Research Article
BibTex RIS Cite

Year 2026, Volume: 11 Issue: 2, 510 - 528, 16.12.2025
https://doi.org/10.26833/ijeg.1765899

Abstract

References

  • Koeri. (2023). Boğaziçi University Kandilli Observatory and Earthquake Research Institute. 06 Şubat 2023 Sofalaca-Şehitkamil-Gaziantep; Ekinözü-Kahramanmaraş ve 20 Şubat 2023 Hatay Depremleri Ön Değerlendirme Raporu. Istanbul/Türkiye. http://www.koeri.boun.edu.tr/sismo/2/wp-content/uploads/2023/02/022023_Kahramanmaras-Gaziantep_Hatay_-BDTIM_On_degerlendirme_raporu.pdf.
  • Terra. (2023). Türkiye Earthquakes Recovery And Reconstruction Assessment, Strategy and Budget Office (SBO) of the Presidency of the Republic of Türkiye, Ankara/Türkiye. https://www.sbb.gov.tr/wp-content/uploads/2023/03/Turkiye-Recovery-and-Reconstruction-Assessment.pdf.
  • Demp. (2023a). Disaster and Emergency Management Presidency, 06 Şubat 2023 Kahramanmaraş (Pazarcık ve Elbistan) Depremleri Saha Çalışmaları Ön Değerlendirme Raporu. 24 February 2023, Ankara/Türkiye. https://deprem.afad.gov.tr/assets/pdf/Arazi_Onrapor_28022023_surum1_revize.pdf.
  • Aktug, B., Ozener, H., Doğru, A., Sabuncu, A., Turgut, B., Halicioglu, K., Yilmaz, O., & Havazli, E. (2016). Slip Rates and Seismic Potential on the East Anatolian Fault System Using an Improved GPS Velocity Field. Journal of Geodynamics 94-95 1-12. https://doi.org/10.1016/j.jog.2016.01.001.
  • Ozener, H., Arpat, E., Ergintav, S., Dogru, A., Cakmak, R., Turgut, B., & Dogan, U. (2010). Kinematics of the Eastern Part of the North Anatolian Fault Zone. Journal of Geodynamics, 49 (3–4), 141–150. https://doi.org/10.1016/j.jog.2010.01.003.
  • Reilinger, R., McClusky, S., Vernant, P., Lawrence, S., Ergintav, S., Cakmak, R., Ozener, H., Kadirov, F., Guliev, I., Stepanyan, R., Nadariya, M., Hahubia, G., Mahmoud, S., Sakr, K., ArRajehi, A., Paradissis, D., Al-Aydrus, A., Prilepin, M., Guseva, T., Evren, E., Dmitrotsa, A., Filikov, S.V., Gomez, F., Al-Ghazzi, R., & Karam, G. (2006). GPS constraints on continental deformation in the Africa–Arabia–Eurasia continental collision zone and implications for the dynamics of plate interactions. Journal of Geophysical Research, Vol: 111, No: B05411. doi:10.1029/2005JB004051.
  • McClusky, S., Balassanian, S., Barka, A., Demir, C., Ergintav, S., Georgiev, I., Gürkan, O., Hamburger, M., Hurst, K., Kahle, H., Kastens, K., Kekelidze, G., King, R.V., Kotzev, V., Lenk, O., Mahmoud, S., Mishin, A., Nadariya, M., Ouzounis, A., Paradisssis, D., Peter, Y., Prilepin, M., Reilinger, R., Sanli, I., Seeger, H., Tealeb, A., Toksöz, M.N., & Veiss, G. (2000). Global Positioning System constraints on plate kinematics and dynamics in the eastern Mediterranean and Caucasus. Journal of Geophysical Research, Vol: 105, No: B3 ,5695-5719. https://doi.org/10.1029/1999JB900351.
  • Gündüz, A.M. (2019). TUSAGA-Aktif Noktalarının Deformasyon Belirlemede Kullanılabilirliği. Ph.D Thesis Graduate Education Institute Konya Technical University, Konya/Türkiye. https://tez.yok.gov.tr/UlusalTezMerkezi/tezSorguSonucYeni.jsp.
