Year 2026,
Volume: 11 Issue: 2, 467 - 479, 16.12.2025
Anindya Sricandra Prasidya
,
Irwan Gumilar
,
Irwan Meilano
,
Ikaputra Ikaputra
References
-
Dewi, C. (2017). Rethinking architectural heritage conservation in post-disaster context. International Journal of Heritage Studies, 23(6), 587–600. https://doi.org/10.1080/13527258.2017.1300927
-
Shah, A. A. (2023). Digital Documentation as a Tool for Heritage Conservation: Insights from the Frere Hall, Karachi, Pakistan. In 2023 International Conference on Sustaining Heritage: Innovative and Digital Approaches (ICSH) (pp. 56–63). Presented at the 2023 International Conference on Sustaining Heritage: Innovative and Digital Approaches (ICSH), Sakhir, Bahrain: IEEE. https://doi.org/10.1109/ICSH57060.2023.10482842
-
Baik, A. (2024). A Comprehensive Heritage BIM Methodology for Digital Modelling and Conservation of Built Heritage: Application to Ghiqa Historical Market, Saudi Arabia. Remote Sensing, 16(15), 2833. https://doi.org/10.3390/rs16152833
-
Pocobelli, D. P., Boehm, J., Bryan, P., Still, J., & Grau-Bové, J. (2018). BIM for heritage science: a review. Heritage Science, 6(1), 30. https://doi.org/10.1186/s40494-018-0191-4
-
Murphy, M., McGovern, E., & Pavia, S. (2013). Historic Building Information Modelling – Adding intelligence to laser and image based surveys of European classical architecture. ISPRS Journal of Photogrammetry and Remote Sensing, 76, 89–102. https://doi.org/10.1016/j.isprsjprs.2012.11.006
-
Bassier, M., Hadjidemetriou, G., Vergauwen, M., Van Roy, N., & Verstrynge, E. (2016). Implementation of Scan-to-BIM and FEM for the Documentation and Analysis of Heritage Timber Roof Structures. In M. Ioannides, E. Fink, A. Moropoulou, M. Hagedorn-Saupe, A. Fresa, G. Liestøl, … P. Grussenmeyer (Eds.), Digital Heritage. Progress in Cultural Heritage: Documentation, Preservation, and Protection (Vol. 10058, pp. 79–90). Cham: Springer International Publishing. https://doi.org/10.1007/978-3-319-48496-9_7
-
Bruno, N., & Roncella, R. (2019). HBIM for Conservation: A New Proposal for Information Modeling. Remote Sensing, 11(15), 1751. https://doi.org/10.3390/rs11151751
-
Barazzetti, L., Banfi, F., Brumana, R., Gusmeroli, G., Previtali, M., & Schiantarelli, G. (2015). Cloud-to-BIM-to-FEM: Structural simulation with accurate historic BIM from laser scans. Simulation Modelling Practice and Theory, 57, 71–87. https://doi.org/10.1016/j.simpat.2015.06.004
-
López, F., Lerones, P., Llamas, J., Gómez-García-Bermejo, J., & Zalama, E. (2018). A Review of Heritage Building Information Modeling (H-BIM). Multimodal Technologies and Interaction, 2(2), 21. https://doi.org/10.3390/mti2020021
-
Dore, C., & Murphy, M. (2017). Current State of the Art Historic Building Information Modelling. The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, XLII-2/W5, 185–192. https://doi.org/10.5194/isprs-archives-XLII-2-W5-185-2017
-
Dilmaç, H., İlçi, V., Şaşmaz, N. T., & Ozulu, İ. M. (2025). The Effect of Ground Control Points Located on Roofs on Building Facade Accuracy. International Journal of Engineering and Geosciences, 10(2), 164–172. https://doi.org/10.26833/ijeg.1535675
-
Gholami, A. (2024). Exploring Drone Classifications and Applications: A Review. International Journal of Engineering and Geosciences, 9(3), 418–442. https://doi.org/10.26833/ijeg.1428724
-
Tuncer, S., & Avdan, U. (2024). Comparative analysis of non-invasive measurement methods for optimizing architectural documentation. International Journal of Engineering and Geosciences, 9(2), 302–313. https://doi.org/10.26833/ijeg.1424881
-
Alidoost, F., & Arefi, H. (2015). An Image-based Technique for 3D Building Reconstruction using Multi-View UAV Images. The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, XL-1/W5, 43–46. https://doi.org/10.5194/isprsarchives-XL-1-W5-43-2015
-
Altman, S., Xiao, W., & Grayson, B. (2017). Evaluation of Low-Cost Terrestrial Photogrammetry for 3D Reconstruction of Complex Buildings. ISPRS Annals of the Photogrammetry, Remote Sensing and Spatial Information Sciences, IV-2/W4, 199–206. https://doi.org/10.5194/isprs-annals-IV-2-W4-199-2017
-
Barazzetti, L., Previtali, M., & Roncoroni, F. (2022). 3D Modeling with 5k 360° Videos. The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, XLVI-2/W1-2022, 65–71. https://doi.org/10.5194/isprs-archives-XLVI-2-W1-2022-65-2022
-
Brahmantara. (2017). Metode Foto Rentang Dekat (Close Range Photogrammetry) dan Aerial untuk Pendokumentasian Tiga Dimensi Cagar Budaya. Jurnal Konservasi Cagar Budaya Borobudur, XI(2), 76–88.
