 60,2022.
  • Kannel, W. B., Coronary heart disease risk factors in the elderly. The American Journal of geriatric cardiology, 11(2), 101–107, 2002.
  • İkitimur, B., Karadağ, B., Öngen, Z., Yaşlılarda Koroner Arter Hastalığı. Turkish Journal of Geriatrics, 2,13-20, 2010.
  • Savji, N., Rockman, C. B., Skolnick, A. H., Guo, Y., Adelman, M. A., Riles, T., Berger, J. S., Association between advanced age and vascular disease in different arterial territories: a population database of over 3.6 million subjects. Journal of the American College of Cardiology, 61(16), 1736–1743, 2013.
  • Onat, A., Kaya, A., Şimşek, T., Şimşek, B., Tusun, E., Karadeniz, Y., Can, G., Twenty-five years of the TARF study: The 2015 survey and temporal trends in mortality and loss to follow-up. Turk Kardiyoloji Dernegi Arsivi, 44(5),365–370, 2016.
  • Yadav, P., Joseph, D., Joshi, P., Sakhi, P., Jha, R. and Gupta, J., Clinical Profile & Risk Factors in Acute Coronary Syndrome. National Journal of Community Medicine, 1, 150-151, 2010.
  • National Cholesterol Education Program (NCEP) Expert Panel on Detection, Evaluation, and Treatment of High Blood Cholesterol in Adults (Adult Treatment Panel III) . Third Report of the National Cholesterol Education Program (NCEP) Expert Panel on Detection, Evaluation, and Treatment of High Blood Cholesterol in Adults (Adult Treatment Panel III) final report. Circulation, 106(25), 3143–3421, 2002.
  • Chobanian, A. V., Bakris, G. L., Black, H. R., Cushman, W. C., Green, L. A., Izzo, J. L., Jr, Jones, D. W., Materson, B. J., Oparil, S., Wright, J. T., Jr, Roccella, E. J., Joint National Committee on Prevention, Detection, Evaluation, and Treatment of High Blood Pressure. National Heart, Lung, and Blood Institute, & National High Blood Pressure Education Program Coordinating Committee. Seventh report of the Joint National Committee on Prevention, Detection, Evaluation, and Treatment of High Blood Pressure. Hypertension, 42(6), 1206–1252, 2003
  • Haffner, S. M., Lehto, S., Rönnemaa, T., Pyörälä, K., & Laakso, M., Mortality from coronary heart disease in subjects with type 2 diabetes and in nondiabetic subjects with and without prior myocardial infarction. The New England journal of medicine, 339(4), 229–234,1998.
  • Christenson, R. H., Apple, F. S., Morgan, D. L., Alonsozana, G. L., Mascotti, K., Olson, M., McCormack, R. T., Wians, F. H., Jr, Keffer, J. H., & Duh, S. H., Cardiac troponin I measurement with the ACCESS immunoassay system: analytical and clinical performance characteristics. Clinical chemistry, 44(1), 52–60, 1998.
  • Wu, A. H., Feng, Y. J., Moore, R., Apple, F. S., McPherson, P. H., Buechler, K. F., & Bodor, G., Characterization of cardiac troponin subunit release into serum after acute myocardial infarction and comparison of assays for troponin T and I. American Association for Clinical Chemistry Subcommittee on cTnI Standardization. Clinical chemistry, 44, 1198–1208, 1998.
  • Bhagavan, N. V., Medical Biochemistry, Chapter 21.3, Energy supply in muscle. Canada, Acad. Pub, 122.
  • Hillis, G. S., & Fox, K., Cardiac troponins in chest pain can help in risk stratification. British Medical Journal, 319(7223), 1451-2, 1999.
  • Kocaman, S., Ratlarda deneysel olarak oluşturulacak kalp krizi ve hasarı modeli ile farklı tedavi yöntemlerinin karşılaştırmalı olarak test edilmesi. PhD Thesis, 2022.
  • Raines, E. W., & Ross, R., Smooth muscle cells and the pathogenesis of the lesions of atherosclerosis. British heart journal, 69, S30–S37, 1993.
  • Kumbasar, D., Kalp sağlığı, 2013.
  • Gaziano T. A., Cardiovascular disease in the developing world and its cost-effective management. Circulation, 112(23), 3547–3553, 2005.
