Araştırma Makalesi
BibTex RIS Kaynak Göster
Yıl 2024, , 165 - 190, 28.07.2024
https://doi.org/10.26833/ijeg.1366146

Öz

Kaynakça

  • Li, Z., Zhu, C., & Gold, C. (2004). Digital terrain modeling: principles and methodology. CRC press.
  • Martínez-Carricondo, P., Agüera-Vega, F., Carvajal-Ramírez, F., Mesas-Carrascosa, F. J., García-Ferrer, A., & Pérez-Porras, F. J. (2018). Assessment of UAV-photogrammetric mapping accuracy based on variation of ground control points. International Journal of Applied Earth Observation and Geoinformation, 72, 1-10. https://doi.org/10.1016/j.jag.2018.05.015
  • Agueera-Vega, F., Carvajal-Ramirez, F., Martínez-Carricondo, P., López, J. S. H., Mesas-Carrascosa, F. J., García-Ferrer, A., & Pérez-Porras, F. J. (2018). Reconstruction of extreme topography from UAV structure from motion photogrammetry. Measurement, 121, 127-138. https://doi.org/10.1016/j.measurement.2018.02.062
  • Ajayi, O. G., Salubi, A. A., Angbas, A. F., & Odigure, M. G. (2017). Generation of accurate digital elevation models from UAV acquired low percentage overlapping images. International Journal of Remote Sensing, 38(8-10), 3113-3134. https://doi.org/10.1080/01431161.2017.1285085
  • Carrivick, J. L., Smith, M. W., & Quincey, D. J. (2016). Structure from motion in the geosciences. John Wiley & Sons.
  • Greenwood, W. W., Lynch, J. P., & Zekkos, D. (2019). Applications of UAVs in civil infrastructure. Journal of Infrastructure Systems, 25(2), 04019002. https://doi.org/10.1061/(ASCE)IS.1943-555X.0000464
  • Nex, F., & Remondino, F. (2014). UAV for 3D mapping applications: a review. Applied Geomatics, 6, 1-15. https://doi.org/10.1007/s12518-013-0120-x
  • International Civil Aviation Organization (2011). Unmanned Aircraft Systems (UAS).
  • Liu, P., Chen, A. Y., Huang, Y. N., Han, J. Y., Lai, J. S., Kang, S. C., ... & Tsai, M. H. (2014). A review of rotorcraft unmanned aerial vehicle (UAV) developments and applications in civil engineering. Smart Structures and Systems, 13(6), 1065-1094. http://dx.doi.org/10.12989/sss.2014.13.6.1065
  • Pajares, G. (2015). Overview and current status of remote sensing applications based on unmanned aerial vehicles (UAVs). Photogrammetric Engineering & Remote Sensing, 81(4), 281-330. https://doi.org/10.14358/PERS.81.4.281
  • Agüera-Vega, F., Carvajal-Ramírez, F., & Martínez-Carricondo, P. (2017). Accuracy of digital surface models and orthophotos derived from unmanned aerial vehicle photogrammetry. Journal of Surveying Engineering, 143(2), 04016025. https://doi.org/10.1061/(ASCE)SU.1943-5428.0000206
  • Awange, J. L. (2012). Environmental monitoring using GNSS: Global navigation satellite systems. Berlin: Springer. https://doi.org/10.1007/978-3-211-73017-1
  • Dai, F., & Lu, M. (2010). Assessing the accuracy of applying photogrammetry to take geometric measurements on building products. Journal of Construction Engineering and Management, 136(2), 242-250. https://doi.org/10.1061/(ASCE)CO.1943-7862.0000114
  • Ehrhart, M., & Lienhart, W. (2017). Accurate measurements with image-assisted total stations and their prerequisites. Journal of Surveying Engineering, 143(2), 04016024. https://doi.org/10.1061/(ASCE)SU.1943-5428.0000208
  • Holland, D. A., Boyd, D. S., & Marshall, P. (2006). Updating topographic mapping in Great Britain using imagery from high-resolution satellite sensors. ISPRS Journal of Photogrammetry and Remote Sensing, 60(3), 212-223. https://doi.org/10.1016/j.isprsjprs.2006.02.002
  • Honkavaara, E., Arbiol, R., Markelin, L., Martinez, L., Cramer, M., Bovet, S., ... & Veje, N. (2009). Digital airborne photogrammetry—A new tool for quantitative remote sensing?—A state-of-the-art review on radiometric aspects of digital photogrammetric images. Remote Sensing, 1(3), 577-605. https://doi.org/10.3390/rs1030577
  • Kizil, U., & Tisor, L. (2011). Evaluation of RTK-GPS and total station for applications in land surveying. Journal of Earth System Science, 120, 215-221. https://doi.org/10.1007/s12040-011-0044-y
  • Patino, J. E., & Duque, J. C. (2013). A review of regional science applications of satellite remote sensing in urban settings. Computers, Environment and Urban Systems, 37, 1-17. https://doi.org/10.1016/j.compenvurbsys.2012.06.003
  • Slattery, K. T., & Slattery, D. K. (2013). Modeling earth surfaces for highway earthwork computation using terrestrial laser scanning. International Journal of Construction Education and Research, 9(2), 132-146. https://doi.org/10.1080/15578771.2012.700298
  • Telling, J., Lyda, A., Hartzell, P., & Glennie, C. (2017). Review of Earth science research using terrestrial laser scanning. Earth-Science Reviews, 169, 35-68. https://doi.org/10.1016/j.earscirev.2017.04.007
  • Wolf, P. R. (2002). Surveying and mapping: History, current status, and future projections. Journal of Surveying Engineering, 128(3), 79-107. https://doi.org/10.1061/(ASCE)0733-9453(2002)128:3(79)
  • ASCE. (2018). Policy Statement 333 - Engineering surveying definition. https://www.asce.org/advocacy/policy-statements/ps333---engineering-surveying-definition
  • Kreisle, W. E. (1988). History of engineering surveying. Journal of Surveying Engineering, 114(3), 102-124. https://doi.org/10.1061/(ASCE)0733-9453(1988)114:3(102)
  • Bangen, S. G., Wheaton, J. M., Bouwes, N., Bouwes, B., & Jordan, C. (2014). A methodological intercomparison of topographic survey techniques for characterizing wadeable streams and rivers. Geomorphology, 206, 343-361. https://doi.org/10.1016/j.geomorph.2013.10.010
  • Mancini, F., Dubbini, M., Gattelli, M., Stecchi, F., Fabbri, S., & Gabbianelli, G. (2013). Using unmanned aerial vehicles (UAV) for high-resolution reconstruction of topography: The structure from motion approach on coastal environments. Remote Sensing, 5(12), 6880-6898. https://doi.org/10.3390/rs5126880