-
Khalloufi, H., Azough, A., Ennahnahi, N., & Kaghat, F. Z. (2020). Low-Cost Terrestrial Photogrammetry for 3D Modeling of Historic Sites: A Case Study of The Marinids’ Royal Necropolis City of Fez, Morocco. https://doi.org/10.5281/ZENODO.3930412
-
Lo Brutto, M., Ebolese, D., & Dardanelli, G. (2018). 3D Modelling of a Historical Building using Close-Range Photogrammetry and Remotely Piloted Aircraft System (RPAS). ISPRS - International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, XLII–2, 599–606. https://doi.org/10.5194/isprs-archives-XLII-2-599-2018
-
Morena, S. (2022). Application of Action Camera Video for Fast and Low-Cost Photogrammetric Survey of Cultural Heritage. The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, XLVIII-2/W1-2022, 177–184. https://doi.org/10.5194/isprs-archives-XLVIII-2-W1-2022-177-2022
-
Murtiyoso, A., Grussenmeyer, P., & Freville, T. (2017). Close Range UAV Accurate Recording and Modeling of St-Pierre-Le-Jeune Neo-Romanesque Church in Strasbourg (France). The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, XLII-2/W3, 519–526. https://doi.org/10.5194/isprs-archives-XLII-2-W3-519-2017
-
Murtiyoso, A., Grussenmeyer, P., & Suwardhi, D. (2019). Technical Considerations in Low-Cost Heritage Documentation (Candi Sari - Case Study). The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, XLII-2/W17, 225–232. https://doi.org/10.5194/isprs-archives-XLII-2-W17-225-2019
-
Soto-Zamora, M. A., Vízcaino-Hernández, I. E., Díaz-Zeledón, R. A., & Velasco-González, J. J. (2019). Application of Digital Close-Range Photogrammetry to the Modeling of Heritage Structural Elements for Its Analysis by FEM. In R. Aguilar, D. Torrealva, S. Moreira, M. A. Pando, & L. F. Ramos (Eds.), Structural Analysis of Historical Constructions (Vol. 18, pp. 342–350). Cham: Springer International Publishing. https://doi.org/10.1007/978-3-319-99441-3_36
-
Suwardhi, D., Menna, F., Remondino, F., Hanke, K., & Akmalia, R. (2015). Digital 3D Borobudur – Integration of 3D surveying and modeling techniques. ISPRS - International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, XL-5/W7, 417–423. https://doi.org/10.5194/isprsarchives-XL-5-W7-417-2015
-
Varol, F. (2025). Creation of surface model using unmanned aerial vehicle (UAV) photogrammetry in cultural heritage areas: The example of Kilistra Ancient City. International Journal of Engineering and Geosciences, 10(2), 137–150. https://doi.org/10.26833/ijeg.1487818
-
Özdemir, E., Çallı, R., & Kartal, S. (2024). Utilization of Unmanned Aerial Vehicles for the Detection and Localization of Deteriorations in Historical Structures: A Case Study of Ishak Pasha Palace. International Journal of Engineering and Geosciences. https://doi.org/10.26833/ijeg.1464867
-
Perfetti, L., Spettu, F., Achille, C., Fassi, F., Navillod, C., & Cerutti, C. (2023). A Multi-Sensor Approach to Survey Complex Architectures Supported by Multi-Camera Photogrammetry. The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, XLVIII-M-2–2023, 1209–1216. https://doi.org/10.5194/isprs-archives-XLVIII-M-2-2023-1209-2023
-
Alshawabkeh, Y., & Baik, A. (2023). Integration of photogrammetry and laser scanning for enhancing scan-to-HBIM modeling of Al Ula heritage site. Heritage Science, 11(1), 147. https://doi.org/10.1186/s40494-023-00997-2
-
Andaru, R., Cahyono, B. K., Riyadi, G., Istarno, Djurdjani, Ramadhan, G. R., & Tuntas, S. (2019). The Combination of Terrestrial LiDAR and UAV Photogrammetry for Interactive Architectural Heritage Visualization using Unity 3D Game Engine. ISPRS - International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, XLII-2/W17, 39–44. https://doi.org/10.5194/isprs-archives-XLII-2-W17-39-2019
-
Korumaza, A. G., Korumaz, M., Dulgerlera, O. N., Karasaka, L., Yıldız, F., & Yakar, M. (2010). Evaluation of laser scanner performance in documentation of historical and architectural ruins, a case study in Konya. International Archives of Photogrammetry, Remote Sensing and Spatial Information Sciences, 38(5), 361-366.