  • Ansari, K., Corumluoglu, O., & Sharma, S.K. (2017). Numerical Simulation of Crustal Strain in Turkey from Continuous GNSS Measurements in the Interval 2009–2017. Journal of Geodetic Science. Vol: 7 Issue 1 113-129. https://doi.org/10.1515/jogs-2017-0013.
  • Yildirim, O., Yaprak, S., & Inal, C. (2014). Determination of 2011 Van/Turkey earthquake (M=7.2) effects from measurements of CORS-TR network. Geomatics, Natural Hazards and Risk, 5(2), 132-144. http://dx.doi.org/10.1080/19475705.2013.789453.
  • Özbey, V., Mutlu, B., Erol, S., Selbesoğlu, M. O., Yavasoğlu, H. H., & Alkan, R. M. (2025). Performance analysis of multi-GNSS PPP for accurate ship-borne positioning in Antarctic region. International Journal of Engineering and Geosciences, 10(3), 428-439, https://doi.org/10.26833/ijeg.1574964.
  • Bezcioğlu, M. (2024). Farklı açık kaynak kodlu tek-frekanslı hassas nokta konum belirleme (SF-PPP) yazılımlarının statik moddaki konum belirleme yeteneklerinin değerlendirilmesi. Geomatik, 9(3), 313-322. https://doi.org/10.29128/geomatik.1477892.
  • Bezcioğlu, M., Ucar, T., & Yiğit, C. Ö. (2023). Investigation of the capability of multi-GNSS PPP-AR method in detecting permanent displacements. International Journal of Engineering and Geosciences, 8(3), 251-261. https://doi.org/10.26833/ijeg.1140959.
  • Gong, Y,. Liu, Z., Yu, S., Chan, P.W., & Hon, K.K. (2024). Improving GNSS PPP performance in the South China under different weather conditions by using the Weather Research and Forecasting (WRF) model‐derived wet delay corrections. Earth and Space Science, 11, e2023EA003136. https://doi.org/10.1029/2023EA003136.
  • Mosad, R., El-kutb, A., El-Hattab, A., Rabah, M., & El-Koshy, A. (2021). Using PPP-GNSS Technique for Detecting Surface Motion due to Earthquake Shaking based on time-domain analysis. Port Said Engineering Research Journal, Vol: 25, No: 1, 32 -40. doi: 10.21608/PSERJ.2020.35670.1052.
  • Yigit, C.O., & Gurlek, E. (2017). Experimental testing of high-rate GNSS precise point positioning (PPP) mehod for detecting dynamic vertical displacement response of engineering structures. Geomatics, Natural Hazards and Risk, 8:2, 893-904. DOI: 10.1080/19475705.2017.1284160.
  • Li, X., Ge, M., Zhang, X., Zhang, Y., Guo, B., Wang, R., Klotz, J., & Wickert. J. (2013). Real-time high-rate co-seismic displacement from ambiguity-fixed precise point positioning: Application to earthquake early warning. Geophysical Research Letters, Vol: 40, 295–300. doi:10.1002/GRL.50138.
  • Gokceoglu, C., Kocaman, S., Nefeslioglu, H.A., & Ok, A.O. (2021). Use of multisensor and multitemporal geosatial datasets to extract the foundation characteristics of a large building: a case study. Bulletin of Engineering Geology and the Environment, 80, 3251–3269. https://doi.org/10.1007/s10064-021-02116-6.
  • Kaloop, M.R., Yigit, C.O., Dindar, A.A., Elsharawy, M., & Hu, J.W. (2020). Evaluation of the high-rate GNSS-PPP metho for vertical structural motion. Survey Review, 52:371, 159-171. DOI: 10.1080/00396265.2018.1534362.
  • Yigit, C.O. (2016). Experimental assessment of post-processed kinematic Precise Point Positioning method for structural health monitoring. Geomatics, Natural Hazards and Risk, 7:1, 360-383. DOI: 10.1080/19475705.2014.917724.