  • Knuuti, J., Wijns, W., Saraste, A., Capodanno, D., Barbato, E., Funck-Brentano, C., Prescott, E., Storey, R. F., Deaton, C., Cuisset, T., Agewall, S., Dickstein, K., Edvardsen, T., Escaned, J., Gersh, B. J., Svitil, P., Gilard, M., Hasdai, D., Hatala, R., Mahfoud, F., 2019 ESC Guidelines for the diagnosis and management of chronic coronary syndromes: The Task Force for the diagnosis and management of chronic coronary syndromes of the European Society of Cardiology (ESC). European heart journal, 41(3), 407–477, 2020.
  • Uzun, Ş., Kara, B., İşcan, B. Hemodiyalize giren kronik böbrek yetmezliği olan hastalarda uyku sorunları. Türk Nefroloji Diyaliz ve Transplantasyon Dergisi, 12(1): 61-6, 2003.
  • Kelleci Çelik, F., Karaduman, G., In silico QSAR modeling to predict the safe use of antibiotics during pregnancy. Drug and Chemical Toxicology, 1-10, 2022.
  • Frank, Eibe, Mark A. Hall, and Ian H. Witten. The WEKA workbench. Morgan Kaufmann, 2016.
  • Tang, B., He, H., Baggenstoss, P. M., Kay, S., A Bayesian classification approach using class-specific features for text categorization. IEEE Transactions on Knowledge and Data Engineering, 28(6), 1602-1606, 2016 .
  • Hogg, R.V., Tanis, E.A., Probability and Statistical Inference. Upper Saddle River, NJ: Prentice Hall, 1997.
  • Badresiya, A., Vohra, S., Teraiya, J., Performance Analysis of Supervised Techniques for Review Spam Detection. International Journal of Advanved Networking Applications, 21–24, 2014.
  • Visani, V., Jadeja, N., Modi, M., A Study on Different Machine Learning Techniques for Spam Review Detection. Conference: 2017 International Conference on Energy, Communication, Data Analytics and Soft Computing (ICECDS), 2017.
  • Swetha, K., & Ranjana, R., Breast cancer prediction using machine learning and data mining. International Journal of Scientific Research in Computer Science, Engineering and Information Technology, 6(3), 610-5, 2020.
  • Sridharan, K., & Komarasamy, G., Sentiment classification using random harmony forest and harmony gradient boosting machine. Soft Computing, 24(10), 7451-7458, 2020.
  • Wang, Z., Chegdani, F., Yalamarti, N., Takabi, B., Tai, B., El Mansori, M., & Bukkapatnam, S., Acoustic Emission Characterization of Natural Fiber Reinforced Plastic Composite Machining Using a Random Forest Machine Learning Model. Journal of Manufacturing Science and Engineering, 142(3), 031003, 2020.
  • Viera, A. J., Garrett, J. M., Understanding interobserver agreement: the kappa statistic. Family medicine, 37(5), 360-363, 2005.
  • Gerhardt, W., Katus, H. A., Ravkilde, J., Hamm, C., Jørgensen, P. J., Peheim, E., Ljungdahl, L., Löfdahl, P., S-troponin T in suspected ischemic myocardial injury compared with mass and catalytic concentrations of S-creatine kinase isoenzyme MB. Clinical chemistry, 37(8), 1405–1411, 1991.
  • Hamm, C.W., Goldmann, B.U., Heeschen, C., Kreymann, G., Berger, J., Meinertz, T., Emergency room triage of patients with acute chest pain by means of rapid testing for cardiac troponin T or troponin. New England Journal of Medicine, 337 (23), 1648-1653, 1997.
  • Ebashi, S., Kodama, A., A new protein factor promoting aggregation of tropomyosin. Journal of biochemistry, 58(1), 107–108, 1965.
  • Tahir, K., Pauley, E., Dai, X., Smith, S. C., Jr, Sweeney, C., & Stouffer, G. A., Mechanisms of ST Elevation Myocardial Infarction in Patients Hospitalized for Noncardiac Conditions. The American journal of cardiology, 123(9), 1393–1398,2019.
  • Sheehan, P., Vasikaran, S.D. The evolving clinical role of cardiac troponins and new acute myocardial infarction guidelines: Implications for the clinical laboratory. Clin Bichemist Rev, 23,52-65,2001.
  • Reichlin, T., Hochholzer, W., Bassetti, S., Steuer, S., Stelzig, C., Hartwiger, S., Biedert, S., Schaub, N., Buerge, C., Potocki, M., Noveanu, M., Breidthardt, T., Twerenbold, R., Winkler, K., Bingisser, R., Mueller, C., Early diagnosis of myocardial infarction with sensitive cardiac troponin assays. The New England journal of medicine, 361(9), 858–867,2009.