-
Murtiyoso, A., Grussenmeyer, P., Suwardhi, D., & Awalludin, R. (2018). Multi-Scale and Multi-Sensor 3D Documentation of Heritage Complexes in Urban Areas. ISPRS International Journal of Geo-Information, 7(12), 483. https://doi.org/10.3390/ijgi7120483
-
Prasidya, A. S., Gumilar, I., Meilano, I., Ikaputra, I., Muryamto, R., & Arrofiqoh, E. N. (2025). Three-Dimensional Digital Documentation for the Conservation of the Prambanan Temple Cluster Using Guided Multi-Sensor Techniques. Heritage, 8(1), 32. https://doi.org/10.3390/heritage8010032
-
Tysiac, P., Sieńska, A., Tarnowska, M., Kedziorski, P., & Jagoda, M. (2023). Combination of terrestrial laser scanning and UAV photogrammetry for 3D modelling and degradation assessment of heritage building based on a lighting analysis: case study—St. Adalbert Church in Gdansk, Poland. Heritage Science, 11(1), 53. https://doi.org/10.1186/s40494-023-00897-5
-
Rocha, Mateus, Fernández, & Ferreira. (2020). A Scan-to-BIM Methodology Applied to Heritage Buildings. Heritage, 3(1), 47–67. https://doi.org/10.3390/heritage3010004
-
Costantino, D., Pepe, M., & Restuccia, A. G. (2023). Scan-to-HBIM for conservation and preservation of Cultural Heritage building: the case study of San Nicola in Montedoro church (Italy). Applied Geomatics, 15(3), 607–621. https://doi.org/10.1007/s12518-021-00359-2
-
Funari, M. F., Hajjat, A. E., Masciotta, M. G., Oliveira, D. V., & Lourenço, P. B. (2021). A Parametric Scan-to-FEM Framework for the Digital Twin Generation of Historic Masonry Structures. Sustainability, 13(19), 11088. https://doi.org/10.3390/su131911088
-
Pepe, M., Costantino, D., & Restuccia Garofalo, A. (2020). An Efficient Pipeline to Obtain 3D Model for HBIM and Structural Analysis Purposes from 3D Point Clouds. Applied Sciences, 10(4), 1235. https://doi.org/10.3390/app10041235
-
Chen, F., Xu, H., Zhou, W., Zheng, W., Deng, Y., & Parcharidis, I. (2021). Three-dimensional deformation monitoring and simulations for the preventive conservation of architectural heritage: a case study of the Angkor Wat Temple, Cambodia. GIScience & Remote Sensing, 58(2), 217–234. https://doi.org/10.1080/15481603.2020.1871188
-
Vuoto, A., Funari, M. F., & Lourenço, P. B. (2023). On the Use of the Digital Twin Concept for the Structural Integrity Protection of Architectural Heritage. Infrastructures, 8(5), 86. https://doi.org/10.3390/infrastructures8050086
-
Abbate, E., Invernizzi, S., & Spanò, A. (2022). HBIM parametric modelling from clouds to perform structural analyses based on finite elements: a case study on a parabolic concrete vault. Applied Geomatics, 14(S1), 79–96. https://doi.org/10.1007/s12518-020-00341-4
-
Fortunato, G., Funari, M. F., & Lonetti, P. (2017). Survey and seismic vulnerability assessment of the Baptistery of San Giovanni in Tumba (Italy). Journal of Cultural Heritage, 26, 64–78. https://doi.org/10.1016/j.culher.2017.01.010
-
Turchetti, F., Cuca, B., Oreni, D., & Agapiou, A. (2025). Recording of Historic Buildings and Monuments for FEA: Current Practices and Future Directions. Heritage, 8(2), 55. https://doi.org/10.3390/heritage8020055
-
Quattrini, R., Clementi, F., Lucidi, A., Giannetti, S., & Santoni, A. (2019). From TLS to FE Analysis: Points Cloud Exploitation for Structural Behaviour Definition. The San Ciriaco’s Bell Tower. The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, XLII-2/W15, 957–964. https://doi.org/10.5194/isprs-archives-XLII-2-W15-957-2019
-
Alfio, V. S., Costantino, D., Pepe, M., & Restuccia Garofalo, A. (2022). A Geomatics Approach in Scan to FEM Process Applied to Cultural Heritage Structure: The Case Study of the “Colossus of Barletta.” Remote Sensing, 14(3), 664. https://doi.org/10.3390/rs14030664
-
Yakar, M., Yilmaz, H. M., & Yurt, K. (2010). The effect of grid resolution in defining terrain surface. Experimental Techniques, 34(6), 23-29.