  • Michelleti, N., Chandler, J. H., & Lane, S. N. (2015). Structure from motion (SFM) photogrammetry. Geomorphological Techniques, 1-12.
  • Deliry, S. I., & Avdan, U. (2021). Accuracy of unmanned aerial systems photogrammetry and structure from motion in surveying and mapping: a review. Journal of the Indian Society of Remote Sensing, 49(8), 1997-2017. https://doi.org/10.1007/s12524-021-01366-x
  • Ullman, S. (1979). The interpretation of visual motion. Massachusetts Inst of Technology Pr.
  • Furukawa, Y., & Ponce, J. (2009). Accurate, dense, and robust multiview stereopsis. IEEE Transactions on Pattern Analysis and Machine Intelligence, 32(8), 1362-1376. https://doi.org/10.1109/TPAMI.2009.161
  • Lowe, D. G. (1999). Object recognition from local scale-invariant features. Proceedings of the Seventh IEEE International Conference on Computer Vision, 2, 1150-1157. https://doi.org/10.1109/ICCV.1999.790410
  • Lowe, D. G. (2004). Distinctive image features from scale-invariant keypoints. International Journal of Computer Vision, 60, 91-110. https://doi.org/10.1023/B:VISI.0000029664.99615.94
  • Snavely, N., Seitz, S. M., & Szeliski, R. (2006). Photo tourism: exploring photo collections in 3D. ACM siggraph 2006 papers, 835-846. https://doi.org/10.1145/1179352.1141964
  • Snavely, N., Seitz, S. M., & Szeliski, R. (2008). Modeling the world from internet photo collections. International Journal of Computer Vision, 80, 189-210. https://doi.org/10.1007/s11263-007-0107-3
  • DeWitt, B. A., & Wolf, P. R. (2000). Elements of Photogrammetry (with Applications in GIS). McGraw-Hill Higher Education.
  • Mölg, N., & Bolch, T. (2017). Structure-from-motion using historical aerial images to analyse changes in glacier surface elevation. Remote Sensing, 9(10), 1021. https://doi.org/10.3390/rs9101021
  • Alptekin, A., & Yakar, M. (2020). Determination of pond volume with using an unmanned aerial vehicle. Mersin Photogrammetry Journal, 2(2), 59-63.
  • Çelik, M. Ö., Alptekin, A., Ünel, F. B., Kuşak, L., & Kanun, E. (2020). The effect of different flight heights on generated digital products: DSM and Orthophoto. Mersin Photogrammetry Journal, 2(1), 1-9.
  • Coveney, S., & Roberts, K. (2017). Lightweight UAV digital elevation models and orthoimagery for environmental applications: data accuracy evaluation and potential for river flood risk modelling. International Journal of Remote Sensing, 38(8-10), 3159-3180. https://doi.org/10.1080/01431161.2017.1292074
  • Deliry, S. I., & Avdan, U. (2023). Accuracy evaluation of UAS photogrammetry and structure from motion in 3D modeling and volumetric calculations. Journal of Applied Remote Sensing, 17(2), 024515. https://doi.org/10.1117/1.JRS.17.024515
  • Fernández, T., Pérez, J. L., Cardenal, J., Gómez, J. M., Colomo, C., & Delgado, J. (2016). Analysis of landslide evolution affecting olive groves using UAV and photogrammetric techniques. Remote Sensing, 8(10), 837. https://doi.org/10.3390/rs8100837
  • Lucieer, A., Jong, S. M. D., & Turner, D. (2014). Mapping landslide displacements using Structure from Motion (SfM) and image correlation of multi-temporal UAV photography. Progress in Physical Geography, 38(1), 97-116. https://doi.org/10.1177/0309133313515293
  • Mesas-Carrascosa, F. J., Notario García, M. D., Meroño de Larriva, J. E., & García-Ferrer, A. (2016). An analysis of the influence of flight parameters in the generation of unmanned aerial vehicle (UAV) orthomosaicks to survey archaeological areas. Sensors, 16(11), 1838. https://doi.org/10.3390/s16111838
  • Öztürk, O., Bilgilioğlu, B. B., Çelik, M. F., Bilgilioğlu, S. S., & Uluğ, R. (2017). İnsanız hava aracı (İHA) görüntüleri ile ortofoto üretiminde yükseklik ve kamera açısının doğruluğa etkisinin araştırılması. Geomatik, 2(3), 135-142. https://doi.org/10.29128/geomatik.327049
  • Sanz-Ablanedo, E., Chandler, J. H., Rodríguez-Pérez, J. R., & Ordóñez, C. (2018). Accuracy of unmanned aerial vehicle (UAV) and SfM photogrammetry survey as a function of the number and location of ground control points used. Remote Sensing, 10(10), 1606. https://doi.org/10.3390/rs10101606
  • Kanun, E., Alptekin, A., Karataş, L., & Yakar, M. (2022). The use of UAV photogrammetry in modeling ancient structures: A case study of “Kanytellis”. Advanced UAV, 2(2), 41-50.
  • Colomina, I., & Molina, P. (2014). Unmanned aerial systems for photogrammetry and remote sensing: A review. ISPRS Journal of Photogrammetry and Remote Sensing, 92, 79-97. https://doi.org/10.1016/j.isprsjprs.2014.02.013
  • Goncalves, J. A., & Henriques, R. (2015). UAV photogrammetry for topographic monitoring of coastal areas. ISPRS Journal of Photogrammetry and Remote Sensing, 104, 101-111. https://doi.org/10.1016/j.isprsjprs.2015.02.009
  • Stöcker, C., Bennett, R., Nex, F., Gerke, M., & Zevenbergen, J. (2017). Review of the current state of UAV regulations. Remote Sensing, 9(5), 459. https://doi.org/10.3390/rs9050459
  • Ruzgienė, B., Berteška, T., Gečyte, S., Jakubauskienė, E., & Aksamitauskas, V. Č. (2015). The surface modelling based on UAV Photogrammetry and qualitative estimation. Measurement, 73, 619-627. https://doi.org/10.1016/j.measurement.2015.04.018
  • Long, N., Millescamps, B., Pouget, F., Dumon, A., Lachaussee, N., & Bertin, X. (2016). Accuracy assessment of coastal topography derived from UAV images. In Xxiii Isprs Congress, Commission I, 41, B1, 1127-1134. https://doi.org/10.5194/isprsarchives-XLI-B1-1127-2016
  • Gerke, M., & Przybilla, H. J. (2016). Accuracy analysis of photogrammetric UAV image blocks: Influence of onboard RTK-GNSS and cross flight patterns. Photogrammetrie, Fernerkundung, Geoinformation, 2016(1), 17-30. https://doi.org/10.1127/pfg/2016/0284