  • Hornemann, T., Dorothea, R., Wallimann, T., Why is creatine kinase a dimer? Evidence for cooperativity between the two subunits. Biochimica et Biophysica Acta (BBA)-Protein Structure and Molecular Enzymology, 1480.1,365-373, 2000.
  • Hebert, P. R., Moser, M., Mayer, J., Glynn, R. J., & Hennekens, C. H., Recent evidence on drug therapy of mild to moderate hypertension and decreased risk of coronary heart disease. Archives of internal medicine, 153(5), 578–581,1996.
  • Campeau, L., Lesperance, J., Bourassa, M.G., Natural history of saphenous vein aortocoronary bypass grafts. Mod Concepts Cardiovasc Dis 1984,53:59-63.
  • Fitzgibbon, G. M., Kafka, H. P., Leach, A. J., Keon, W. J., Hooper, G. D., & Burton, J. R., Coronary bypass graft fate and patient outcome: angiographic follow-up of 5,065 grafts related to survival and reoperation in 1,388 patients during 25 years. Journal of the American College of Cardiology, 28(3), 616–626, 1996.
  • Labinaz, M., Mathias, J., Pieper, K., Granger, C. B., Lincoff, A. M., Moliterno, D. J., Van de Werf, F., Simes, J., White, H. D., Simoons, M. L., Califf, R. M., Topol, E. J., Armstrong, P. W., Harrington, R. A.,Outcomes of patients with acute coronary syndromes and prior percutaneous coronary intervention: a pooled analysis of three randomized clinical trials. European heart journal, 26(2), 128–136, 2005.
  • Lee, K. L., Woodlief, L. H., Topol, E. J., Weaver, W. D., Betriu, A., Col, J., Simoons, M., Aylward, P., Van de Werf, F., Califf, R. M., Predictors of 30-day mortality in the era of reperfusion for acute myocardial infarction. Results from an international trial of 41,021 patients. Circulation, 91(6), 1659–1668, 1995.
  • Karaduman, G., Kelleci Çelik, F., 2D-Quantitative structure-activity relationship modeling for risk assessment of pharmacotherapy applied during pregnancy. Journal of Applied Toxicology, 43(10), 1436-1446, 2023.
  • Erturan, A. M., Karaduman, G., Durmaz, H., Machine learning-based approach for efficient prediction of toxicity of chemical gases using feature selection. Journal of Hazardous Materials, 455, 131616, 2023.
  • Raihan, M., Islam, M. M., Ghosh, P., Shaj, S. A., Chowdhury, M. R., Mondal, S., & More, A., A comprehensive Analysis on risk prediction of acute coronary syndrome using machine learning approaches. In 2018 21st International Conference of Computer and Information Technology (ICCIT) (pp. 1-6). IEEE, 2018.
  • Ke, J., Chen, Y., Wang, X., Wu, Z., Zhang, Q., Lian, Y., & Chen, F., Machine learning-based in-hospital mortality prediction models for patients with acute coronary syndrome. The American journal of emergency medicine, 53, 127-134, 2022.
  • Huang, Z., Ge, Z., Dong, W., He, K., Duan, H., & Bath, P., Relational regularized risk prediction of acute coronary syndrome using electronic health records. Information Sciences, 465, 118-129, 2018.
  • Bouzid, Z., Faramand, Z., Gregg, R. E., Frisch, S. O., Martin‐Gill, C., Saba, S., ... & Al‐Zaiti, S., In search of an optimal subset of ECG features to augment the diagnosis of acute coronary syndrome at the emergency department. Journal of the American Heart Association, 10(3), e017871, 2021.
  • Huyut, M. T., & Ilkbahar, F., The effectiveness of blood routine parameters and some biomarkers as a potential diagnostic tool in the diagnosis and prognosis of Covid-19 disease. International Immunopharmacology, 98, 107838, 2021.
  • Huyut, M. T., Huyut, Z., Ilkbahar, F., & Mertoğlu, C., What is the impact and efficacy of routine immunological, biochemical and hematological biomarkers as predictors of COVID-19 mortality?. International Immunopharmacology, 105, 108542, 2022.
There are 63 citations in total.