-
Castellazzi, G., D’Altri, A., Bitelli, G., Selvaggi, I., & Lambertini, A. (2015). From Laser Scanning to Finite Element Analysis of Complex Buildings by Using a Semi-Automatic Procedure. Sensors, 15(8), 18360–18380. https://doi.org/10.3390/s150818360
-
Adrisijanti, I., Putranto, A., & Ngesti, V. (2011, May). Site Conservation Assesment Report: Prambanan Temple Compound Indonesia. Global Heritage Network - Global Heritage Fund. Retrieved from http://ghn.globalheritagefund.org/uploads/documents/document_1944.pdf
-
Kaushal, S. S., Gutierrez Soto, M., & Napolitano, R. (2023). Structural Analysis of Post-Disaster Masonry Structures Modeled using Cloud2FEM Software. The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, XLVIII-M-2–2023, 827–834. https://doi.org/10.5194/isprs-archives-XLVIII-M-2-2023-827-2023
-
Alyilmaz, C., Yakar, M., & Yilmaz, H. M. (2010). Drawing of petroglyphs in Mongolia by close range photogrammetry. Scientific Research and Essays, 5(11), 1216-1222
-
Muryamto, R., Taftazani, M. I., Yulaikhah, Y., Cahyono, B. K., & Prasidya, A. S. (2019). Development and Definition of Prambanan Temple Deformation Monitoring Control Points. JGISE: Journal of Geospatial Information Science and Engineering, 1(2). https://doi.org/10.22146/jgise.40788
-
Muryamto, R., Panuntun, H., Ilmawan, H., Arrofiqoh, E. N., Setyawan, A. A., & Taftazani, M. I. (2024). Kombinasi Survei Terestrial dan Satelit Navigasi untuk Pendefinisian Koordinat Titik Pemantauan Candi Prambanan. Jurnal Spatial Wahana Komunikasi dan Informasi Geografi, 24(2), 115–124. https://doi.org/10.21009/spatial.242.002
-
Yakar, M. (2011). Using close range photogrammetry to measure the position of inaccessible geological features. Experimental Techniques, 35(1), 54-59.
-
Westoby, M. J., Brasington, J., Glasser, N. F., Hambrey, M. J., & Reynolds, J. M. (2012). ‘Structure-from-Motion’ photogrammetry: A low-cost, effective tool for geoscience applications. Geomorphology, 179, 300–314. https://doi.org/10.1016/j.geomorph.2012.08.021
-
Yakar M, Yılmaz H M & Mutluoǧlu Ö (2010). Comparative evaluation of excavation volume by TLS and total topographic station based methods. Lasers in Engineering,19, 331-345
-
Hanazato, T., Tanaka, H., Uekita, Y., & Subroto, Y. (2022). Seismic Structural Evaluation of Candi Siva, Prambanan World Heritage Temple, by Introducing Muography. In I. Vayas & F. M. Mazzolani (Eds.), Protection of Historical Constructions (Vol. 209, pp. 1443–1454). Cham: Springer International Publishing. https://doi.org/10.1007/978-3-030-90788-4_109
-
BP3-Yogyakarta. (2009). Membangun Kembali Prambanan (Technical Report No. Cetakan I, 2009) (p. 124). Yogyakarta, Indonesia.: Balai Pelestarian Peninggalan Purbakala (BP3)-Yogyakarta.
-
Octavia, K., Wu, J.-H., & Handoko, L. (2023). Investigating the Stability of the Candi Kelir using DDA. IOP Conference Series: Earth and Environmental Science, 1249(1), 012016. https://doi.org/10.1088/1755-1315/1249/1/012016
-
Zvietcovich, F., Castaneda, B., & Perucchio, R. (2015). 3D solid model updating of complex ancient monumental structures based on local geometrical meshes. Digital Applications in Archaeology and Cultural Heritage, 2(1), 12–27. https://doi.org/10.1016/j.daach.2015.02.001
-
Guarnieri, A., Fissore, F., Masiero, A., Di Donna, A., Coppa, U., & Vettore, A. (2017). From Survey to FEM Analysis for Documentation of Built Heritage: The Case Study of Villa Revedin-Bolasco. The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, XLII-5/W1, 527–533. https://doi.org/10.5194/isprs-archives-XLII-5-W1-527-2017
The influence of photogrammetric point-cloud quality in direct cloud-to-FE modelling and simulation of architectural heritage structures: a case study of a Hindu temple
Year 2026,
Volume: 11 Issue: 2, 467 - 479, 16.12.2025
Anindya Sricandra Prasidya
,
Irwan Gumilar
,
Irwan Meilano
,
Ikaputra Ikaputra
Abstract
Photogrammetry-derived point clouds are widely used as a geometric foundation for assessing architectural heritage structures. Traditionally, this process is conducted through a multi-step workflow, specifically the scan-to-intermediary-surface-to-finite-element-model (FEM) approach. Recently, a newer method—direct point cloud to FEM (Cloud2FEM)—has enabled a more efficient single-step workflow. This approach requires a point cloud as its primary input. However, the influence of specific characteristics of the point cloud source (e.g., photogrammetry-derived) on the Cloud2FEM process and its performance remains unclear. Therefore, this study aims to investigate this influence and recommend data quality standards to enhance the automation rate of Cloud2FEM-based structural analysis. Close-range drone photogrammetry was employed to document the Apit Temple. The acquired data were processed using a Structure-from-Motion pipeline, and point cloud quality was assessed through root-mean-square error (RMSE) and multiscale model-to-model cloud comparison (M3C2) distance analyses. During the Cloud2FEM conversion, two key evaluation steps were introduced: centroid generation and polyline-to-polygon conversion. The performance of the resulting FE model in dynamic analysis was then evaluated using seismic data from the Athena earthquake. The point cloud quality assessment indicated RMSE values ranging from 1.1 cm to 5 cm and a mean M3C2 distance of 5.53 mm. The two key evaluations revealed a strong association between the quantity, distribution, and completeness of point clouds and (a) the accuracy of planimetric shape representation via centroids, and (b) the success rate of polyline-to-polygon conversion. The developed FE model accurately simulated structural dynamics and identified three vulnerable nodes, consistent with previous reports. These findings emphasize that the quantity, distribution, and completeness of point clouds are critical parameters in achieving accurate and efficient Cloud2FEM modeling. Accordingly, meticulous photogrammetric surveys are essential to generate high-quality point clouds for heritage structure simulations. This highlights the importance of high-quality point clouds for accelerating FEM-based structural modeling and analysis.