  • Şimşek, M., Taşkıran, M., & Doğan, U. (2025). Yinelemeli sinir ağlarıyla GNSS verilerinde birleştirilmiş ve bireysel model karşılaştırılması. Geomatik, 10(1), 66-75. https://doi.org/10.29128/geomatik.1530761.
  • Yakar, M., Yilmaz, H. M., & Yurt, K. (2010). The effect of grid resolution in defining terrain surface. Experimental Techniques, 34(6), 23-29.
  • Yakar, M. (2011). Using close range photogrammetry to measure the position of inaccessible geological features. Experimental Techniques, 35(1), 54-59.
  • Şaşa, S., Gümüş, K., & Gümüş, M. G. (2025). Türkiye’de 6 Şubat 2023’te meydana gelen depremlerin farklı gün ve saatlerdeki konumsal etkilerinin internet tabanlı GNSS değerlendirme servisleri ile istatistiksel analizi. Niğde Ömer Halisdemir Üniversitesi Mühendislik Bilimleri Dergisi, 14(1), 325-339. htps://doi.org/10.28948/ngumuh.1591690.
  • Ergintav, S., Vernant, P., Tan, O., Karabulut, H., Özarpacı, S., Floyd, M., Konca, .Ö. Çakır, Z., Acarel, D., Çakmak, R., Vasyura-Bathke, H., Doğan, U., Kurt, A.İ., Özdemir, A., Ayruk, E.T., Turğut, M., Özel, Ö. & Farımaz, İ. (2024). Unexpected far-field deformation of the 2023 Kahramanmaraş earthquakes revealed by space geodesy. Science, Vol 386, Issue 6719, pp. 328-335, DOI: 10.1126/science.ado4220.
  • Eyübagil, E.E., Şafak Yaşar, Ş., Çakanşimşek, E.B., Duman, H., Solak, H.İ., Özkan, A., Gezgin, C., Yavaşoğlu, H.H., Tiryakioglu, İ., Poyraz, F., Aktuğ, B., Yiğit, C.Ö., Özkaymak, Ç., & Özener, H. (2023). 6 Şubat 2023 Sofalaca-Şehitkamil Gaziantep (Mw:7.7) ve Ekinözü Kahramanmaraş (Mw:7.6) Depremlerinin GNSS Gözlemlerine Bağlı Öncül Sonuçları. Afyon Kocatepe University Journal of Science and Engineering 23(1), 160-176, DOI: 10.35414/akufemubid.1251601.
  • Goldberg, D.E., Taymaz, T., Reitman, N.G., Hatem, A.E., Yolsal-Çevikbilen, S., Barnhart, W.D., Irmak, T.S., Wald, D.J., Öcalan, T., Yeck, W.L., Özkan, B., Thompson-Jobe, J.A., Shelly, D.R., Thompson, E.M., DuRoss, C.B., Earle, P.S., Briggs, R.W., Benz, H., Erman, C., Doğan, A.H., & Altuntaş, C. (2023). Rapid Characterization of the February 2023 Kahramanmaraş, Türkiye, Earthquake Sequence. The Seismic Record, 3(2), 156–167. doi: 10.1785/0320230009.
  • Melgar, D., Taymaz, T., Ganas, A., Crowell, B., Öcalan, T., Kahraman, M., Tsironi, V., Yolsal-Çevikbilen, S., Valkaniotis, S., Irmak, T.S., Eken, T., Erman, C., Özkan, B., Dogan, A.H., & Altuntaş, C. (2023). Sub- and super-shear ruptures during the 2023 Mw 7.8 and Mw 7.6 earthquake doublet in SE Türkiye. Seismica, 2(3). https://doi.org/10.26443/seismica.v2i3.387.
  • Ren, Y., Lian, L., & Wang, J. (2021). Analysis of Seismic Deformation from Global Three-Decade GNSS Displacements: Implications for a Three-Dimensional Earth GNSS Velocity Field. Remote Sensing, 13(17), 3369. https://doi.org/10.3390/rs13173369.