Details

Primary Language English
Subjects Semi- and Unsupervised Learning
Journal Section Articles
Authors

Umut Utku Tiryaki 0009-0000-5028-0782

Gül Karaduman 0000-0002-2776-759X

Sare Nur Cuhadar 0000-0003-4461-877X

Ahmet Uyanik 0000-0001-5037-1019

Habibe Durmaz 0000-0002-5929-861X

Publication Date June 12, 2024
Submission Date October 27, 2023
Acceptance Date January 25, 2024
Published in Issue Year 2024 Volume: 16 Issue: 1

Cite

APA Tiryaki, U. U., Karaduman, G., Cuhadar, S. N., Uyanik, A., et al. (2024). Early Diagnoses of Acute Coroner Syndrome Based on Machine Learning Model. International Journal of Engineering and Applied Sciences, 16(1), 16-32. https://doi.org/10.24107/ijeas.1380819
AMA Tiryaki UU, Karaduman G, Cuhadar SN, Uyanik A, Durmaz H. Early Diagnoses of Acute Coroner Syndrome Based on Machine Learning Model. IJEAS. June 2024;16(1):16-32. doi:10.24107/ijeas.1380819
Chicago Tiryaki, Umut Utku, Gül Karaduman, Sare Nur Cuhadar, Ahmet Uyanik, and Habibe Durmaz. “Early Diagnoses of Acute Coroner Syndrome Based on Machine Learning Model”. International Journal of Engineering and Applied Sciences 16, no. 1 (June 2024): 16-32. https://doi.org/10.24107/ijeas.1380819.
EndNote Tiryaki UU, Karaduman G, Cuhadar SN, Uyanik A, Durmaz H (June 1, 2024) Early Diagnoses of Acute Coroner Syndrome Based on Machine Learning Model. International Journal of Engineering and Applied Sciences 16 1 16–32.
IEEE U. U. Tiryaki, G. Karaduman, S. N. Cuhadar, A. Uyanik, and H. Durmaz, “Early Diagnoses of Acute Coroner Syndrome Based on Machine Learning Model”, IJEAS, vol. 16, no. 1, pp. 16–32, 2024, doi: 10.24107/ijeas.1380819.
ISNAD Tiryaki, Umut Utku et al. “Early Diagnoses of Acute Coroner Syndrome Based on Machine Learning Model”. International Journal of Engineering and Applied Sciences 16/1 (June 2024), 16-32. https://doi.org/10.24107/ijeas.1380819.
JAMA Tiryaki UU, Karaduman G, Cuhadar SN, Uyanik A, Durmaz H. Early Diagnoses of Acute Coroner Syndrome Based on Machine Learning Model. IJEAS. 2024;16:16–32.
MLA Tiryaki, Umut Utku et al. “Early Diagnoses of Acute Coroner Syndrome Based on Machine Learning Model”. International Journal of Engineering and Applied Sciences, vol. 16, no. 1, 2024, pp. 16-32, doi:10.24107/ijeas.1380819.
Vancouver Tiryaki UU, Karaduman G, Cuhadar SN, Uyanik A, Durmaz H. Early Diagnoses of Acute Coroner Syndrome Based on Machine Learning Model. IJEAS. 2024;16(1):16-32.

21357