Supporting Institution
Center for Higher Education Fund (BPPT) under the Ministry of Higher Education, Science and Technology (Kemendiktisaintek) and the Indonesian Endowment Fund for Education (LPDP)
Thanks
The authors also express gratitude to the students and the education staff at the Department of Earth Technology for their assistance in field data acquisition.
References
-
Dewi, C. (2017). Rethinking architectural heritage conservation in post-disaster context. International Journal of Heritage Studies, 23(6), 587–600. https://doi.org/10.1080/13527258.2017.1300927
-
Shah, A. A. (2023). Digital Documentation as a Tool for Heritage Conservation: Insights from the Frere Hall, Karachi, Pakistan. In 2023 International Conference on Sustaining Heritage: Innovative and Digital Approaches (ICSH) (pp. 56–63). Presented at the 2023 International Conference on Sustaining Heritage: Innovative and Digital Approaches (ICSH), Sakhir, Bahrain: IEEE. https://doi.org/10.1109/ICSH57060.2023.10482842
-
Baik, A. (2024). A Comprehensive Heritage BIM Methodology for Digital Modelling and Conservation of Built Heritage: Application to Ghiqa Historical Market, Saudi Arabia. Remote Sensing, 16(15), 2833. https://doi.org/10.3390/rs16152833
-
Pocobelli, D. P., Boehm, J., Bryan, P., Still, J., & Grau-Bové, J. (2018). BIM for heritage science: a review. Heritage Science, 6(1), 30. https://doi.org/10.1186/s40494-018-0191-4
-
Murphy, M., McGovern, E., & Pavia, S. (2013). Historic Building Information Modelling – Adding intelligence to laser and image based surveys of European classical architecture. ISPRS Journal of Photogrammetry and Remote Sensing, 76, 89–102. https://doi.org/10.1016/j.isprsjprs.2012.11.006
-
Bassier, M., Hadjidemetriou, G., Vergauwen, M., Van Roy, N., & Verstrynge, E. (2016). Implementation of Scan-to-BIM and FEM for the Documentation and Analysis of Heritage Timber Roof Structures. In M. Ioannides, E. Fink, A. Moropoulou, M. Hagedorn-Saupe, A. Fresa, G. Liestøl, … P. Grussenmeyer (Eds.), Digital Heritage. Progress in Cultural Heritage: Documentation, Preservation, and Protection (Vol. 10058, pp. 79–90). Cham: Springer International Publishing. https://doi.org/10.1007/978-3-319-48496-9_7
-
Bruno, N., & Roncella, R. (2019). HBIM for Conservation: A New Proposal for Information Modeling. Remote Sensing, 11(15), 1751. https://doi.org/10.3390/rs11151751
-
Barazzetti, L., Banfi, F., Brumana, R., Gusmeroli, G., Previtali, M., & Schiantarelli, G. (2015). Cloud-to-BIM-to-FEM: Structural simulation with accurate historic BIM from laser scans. Simulation Modelling Practice and Theory, 57, 71–87. https://doi.org/10.1016/j.simpat.2015.06.004
-
López, F., Lerones, P., Llamas, J., Gómez-García-Bermejo, J., & Zalama, E. (2018). A Review of Heritage Building Information Modeling (H-BIM). Multimodal Technologies and Interaction, 2(2), 21. https://doi.org/10.3390/mti2020021
-
Dore, C., & Murphy, M. (2017). Current State of the Art Historic Building Information Modelling. The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, XLII-2/W5, 185–192. https://doi.org/10.5194/isprs-archives-XLII-2-W5-185-2017
-
Dilmaç, H., İlçi, V., Şaşmaz, N. T., & Ozulu, İ. M. (2025). The Effect of Ground Control Points Located on Roofs on Building Facade Accuracy. International Journal of Engineering and Geosciences, 10(2), 164–172. https://doi.org/10.26833/ijeg.1535675
-
Gholami, A. (2024). Exploring Drone Classifications and Applications: A Review. International Journal of Engineering and Geosciences, 9(3), 418–442. https://doi.org/10.26833/ijeg.1428724
-
Tuncer, S., & Avdan, U. (2024). Comparative analysis of non-invasive measurement methods for optimizing architectural documentation. International Journal of Engineering and Geosciences, 9(2), 302–313. https://doi.org/10.26833/ijeg.1424881
-
Alidoost, F., & Arefi, H. (2015). An Image-based Technique for 3D Building Reconstruction using Multi-View UAV Images. The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, XL-1/W5, 43–46. https://doi.org/10.5194/isprsarchives-XL-1-W5-43-2015
-
Altman, S., Xiao, W., & Grayson, B. (2017). Evaluation of Low-Cost Terrestrial Photogrammetry for 3D Reconstruction of Complex Buildings. ISPRS Annals of the Photogrammetry, Remote Sensing and Spatial Information Sciences, IV-2/W4, 199–206. https://doi.org/10.5194/isprs-annals-IV-2-W4-199-2017
-