  • Tonkin, T. N., & Midgley, N. G. (2016). Ground-control networks for image based surface reconstruction: An investigation of optimum survey designs using UAV derived imagery and structure-from-motion photogrammetry. Remote Sensing, 8(9), 786. https://doi.org/10.3390/rs8090786
  • Oniga, V. E., Breaban, A. I., & Statescu, F. (2018). Determining the optimum number of ground control points for obtaining high precision results based on UAS images. Proceedings, 2(7), 352. https://doi.org/10.3390/ecrs-2-05165
  • American Society for Photogrammetry and Remote Sensing. (2014). ASPRS positional accuracy standards for digital geospatial data. https://doi.org/10.14358/PERS.81.3.A1-A26
  • Reshetyuk, Y., & Mårtensson, S. G. (2016). Generation of highly accurate digital elevation models with unmanned aerial vehicles. The Photogrammetric Record, 31(154), 143-165. https://doi.org/10.1111/phor.12143
  • Agisoft, L. L. C. (2018). Agisoft PhotoScan User Manual: Professional Edition, Version 1.4. Petersburg, Russia: Agisoft LLC.
  • Pix4D, S. A. (2017). Pix4Dmapper 4.1 user manual. Pix4D SA: Lausanne, Switzerland.
  • 3Dsurvey. (2018). 3Dsurvey User Manual: Version 2.7.
  • Jaud, M., Passot, S., Le Bivic, R., Delacourt, C., Grandjean, P., & Le Dantec, N. (2016). Assessing the accuracy of high resolution digital surface models computed by PhotoScan® and MicMac® in sub-optimal survey conditions. Remote Sensing, 8(6), 465. https://doi.org/10.3390/rs8060465
  • Avanzi, F., Bianchi, A., Cina, A., De Michele, C., Maschio, P., Pagliari, D., ... & Rossi, L. (2018). Centimetric accuracy in snow depth using unmanned aerial system photogrammetry and a multistation. Remote Sensing, 10(5), 765. https://doi.org/10.3390/rs10050765
  • Duran, Z., & Atik, M. E. (2021). Accuracy comparison of interior orientation parameters from different photogrammetric software and direct linear transformation method. International Journal of Engineering and Geosciences, 6(2), 74-80. https://doi.org/10.26833/ijeg.691696
  • Gindraux, S., Boesch, R., & Farinotti, D. (2017). Accuracy assessment of digital surface models from unmanned aerial vehicles’ imagery on glaciers. Remote Sensing, 9(2), 186. https://doi.org/10.3390/rs9020186
  • Maraş, E. E., & Nasery, N. (2023). Investigating the length, area and volume measurement accuracy of UAV-Based oblique photogrammetry models produced with and without ground control points. International Journal of Engineering and Geosciences, 8(1), 32-51. https://doi.org/10.26833/ijeg.1017176
  • Nesbit, P. R., & Hugenholtz, C. H. (2019). Enhancing UAV–SFM 3D model accuracy in high-relief landscapes by incorporating oblique images. Remote Sensing, 11(3), 239. https://doi.org/10.3390/rs11030239
  • Ruiz, J. J., Diaz-Mas, L., Perez, F., & Viguria, A. (2013). Evaluating the accuracy of DEM generation algorithms from UAV imagery. The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, 40, 333-337. https://doi.org/10.5194/isprsarchives-XL-1-W2-333-2013
  • Senkal, E., Kaplan, G., & Avdan, U. (2021). Accuracy assessment of digital surface models from unmanned aerial vehicles’ imagery on archaeological sites. International Journal of Engineering and Geosciences, 6(2), 81-89. https://doi.org/10.26833/ijeg.696001
  • American Society for Photogrammetry and Remote Sensing. (1990). ASPRS accuracy standards for large-scale maps, 1068–1070.
  • Benassi, F., Dall’Asta, E., Diotri, F., Forlani, G., Morra di Cella, U., Roncella, R., & Santise, M. (2017). Testing accuracy and repeatability of UAV blocks oriented with GNSS-supported aerial triangulation. Remote Sensing, 9(2), 172. https://doi.org/10.3390/rs9020172
  • Cryderman, C., Mah, S. B., & Shufletoski, A. (2014). Evaluation of UAV photogrammetric accuracy for mapping and earthworks computations. Geomatica, 68(4), 309-317. https://doi.org/10.5623/cig2014-405
  • Rehak, M., & Skaloud, J. (2015). Fixed-wing micro aerial vehicle for accurate corridor mapping. ISPRS Annals of the Photogrammetry, Remote Sensing and Spatial Information Sciences, 2, 23-31. https://doi.org/10.5194/isprsannals-II-1-W1-23-2015
  • Whitehead, K., & Hugenholtz, C. H. (2015). Applying ASPRS accuracy standards to surveys from small unmanned aircraft systems (UAS). Photogrammetric Engineering & Remote Sensing, 81(10), 787-793. https://doi.org/10.14358/PERS.81.10.787
  • Wierzbicki, D., Kedzierski, M., & Fryskowska, A. (2015). Assesment of the influence of UAV image quality on the orthophoto production. The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, 40, 1-8. https://doi.org/10.5194/isprsarchives-XL-1-W4-1-2015
  • Pérez, M., Agüera, F., & Carvajal, F. (2013). Low cost surveying using an unmanned aerial vehicle. The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, 40, 311-315. https://doi.org/10.5194/isprsarchives-XL-1-W2-311-2013
  • Hill, A. C. (2019). Economical drone mapping for archaeology: Comparisons of efficiency and accuracy. Journal of Archaeological Science: Reports, 24, 80-91. https://doi.org/10.1016/j.jasrep.2018.12.011
  • Hastaoğlu, K. Ö., Gül, Y., Poyraz, F., & Kara, B. C. (2019). Monitoring 3D areal displacements by a new methodology and software using UAV photogrammetry. International Journal of Applied Earth Observation and Geoinformation, 83, 101916. https://doi.org/10.1016/j.jag.2019.101916
  • Hastaoglu, K. O., Kapicioglu, H. S., Gül, Y., & Poyraz, F. (2023). Investigation of the effect of height difference and geometry of GCP on position accuracy of point cloud in UAV photogrammetry. Survey Review, 55(391), 325-337. https://doi.org/10.1080/00396265.2022.2097998
  • Deliry, S. I. (2020). Accuracy analysis and evaluation of UAS photogrammetry and structure from motion in engineering surveying. [Master’s thesis, Anadolu University].