  • Maciuk, K., & Szombara, S. (2018). Annual crustal deformation based on GNSS observations between 1996 and 2016. Arab J Geosci, 11, 667. https://doi.org/10.1007/s12517-018-4022-4.
  • Ozener, H., Dogru, A., & Acar, M. (2013). Determination of the displacements along the Tuzla fault (Aegean region-Turkey): Preliminary results from GPS and precise leveling techniques. Journal of Geodynamics, Vol. 67, 13-20. https://doi.org/10.1016/j.jog.2012.06.001.
  • Gu, G., & Wang, W. (2013). Advantages of GNSS in Monitoring Crustal Deformation for Detection of Precursors to Strong Earthquakes. Positioning, 2013, 4, 11-19. doi: 10.4236/pos.2013.41003.
  • Ruhl, C.J., Melgar, D., Grapenthin, R., & Allen, R.M. (2017). The value of real-time GNSS to earthquake early warning. Geophys. Res. Lett., 44, 8311–8319. doi:10.1002/2017GL074502.
  • Topçu, O., Kara, T., Bulut, A.A., Salgın, Ö., & Bakıcı, S. (2017). Küresel Seyrüsefer Uydu Sistemi (GNSS) Verileri İle Deprem Tahmini Yapmak. 4th International Earthquake Engineering and Seismology Conference, 11-13 October 2017, Anadolu University Eskişehir/Türkiye.
  • Hudnut, K., & Determan, D. (2015). USGS Earthquake Program GPS Use Case: Earthquake Early Warning. GPS Adjacent Band Workshop III, 12 March 2015, Aerospace Corp El Segundo, CA/USA.
  • Saraçoğlu, M. H., & Özkaya, A. (2023). Investigation of acceleration on non-structural building elements under earthquake effect. Turkish Journal of Engineering, 7(1), 56-63. https://doi.org/10.31127/tuje.1021866.
  • U.S. Geological Survey official website, https://www.usgs.gov/programs/earthquake-hazards/science-earthquakes (Access date: 9 July 2024).
  • U.S. Geological Survey official website, https://www.usgs.gov/programs/earthquake-hazards/earthquake-magnitude-energy-release-and-shaking-intensity#:~:text=Magnitude%20is%20the%20size%20of,surface%20material%2C%20and%20other%20factors. (Access date: 9 July 2024).
  • Bilim, F. (2019). The correlation of b-value in the earthquake frequency-magnitude distribution, heat flow and gravity data in the Sivas Basin, central eastern Turkey. Bitlis Eren University Journal of Science and Technology. Vol. 9, no. 1, pp. 11–15. doi: 10.17678/beuscitech.467269.
  • Gutenberg, B., & Richter, C.F. (1944). Frequency of Earthquakes in California, Bulletin of the Seismological Society of America. 34, 185-188.
  • Convertito, V., Tramelli, A., & Godano, C. (2024). Evaluation of the b maps on the faults of the major (M > 7) South California earthquakes. Earth and Space Science, 11, e2023EA002933. https://doi.org/10.1029/2023EA002933.
  • DEMP. (2023b). Disaster and Emergency Management Presidency, 06 Şubat 2023 Pazarcık-Elbistan (Kahramanmaraş) Mw: 7.7 – Mw: 7.6 Depremleri Raporu. 02 June 2023, Ankara/Türkiye. https://deprem.afad.gov.tr/assets/pdf/Kahramanmara%C5%9F%20Depremi%20%20Raporu_02.06.2023.pdf.
  • Bahadır, M., Ocak, F., & Şen, H. (2024). Determination of the development of settlements above earthquake susceptibility classes in Atakum district (Samsun/Türkiye). International Journal of Engineering and Geosciences, 9 (3), 390-405. https://doi.org/10.26833/ijeg.1465072.