Barazzetti, L., Previtali, M., & Roncoroni, F. (2022). 3D Modeling with 5k 360° Videos. The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, XLVI-2/W1-2022, 65–71. https://doi.org/10.5194/isprs-archives-XLVI-2-W1-2022-65-2022
-
Brahmantara. (2017). Metode Foto Rentang Dekat (Close Range Photogrammetry) dan Aerial untuk Pendokumentasian Tiga Dimensi Cagar Budaya. Jurnal Konservasi Cagar Budaya Borobudur, XI(2), 76–88.
-
Khalloufi, H., Azough, A., Ennahnahi, N., & Kaghat, F. Z. (2020). Low-Cost Terrestrial Photogrammetry for 3D Modeling of Historic Sites: A Case Study of The Marinids’ Royal Necropolis City of Fez, Morocco. https://doi.org/10.5281/ZENODO.3930412
-
Lo Brutto, M., Ebolese, D., & Dardanelli, G. (2018). 3D Modelling of a Historical Building using Close-Range Photogrammetry and Remotely Piloted Aircraft System (RPAS). ISPRS - International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, XLII–2, 599–606. https://doi.org/10.5194/isprs-archives-XLII-2-599-2018
-
Morena, S. (2022). Application of Action Camera Video for Fast and Low-Cost Photogrammetric Survey of Cultural Heritage. The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, XLVIII-2/W1-2022, 177–184. https://doi.org/10.5194/isprs-archives-XLVIII-2-W1-2022-177-2022
-
Murtiyoso, A., Grussenmeyer, P., & Freville, T. (2017). Close Range UAV Accurate Recording and Modeling of St-Pierre-Le-Jeune Neo-Romanesque Church in Strasbourg (France). The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, XLII-2/W3, 519–526. https://doi.org/10.5194/isprs-archives-XLII-2-W3-519-2017
-
Murtiyoso, A., Grussenmeyer, P., & Suwardhi, D. (2019). Technical Considerations in Low-Cost Heritage Documentation (Candi Sari - Case Study). The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, XLII-2/W17, 225–232. https://doi.org/10.5194/isprs-archives-XLII-2-W17-225-2019
-
Soto-Zamora, M. A., Vízcaino-Hernández, I. E., Díaz-Zeledón, R. A., & Velasco-González, J. J. (2019). Application of Digital Close-Range Photogrammetry to the Modeling of Heritage Structural Elements for Its Analysis by FEM. In R. Aguilar, D. Torrealva, S. Moreira, M. A. Pando, & L. F. Ramos (Eds.), Structural Analysis of Historical Constructions (Vol. 18, pp. 342–350). Cham: Springer International Publishing. https://doi.org/10.1007/978-3-319-99441-3_36
-
Suwardhi, D., Menna, F., Remondino, F., Hanke, K., & Akmalia, R. (2015). Digital 3D Borobudur – Integration of 3D surveying and modeling techniques. ISPRS - International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, XL-5/W7, 417–423. https://doi.org/10.5194/isprsarchives-XL-5-W7-417-2015
-
Varol, F. (2025). Creation of surface model using unmanned aerial vehicle (UAV) photogrammetry in cultural heritage areas: The example of Kilistra Ancient City. International Journal of Engineering and Geosciences, 10(2), 137–150. https://doi.org/10.26833/ijeg.1487818
-
Özdemir, E., Çallı, R., & Kartal, S. (2024). Utilization of Unmanned Aerial Vehicles for the Detection and Localization of Deteriorations in Historical Structures: A Case Study of Ishak Pasha Palace. International Journal of Engineering and Geosciences. https://doi.org/10.26833/ijeg.1464867
-
Perfetti, L., Spettu, F., Achille, C., Fassi, F., Navillod, C., & Cerutti, C. (2023). A Multi-Sensor Approach to Survey Complex Architectures Supported by Multi-Camera Photogrammetry. The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, XLVIII-M-2–2023, 1209–1216. https://doi.org/10.5194/isprs-archives-XLVIII-M-2-2023-1209-2023
-
Alshawabkeh, Y., & Baik, A. (2023). Integration of photogrammetry and laser scanning for enhancing scan-to-HBIM modeling of Al Ula heritage site. Heritage Science, 11(1), 147. https://doi.org/10.1186/s40494-023-00997-2
-
Andaru, R., Cahyono, B. K., Riyadi, G., Istarno, Djurdjani, Ramadhan, G. R., & Tuntas, S. (2019). The Combination of Terrestrial LiDAR and UAV Photogrammetry for Interactive Architectural Heritage Visualization using Unity 3D Game Engine. ISPRS - International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, XLII-2/W17, 39–44. https://doi.org/10.5194/isprs-archives-XLII-2-W17-39-2019
-
Korumaza, A. G., Korumaz, M., Dulgerlera, O. N., Karasaka, L., Yıldız, F., & Yakar, M. (2010). Evaluation of laser scanner performance in documentation of historical and architectural ruins, a case study in Konya. International Archives of Photogrammetry, Remote Sensing and Spatial Information Sciences, 38(5), 361-366.