Accuracy assessment of UAS photogrammetry and structure from motion in surveying and mapping

Yıl 2024, , 165 - 190, 28.07.2024
https://doi.org/10.26833/ijeg.1366146

Öz

Rapid and accurate surveying has always attracted great interest in all scientific and industrial activities that require high-resolution topographic data. The latest automation and advancement in geomatics engineering are remote sensing solutions using Unmanned Aerial Systems (UAS) and Structure from Motion (SfM) with Multi-View Stereo (MVS) photogrammetry. This research aimed to find the influence of flight height, Ground Control Point (GCP), and software on the geometric accuracy of UAS-SfM-derived Digital Surface Models (DSMs) and orthoimages, as well as to analyze and evaluate the accuracy of UAS-SfM as a rapid and low-cost alternative to conventional survey methods. To achieve the aim of the study, aerial surveys using a fixed-wing UAS and field surveys using RTK GNSS and total station were conducted. A total of 16 photogrammetric projects were processed using different GCP configurations, and detailed statistical analysis was performed on the results. Moreover, the contribution of cross flight on bundle adjustment was investigated empirically by conducting a combined photogrammetric image processing. The analysis revealed that flight height, GCP number and distribution, and the processing software significantly affect products' quality and accuracy. Evaluation of the achieved accuracies was made based on the American Society for Photogrammetry and Remote Sensing (ASPRS) positional accuracy standard for digital geospatial data. The findings of this study revealed that using the optimal flight height and GCP configuration, 3D models, orthomosaics and DSMs can be rapidly reconstructed from 2D images with the quality and accuracy sufficient for most terrain analysis applications, including civil engineering projects.