-
Murtiyoso, A., Grussenmeyer, P., Suwardhi, D., & Awalludin, R. (2018). Multi-Scale and Multi-Sensor 3D Documentation of Heritage Complexes in Urban Areas. ISPRS International Journal of Geo-Information, 7(12), 483. https://doi.org/10.3390/ijgi7120483
-
Prasidya, A. S., Gumilar, I., Meilano, I., Ikaputra, I., Muryamto, R., & Arrofiqoh, E. N. (2025). Three-Dimensional Digital Documentation for the Conservation of the Prambanan Temple Cluster Using Guided Multi-Sensor Techniques. Heritage, 8(1), 32. https://doi.org/10.3390/heritage8010032
-
Tysiac, P., Sieńska, A., Tarnowska, M., Kedziorski, P., & Jagoda, M. (2023). Combination of terrestrial laser scanning and UAV photogrammetry for 3D modelling and degradation assessment of heritage building based on a lighting analysis: case study—St. Adalbert Church in Gdansk, Poland. Heritage Science, 11(1), 53. https://doi.org/10.1186/s40494-023-00897-5
-
Rocha, Mateus, Fernández, & Ferreira. (2020). A Scan-to-BIM Methodology Applied to Heritage Buildings. Heritage, 3(1), 47–67. https://doi.org/10.3390/heritage3010004
-
Costantino, D., Pepe, M., & Restuccia, A. G. (2023). Scan-to-HBIM for conservation and preservation of Cultural Heritage building: the case study of San Nicola in Montedoro church (Italy). Applied Geomatics, 15(3), 607–621. https://doi.org/10.1007/s12518-021-00359-2
-
Funari, M. F., Hajjat, A. E., Masciotta, M. G., Oliveira, D. V., & Lourenço, P. B. (2021). A Parametric Scan-to-FEM Framework for the Digital Twin Generation of Historic Masonry Structures. Sustainability, 13(19), 11088. https://doi.org/10.3390/su131911088
-
Pepe, M., Costantino, D., & Restuccia Garofalo, A. (2020). An Efficient Pipeline to Obtain 3D Model for HBIM and Structural Analysis Purposes from 3D Point Clouds. Applied Sciences, 10(4), 1235. https://doi.org/10.3390/app10041235
-
Chen, F., Xu, H., Zhou, W., Zheng, W., Deng, Y., & Parcharidis, I. (2021). Three-dimensional deformation monitoring and simulations for the preventive conservation of architectural heritage: a case study of the Angkor Wat Temple, Cambodia. GIScience & Remote Sensing, 58(2), 217–234. https://doi.org/10.1080/15481603.2020.1871188
-
Vuoto, A., Funari, M. F., & Lourenço, P. B. (2023). On the Use of the Digital Twin Concept for the Structural Integrity Protection of Architectural Heritage. Infrastructures, 8(5), 86. https://doi.org/10.3390/infrastructures8050086
-
Abbate, E., Invernizzi, S., & Spanò, A. (2022). HBIM parametric modelling from clouds to perform structural analyses based on finite elements: a case study on a parabolic concrete vault. Applied Geomatics, 14(S1), 79–96. https://doi.org/10.1007/s12518-020-00341-4
-
Fortunato, G., Funari, M. F., & Lonetti, P. (2017). Survey and seismic vulnerability assessment of the Baptistery of San Giovanni in Tumba (Italy). Journal of Cultural Heritage, 26, 64–78. https://doi.org/10.1016/j.culher.2017.01.010
-
Turchetti, F., Cuca, B., Oreni, D., & Agapiou, A. (2025). Recording of Historic Buildings and Monuments for FEA: Current Practices and Future Directions. Heritage, 8(2), 55. https://doi.org/10.3390/heritage8020055
-
Quattrini, R., Clementi, F., Lucidi, A., Giannetti, S., & Santoni, A. (2019). From TLS to FE Analysis: Points Cloud Exploitation for Structural Behaviour Definition. The San Ciriaco’s Bell Tower. The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, XLII-2/W15, 957–964. https://doi.org/10.5194/isprs-archives-XLII-2-W15-957-2019
-
Alfio, V. S., Costantino, D., Pepe, M., & Restuccia Garofalo, A. (2022). A Geomatics Approach in Scan to FEM Process Applied to Cultural Heritage Structure: The Case Study of the “Colossus of Barletta.” Remote Sensing, 14(3), 664. https://doi.org/10.3390/rs14030664
-
Yakar, M., Yilmaz, H. M., & Yurt, K. (2010). The effect of grid resolution in defining terrain surface. Experimental Techniques, 34(6), 23-29.
-
Castellazzi, G., D’Altri, A., Bitelli, G., Selvaggi, I., & Lambertini, A. (2015). From Laser Scanning to Finite Element Analysis of Complex Buildings by Using a Semi-Automatic Procedure. Sensors, 15(8), 18360–18380. https://doi.org/10.3390/s150818360
-
Adrisijanti, I., Putranto, A., & Ngesti, V. (2011, May). Site Conservation Assesment Report: Prambanan Temple Compound Indonesia. Global Heritage Network - Global Heritage Fund. Retrieved from http://ghn.globalheritagefund.org/uploads/documents/document_1944.pdf
-
Kaushal, S. S., Gutierrez Soto, M., & Napolitano, R. (2023). Structural Analysis of Post-Disaster Masonry Structures Modeled using Cloud2FEM Software. The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, XLVIII-M-2–2023, 827–834. https://doi.org/10.5194/isprs-archives-XLVIII-M-2-2023-827-2023
-
Alyilmaz, C., Yakar, M., & Yilmaz, H. M. (2010). Drawing of petroglyphs in Mongolia by close range photogrammetry. Scientific Research and Essays, 5(11), 1216-1222
-
Muryamto, R., Taftazani, M. I., Yulaikhah, Y., Cahyono, B. K., & Prasidya, A. S. (2019). Development and Definition of Prambanan Temple Deformation Monitoring Control Points. JGISE: Journal of Geospatial Information Science and Engineering, 1(2). https://doi.org/10.22146/jgise.40788
-
Muryamto, R., Panuntun, H., Ilmawan, H., Arrofiqoh, E. N., Setyawan, A. A., & Taftazani, M. I. (2024). Kombinasi Survei Terestrial dan Satelit Navigasi untuk Pendefinisian Koordinat Titik Pemantauan Candi Prambanan. Jurnal Spatial Wahana Komunikasi dan Informasi Geografi, 24(2), 115–124. https://doi.org/10.21009/spatial.242.002
-
Yakar, M. (2011). Using close range photogrammetry to measure the position of inaccessible geological features. Experimental Techniques, 35(1), 54-59.
-
Westoby, M. J., Brasington, J., Glasser, N. F., Hambrey, M. J., & Reynolds, J. M. (2012). ‘Structure-from-Motion’ photogrammetry: A low-cost, effective tool for geoscience applications. Geomorphology, 179, 300–314. https://doi.org/10.1016/j.geomorph.2012.08.021
-
Yakar M, Yılmaz H M & Mutluoǧlu Ö (2010). Comparative evaluation of excavation volume by TLS and total topographic station based methods. Lasers in Engineering,19, 331-345
-
Hanazato, T., Tanaka, H., Uekita, Y., & Subroto, Y. (2022). Seismic Structural Evaluation of Candi Siva, Prambanan World Heritage Temple, by Introducing Muography. In I. Vayas & F. M. Mazzolani (Eds.), Protection of Historical Constructions (Vol. 209, pp. 1443–1454). Cham: Springer International Publishing. https://doi.org/10.1007/978-3-030-90788-4_109
-
BP3-Yogyakarta. (2009). Membangun Kembali Prambanan (Technical Report No. Cetakan I, 2009) (p. 124). Yogyakarta, Indonesia.: Balai Pelestarian Peninggalan Purbakala (BP3)-Yogyakarta.
-
Octavia, K., Wu, J.-H., & Handoko, L. (2023). Investigating the Stability of the Candi Kelir using DDA. IOP Conference Series: Earth and Environmental Science, 1249(1), 012016. https://doi.org/10.1088/1755-1315/1249/1/012016
-
Zvietcovich, F., Castaneda, B., & Perucchio, R. (2015). 3D solid model updating of complex ancient monumental structures based on local geometrical meshes. Digital Applications in Archaeology and Cultural Heritage, 2(1), 12–27. https://doi.org/10.1016/j.daach.2015.02.001
-
Guarnieri, A., Fissore, F., Masiero, A., Di Donna, A., Coppa, U., & Vettore, A. (2017). From Survey to FEM Analysis for Documentation of Built Heritage: The Case Study of Villa Revedin-Bolasco. The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, XLII-5/W1, 527–533. https://doi.org/10.5194/isprs-archives-XLII-5-W1-527-2017