Kaynakça

  • Li, Z., Zhu, C., & Gold, C. (2004). Digital terrain modeling: principles and methodology. CRC press.
  • Martínez-Carricondo, P., Agüera-Vega, F., Carvajal-Ramírez, F., Mesas-Carrascosa, F. J., García-Ferrer, A., & Pérez-Porras, F. J. (2018). Assessment of UAV-photogrammetric mapping accuracy based on variation of ground control points. International Journal of Applied Earth Observation and Geoinformation, 72, 1-10. https://doi.org/10.1016/j.jag.2018.05.015
  • Agueera-Vega, F., Carvajal-Ramirez, F., Martínez-Carricondo, P., López, J. S. H., Mesas-Carrascosa, F. J., García-Ferrer, A., & Pérez-Porras, F. J. (2018). Reconstruction of extreme topography from UAV structure from motion photogrammetry. Measurement, 121, 127-138. https://doi.org/10.1016/j.measurement.2018.02.062
  • Ajayi, O. G., Salubi, A. A., Angbas, A. F., & Odigure, M. G. (2017). Generation of accurate digital elevation models from UAV acquired low percentage overlapping images. International Journal of Remote Sensing, 38(8-10), 3113-3134. https://doi.org/10.1080/01431161.2017.1285085
  • Carrivick, J. L., Smith, M. W., & Quincey, D. J. (2016). Structure from motion in the geosciences. John Wiley & Sons.
  • Greenwood, W. W., Lynch, J. P., & Zekkos, D. (2019). Applications of UAVs in civil infrastructure. Journal of Infrastructure Systems, 25(2), 04019002. https://doi.org/10.1061/(ASCE)IS.1943-555X.0000464
  • Nex, F., & Remondino, F. (2014). UAV for 3D mapping applications: a review. Applied Geomatics, 6, 1-15. https://doi.org/10.1007/s12518-013-0120-x
  • International Civil Aviation Organization (2011). Unmanned Aircraft Systems (UAS).
  • Liu, P., Chen, A. Y., Huang, Y. N., Han, J. Y., Lai, J. S., Kang, S. C., ... & Tsai, M. H. (2014). A review of rotorcraft unmanned aerial vehicle (UAV) developments and applications in civil engineering. Smart Structures and Systems, 13(6), 1065-1094. http://dx.doi.org/10.12989/sss.2014.13.6.1065
  • Pajares, G. (2015). Overview and current status of remote sensing applications based on unmanned aerial vehicles (UAVs). Photogrammetric Engineering & Remote Sensing, 81(4), 281-330. https://doi.org/10.14358/PERS.81.4.281
  • Agüera-Vega, F., Carvajal-Ramírez, F., & Martínez-Carricondo, P. (2017). Accuracy of digital surface models and orthophotos derived from unmanned aerial vehicle photogrammetry. Journal of Surveying Engineering, 143(2), 04016025. https://doi.org/10.1061/(ASCE)SU.1943-5428.0000206
  • Awange, J. L. (2012). Environmental monitoring using GNSS: Global navigation satellite systems. Berlin: Springer. https://doi.org/10.1007/978-3-211-73017-1
  • Dai, F., & Lu, M. (2010). Assessing the accuracy of applying photogrammetry to take geometric measurements on building products. Journal of Construction Engineering and Management, 136(2), 242-250. https://doi.org/10.1061/(ASCE)CO.1943-7862.0000114
  • Ehrhart, M., & Lienhart, W. (2017). Accurate measurements with image-assisted total stations and their prerequisites. Journal of Surveying Engineering, 143(2), 04016024. https://doi.org/10.1061/(ASCE)SU.1943-5428.0000208
  • Holland, D. A., Boyd, D. S., & Marshall, P. (2006). Updating topographic mapping in Great Britain using imagery from high-resolution satellite sensors. ISPRS Journal of Photogrammetry and Remote Sensing, 60(3), 212-223. https://doi.org/10.1016/j.isprsjprs.2006.02.002
  • Honkavaara, E., Arbiol, R., Markelin, L., Martinez, L., Cramer, M., Bovet, S., ... & Veje, N. (2009). Digital airborne photogrammetry—A new tool for quantitative remote sensing?—A state-of-the-art review on radiometric aspects of digital photogrammetric images. Remote Sensing, 1(3), 577-605. https://doi.org/10.3390/rs1030577
  • Kizil, U., & Tisor, L. (2011). Evaluation of RTK-GPS and total station for applications in land surveying. Journal of Earth System Science, 120, 215-221. https://doi.org/10.1007/s12040-011-0044-y
  • Patino, J. E., & Duque, J. C. (2013). A review of regional science applications of satellite remote sensing in urban settings. Computers, Environment and Urban Systems, 37, 1-17. https://doi.org/10.1016/j.compenvurbsys.2012.06.003
  • Slattery, K. T., & Slattery, D. K. (2013). Modeling earth surfaces for highway earthwork computation using terrestrial laser scanning. International Journal of Construction Education and Research, 9(2), 132-146. https://doi.org/10.1080/15578771.2012.700298
  • Telling, J., Lyda, A., Hartzell, P., & Glennie, C. (2017). Review of Earth science research using terrestrial laser scanning. Earth-Science Reviews, 169, 35-68. https://doi.org/10.1016/j.earscirev.2017.04.007
  • Wolf, P. R. (2002). Surveying and mapping: History, current status, and future projections. Journal of Surveying Engineering, 128(3), 79-107. https://doi.org/10.1061/(ASCE)0733-9453(2002)128:3(79)
  • ASCE. (2018). Policy Statement 333 - Engineering surveying definition. https://www.asce.org/advocacy/policy-statements/ps333---engineering-surveying-definition
  • Kreisle, W. E. (1988). History of engineering surveying. Journal of Surveying Engineering, 114(3), 102-124. https://doi.org/10.1061/(ASCE)0733-9453(1988)114:3(102)
  • Bangen, S. G., Wheaton, J. M., Bouwes, N., Bouwes, B., & Jordan, C. (2014). A methodological intercomparison of topographic survey techniques for characterizing wadeable streams and rivers. Geomorphology, 206, 343-361. https://doi.org/10.1016/j.geomorph.2013.10.010
  • Mancini, F., Dubbini, M., Gattelli, M., Stecchi, F., Fabbri, S., & Gabbianelli, G. (2013). Using unmanned aerial vehicles (UAV) for high-resolution reconstruction of topography: The structure from motion approach on coastal environments. Remote Sensing, 5(12), 6880-6898. https://doi.org/10.3390/rs5126880
  • Michelleti, N., Chandler, J. H., & Lane, S. N. (2015). Structure from motion (SFM) photogrammetry. Geomorphological Techniques, 1-12.
  • Deliry, S. I., & Avdan, U. (2021). Accuracy of unmanned aerial systems photogrammetry and structure from motion in surveying and mapping: a review. Journal of the Indian Society of Remote Sensing, 49(8), 1997-2017. https://doi.org/10.1007/s12524-021-01366-x
  • Ullman, S. (1979). The interpretation of visual motion. Massachusetts Inst of Technology Pr.
  • Furukawa, Y., & Ponce, J. (2009). Accurate, dense, and robust multiview stereopsis. IEEE Transactions on Pattern Analysis and Machine Intelligence, 32(8), 1362-1376. https://doi.org/10.1109/TPAMI.2009.161
  • Lowe, D. G. (1999). Object recognition from local scale-invariant features. Proceedings of the Seventh IEEE International Conference on Computer Vision, 2, 1150-1157. https://doi.org/10.1109/ICCV.1999.790410
  • Lowe, D. G. (2004). Distinctive image features from scale-invariant keypoints. International Journal of Computer Vision, 60, 91-110. https://doi.org/10.1023/B:VISI.0000029664.99615.94
  • Snavely, N., Seitz, S. M., & Szeliski, R. (2006). Photo tourism: exploring photo collections in 3D. ACM siggraph 2006 papers, 835-846. https://doi.org/10.1145/1179352.1141964
  • Snavely, N., Seitz, S. M., & Szeliski, R. (2008). Modeling the world from internet photo collections. International Journal of Computer Vision, 80, 189-210. https://doi.org/10.1007/s11263-007-0107-3
  • DeWitt, B. A., & Wolf, P. R. (2000). Elements of Photogrammetry (with Applications in GIS). McGraw-Hill Higher Education.
  • Mölg, N., & Bolch, T. (2017). Structure-from-motion using historical aerial images to analyse changes in glacier surface elevation. Remote Sensing, 9(10), 1021. https://doi.org/10.3390/rs9101021
  • Alptekin, A., & Yakar, M. (2020). Determination of pond volume with using an unmanned aerial vehicle. Mersin Photogrammetry Journal, 2(2), 59-63.
  • Çelik, M. Ö., Alptekin, A., Ünel, F. B., Kuşak, L., & Kanun, E. (2020). The effect of different flight heights on generated digital products: DSM and Orthophoto. Mersin Photogrammetry Journal, 2(1), 1-9.
  • Coveney, S., & Roberts, K. (2017). Lightweight UAV digital elevation models and orthoimagery for environmental applications: data accuracy evaluation and potential for river flood risk modelling. International Journal of Remote Sensing, 38(8-10), 3159-3180. https://doi.org/10.1080/01431161.2017.1292074
  • Deliry, S. I., & Avdan, U. (2023). Accuracy evaluation of UAS photogrammetry and structure from motion in 3D modeling and volumetric calculations. Journal of Applied Remote Sensing, 17(2), 024515. https://doi.org/10.1117/1.JRS.17.024515
  • Fernández, T., Pérez, J. L., Cardenal, J., Gómez, J. M., Colomo, C., & Delgado, J. (2016). Analysis of landslide evolution affecting olive groves using UAV and photogrammetric techniques. Remote Sensing, 8(10), 837. https://doi.org/10.3390/rs8100837
  • Lucieer, A., Jong, S. M. D., & Turner, D. (2014). Mapping landslide displacements using Structure from Motion (SfM) and image correlation of multi-temporal UAV photography. Progress in Physical Geography, 38(1), 97-116. https://doi.org/10.1177/0309133313515293
  • Mesas-Carrascosa, F. J., Notario García, M. D., Meroño de Larriva, J. E., & García-Ferrer, A. (2016). An analysis of the influence of flight parameters in the generation of unmanned aerial vehicle (UAV) orthomosaicks to survey archaeological areas. Sensors, 16(11), 1838. https://doi.org/10.3390/s16111838
  • Öztürk, O., Bilgilioğlu, B. B., Çelik, M. F., Bilgilioğlu, S. S., & Uluğ, R. (2017). İnsanız hava aracı (İHA) görüntüleri ile ortofoto üretiminde yükseklik ve kamera açısının doğruluğa etkisinin araştırılması. Geomatik, 2(3), 135-142. https://doi.org/10.29128/geomatik.327049
  • Sanz-Ablanedo, E., Chandler, J. H., Rodríguez-Pérez, J. R., & Ordóñez, C. (2018). Accuracy of unmanned aerial vehicle (UAV) and SfM photogrammetry survey as a function of the number and location of ground control points used. Remote Sensing, 10(10), 1606. https://doi.org/10.3390/rs10101606
  • Kanun, E., Alptekin, A., Karataş, L., & Yakar, M. (2022). The use of UAV photogrammetry in modeling ancient structures: A case study of “Kanytellis”. Advanced UAV, 2(2), 41-50.
  • Colomina, I., & Molina, P. (2014). Unmanned aerial systems for photogrammetry and remote sensing: A review. ISPRS Journal of Photogrammetry and Remote Sensing, 92, 79-97. https://doi.org/10.1016/j.isprsjprs.2014.02.013
  • Goncalves, J. A., & Henriques, R. (2015). UAV photogrammetry for topographic monitoring of coastal areas. ISPRS Journal of Photogrammetry and Remote Sensing, 104, 101-111. https://doi.org/10.1016/j.isprsjprs.2015.02.009
  • Stöcker, C., Bennett, R., Nex, F., Gerke, M., & Zevenbergen, J. (2017). Review of the current state of UAV regulations. Remote Sensing, 9(5), 459. https://doi.org/10.3390/rs9050459
  • Ruzgienė, B., Berteška, T., Gečyte, S., Jakubauskienė, E., & Aksamitauskas, V. Č. (2015). The surface modelling based on UAV Photogrammetry and qualitative estimation. Measurement, 73, 619-627. https://doi.org/10.1016/j.measurement.2015.04.018
  • Long, N., Millescamps, B., Pouget, F., Dumon, A., Lachaussee, N., & Bertin, X. (2016). Accuracy assessment of coastal topography derived from UAV images. In Xxiii Isprs Congress, Commission I, 41, B1, 1127-1134. https://doi.org/10.5194/isprsarchives-XLI-B1-1127-2016
  • Gerke, M., & Przybilla, H. J. (2016). Accuracy analysis of photogrammetric UAV image blocks: Influence of onboard RTK-GNSS and cross flight patterns. Photogrammetrie, Fernerkundung, Geoinformation, 2016(1), 17-30. https://doi.org/10.1127/pfg/2016/0284
  • Tonkin, T. N., & Midgley, N. G. (2016). Ground-control networks for image based surface reconstruction: An investigation of optimum survey designs using UAV derived imagery and structure-from-motion photogrammetry. Remote Sensing, 8(9), 786. https://doi.org/10.3390/rs8090786
  • Oniga, V. E., Breaban, A. I., & Statescu, F. (2018). Determining the optimum number of ground control points for obtaining high precision results based on UAS images. Proceedings, 2(7), 352. https://doi.org/10.3390/ecrs-2-05165
  • American Society for Photogrammetry and Remote Sensing. (2014). ASPRS positional accuracy standards for digital geospatial data. https://doi.org/10.14358/PERS.81.3.A1-A26
  • Reshetyuk, Y., & Mårtensson, S. G. (2016). Generation of highly accurate digital elevation models with unmanned aerial vehicles. The Photogrammetric Record, 31(154), 143-165. https://doi.org/10.1111/phor.12143
  • Agisoft, L. L. C. (2018). Agisoft PhotoScan User Manual: Professional Edition, Version 1.4. Petersburg, Russia: Agisoft LLC.
  • Pix4D, S. A. (2017). Pix4Dmapper 4.1 user manual. Pix4D SA: Lausanne, Switzerland.
  • 3Dsurvey. (2018). 3Dsurvey User Manual: Version 2.7.
  • Jaud, M., Passot, S., Le Bivic, R., Delacourt, C., Grandjean, P., & Le Dantec, N. (2016). Assessing the accuracy of high resolution digital surface models computed by PhotoScan® and MicMac® in sub-optimal survey conditions. Remote Sensing, 8(6), 465. https://doi.org/10.3390/rs8060465
  • Avanzi, F., Bianchi, A., Cina, A., De Michele, C., Maschio, P., Pagliari, D., ... & Rossi, L. (2018). Centimetric accuracy in snow depth using unmanned aerial system photogrammetry and a multistation. Remote Sensing, 10(5), 765. https://doi.org/10.3390/rs10050765
  • Duran, Z., & Atik, M. E. (2021). Accuracy comparison of interior orientation parameters from different photogrammetric software and direct linear transformation method. International Journal of Engineering and Geosciences, 6(2), 74-80. https://doi.org/10.26833/ijeg.691696
  • Gindraux, S., Boesch, R., & Farinotti, D. (2017). Accuracy assessment of digital surface models from unmanned aerial vehicles’ imagery on glaciers. Remote Sensing, 9(2), 186. https://doi.org/10.3390/rs9020186
  • Maraş, E. E., & Nasery, N. (2023). Investigating the length, area and volume measurement accuracy of UAV-Based oblique photogrammetry models produced with and without ground control points. International Journal of Engineering and Geosciences, 8(1), 32-51. https://doi.org/10.26833/ijeg.1017176
  • Nesbit, P. R., & Hugenholtz, C. H. (2019). Enhancing UAV–SFM 3D model accuracy in high-relief landscapes by incorporating oblique images. Remote Sensing, 11(3), 239. https://doi.org/10.3390/rs11030239
  • Ruiz, J. J., Diaz-Mas, L., Perez, F., & Viguria, A. (2013). Evaluating the accuracy of DEM generation algorithms from UAV imagery. The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, 40, 333-337. https://doi.org/10.5194/isprsarchives-XL-1-W2-333-2013
  • Senkal, E., Kaplan, G., & Avdan, U. (2021). Accuracy assessment of digital surface models from unmanned aerial vehicles’ imagery on archaeological sites. International Journal of Engineering and Geosciences, 6(2), 81-89. https://doi.org/10.26833/ijeg.696001
  • American Society for Photogrammetry and Remote Sensing. (1990). ASPRS accuracy standards for large-scale maps, 1068–1070.
  • Benassi, F., Dall’Asta, E., Diotri, F., Forlani, G., Morra di Cella, U., Roncella, R., & Santise, M. (2017). Testing accuracy and repeatability of UAV blocks oriented with GNSS-supported aerial triangulation. Remote Sensing, 9(2), 172. https://doi.org/10.3390/rs9020172
  • Cryderman, C., Mah, S. B., & Shufletoski, A. (2014). Evaluation of UAV photogrammetric accuracy for mapping and earthworks computations. Geomatica, 68(4), 309-317. https://doi.org/10.5623/cig2014-405
  • Rehak, M., & Skaloud, J. (2015). Fixed-wing micro aerial vehicle for accurate corridor mapping. ISPRS Annals of the Photogrammetry, Remote Sensing and Spatial Information Sciences, 2, 23-31. https://doi.org/10.5194/isprsannals-II-1-W1-23-2015
  • Whitehead, K., & Hugenholtz, C. H. (2015). Applying ASPRS accuracy standards to surveys from small unmanned aircraft systems (UAS). Photogrammetric Engineering & Remote Sensing, 81(10), 787-793. https://doi.org/10.14358/PERS.81.10.787
  • Wierzbicki, D., Kedzierski, M., & Fryskowska, A. (2015). Assesment of the influence of UAV image quality on the orthophoto production. The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, 40, 1-8. https://doi.org/10.5194/isprsarchives-XL-1-W4-1-2015
  • Pérez, M., Agüera, F., & Carvajal, F. (2013). Low cost surveying using an unmanned aerial vehicle. The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, 40, 311-315. https://doi.org/10.5194/isprsarchives-XL-1-W2-311-2013
  • Hill, A. C. (2019). Economical drone mapping for archaeology: Comparisons of efficiency and accuracy. Journal of Archaeological Science: Reports, 24, 80-91. https://doi.org/10.1016/j.jasrep.2018.12.011
  • Hastaoğlu, K. Ö., Gül, Y., Poyraz, F., & Kara, B. C. (2019). Monitoring 3D areal displacements by a new methodology and software using UAV photogrammetry. International Journal of Applied Earth Observation and Geoinformation, 83, 101916. https://doi.org/10.1016/j.jag.2019.101916
  • Hastaoglu, K. O., Kapicioglu, H. S., Gül, Y., & Poyraz, F. (2023). Investigation of the effect of height difference and geometry of GCP on position accuracy of point cloud in UAV photogrammetry. Survey Review, 55(391), 325-337. https://doi.org/10.1080/00396265.2022.2097998
  • Deliry, S. I. (2020). Accuracy analysis and evaluation of UAS photogrammetry and structure from motion in engineering surveying. [Master’s thesis, Anadolu University].
Toplam 77 adet kaynakça vardır.

Ayrıntılar

Birincil Dil İngilizce
Konular Fotogrametri ve Uzaktan Algılama
Bölüm Articles
Yazarlar

Sayed Ishaq Deliry 0000-0002-5467-1403

Uğur Avdan 0000-0001-7873-9874

Erken Görünüm Tarihi 23 Temmuz 2024
Yayımlanma Tarihi 28 Temmuz 2024
Yayımlandığı Sayı Yıl 2024

Kaynak Göster

APA Deliry, S. I., & Avdan, U. (2024). Accuracy assessment of UAS photogrammetry and structure from motion in surveying and mapping. International Journal of Engineering and Geosciences, 9(2), 165-190. https://doi.org/10.26833/ijeg.1366146
AMA Deliry SI, Avdan U. Accuracy assessment of UAS photogrammetry and structure from motion in surveying and mapping. IJEG. Temmuz 2024;9(2):165-190. doi:10.26833/ijeg.1366146
Chicago Deliry, Sayed Ishaq, ve Uğur Avdan. “Accuracy Assessment of UAS Photogrammetry and Structure from Motion in Surveying and Mapping”. International Journal of Engineering and Geosciences 9, sy. 2 (Temmuz 2024): 165-90. https://doi.org/10.26833/ijeg.1366146.
EndNote Deliry SI, Avdan U (01 Temmuz 2024) Accuracy assessment of UAS photogrammetry and structure from motion in surveying and mapping. International Journal of Engineering and Geosciences 9 2 165–190.
IEEE S. I. Deliry ve U. Avdan, “Accuracy assessment of UAS photogrammetry and structure from motion in surveying and mapping”, IJEG, c. 9, sy. 2, ss. 165–190, 2024, doi: 10.26833/ijeg.1366146.
ISNAD Deliry, Sayed Ishaq - Avdan, Uğur. “Accuracy Assessment of UAS Photogrammetry and Structure from Motion in Surveying and Mapping”. International Journal of Engineering and Geosciences 9/2 (Temmuz 2024), 165-190. https://doi.org/10.26833/ijeg.1366146.
JAMA Deliry SI, Avdan U. Accuracy assessment of UAS photogrammetry and structure from motion in surveying and mapping. IJEG. 2024;9:165–190.
MLA Deliry, Sayed Ishaq ve Uğur Avdan. “Accuracy Assessment of UAS Photogrammetry and Structure from Motion in Surveying and Mapping”. International Journal of Engineering and Geosciences, c. 9, sy. 2, 2024, ss. 165-90, doi:10.26833/ijeg.1366146.
Vancouver Deliry SI, Avdan U. Accuracy assessment of UAS photogrammetry and structure from motion in surveying and mapping. IJEG. 2024;9(2):165-90.