  • Yakar, M., Yıldız, F., Uray, F., & Metin, A. (2010) Photogrammetric Measurement of The Meke Lake and Its Environment with Kite Photographs to Monitoring of Water Level to Climate Change. In ISPRS Commission V Mid-Term Symposium (pp. 613-616.
  • Solak, H. İ., Gezgin, C., Kilinç, A. S., Tiryakioğlu, İ., vd. (2025). Kahramanmaraş Deprem dizisinin Erzurum ve çevresinde meydana getirdiği Kosismik Deformasyonlar ve bölgenin Sismik Parametre Analizi. Geomatik, 10(3), 375-392. https://doi.org/10.29128/geomatik.1652700.
  • Çimen, Ö., & Günaydın, H. İ. (2024). Assessment of engineering geology and grouting applications in Yalnızardıç Dam Site (Antalya, Türkiye). Turkish Journal of Engineering, 8(1), 20-30, https://doi.org/10.31127/tuje.1221774.
  • Karabacak, V., Özkaymak, Ç., Sözbilir, H., Tatar, O., Aktuğ, B., Özdağ, Ö.C., Çakir, R., Aksoy, E., Koçbulut, F., Softa, M., Akgün, E., Demir, A., & Arslan, G. (2023). The 2023 Pazarcık (Kahramanmaraş, Türkiye) earthquake (Mw 7.7): implications for surface rupture dynamics along the East Anatolian Fault Zone. Journal of the Geological Society, Vol. 180, jgs2023-020. https://doi.org/10.1144/jgs2023-020.
  • Uysal, A., Sunkar, M., & Avci, V. (2025). Malatya ve Çevresinde Aletsel Dönem (1900-2024) Depremlerinin Mekânsal Analizleri. Geomatik, 10(2), 218-240. https://doi.org/10.29128/geomatik.1593289.
  • Gokceoglu, C. (2023). 6 February 2023 Kahramanmaraş – Türkiye Earthquakes: A General Overview, The International Archives of the Photogrammetry. Remote Sensing and Spatial Information Sciences, Volume XLVIII-M-1-2023, 39th International Symposium on Remote Sensing of Environment (ISRSE-39) “From Human Needs to SDGs”, 24–28 April 2023, Antalya/Türkiye. https://isprs-archives.copernicus.org/articles/XLVIII-M-1-2023/417/2023/isprs-archives-XLVIII-M-1-2023-417-2023.pdf.
  • Deringöl, A. H., & Güneyisi, E. M. (2023). Enhancing the seismic performance of high-rise buildings with lead rubber bearing isolators. Turkish Journal of Engineering, 7(2), 99-107, https://doi.org/10.31127/tuje.1026994.
  • Provost, F., Karabacak, V., Malet, J.P., Woerd, J.V., Meghraoui, M., Masson, F., Ferry, M., Michéa, D., & Pointal, E. (2024). High-resolution co-seismic fault offsets of the 2023 Türkiye earthquake ruptures using satellite imagery. Scientific Reports, 14, 6834. https://doi.org/10.1038/s41598-024-55009-5.
  • Eraslan, S., Hatipoğlu, İ. K., Ocak, F., Işık, F., vd. (2024). 6 Şubat 2023 Kahramanmaraş depremlerinde yıkılan binalar ile zemin ilişkisinin incelenmesi ve depremde yıkıma uğrama riski analizi. Geomatik, 9(2), 207-226. https://doi.org/10.29128/geomatik.1422639.
  • Boğaziçi University Kandilli Observatory Earthquake Inquiry System official website, http://www.koeri.boun.edu.tr/sismo/zeqdb/ (Access date: 18.08.2023).
  • Boğaziçi University Kandilli Observatory Magnitude/Intensity Comparison official website, http://www.koeri.boun.edu.tr/sismo/bilgi/xMercalli.htm (Access date: 18.08.2023).
  • Zumberge, J.F., Heflin, M.B., Jefferson, D.C., Watkins, M.M., & Webb, F.H. (1997). Precise point positioning for the efficient and robust analysis of GPS data from large networks. Journal of Geophysical Research, Vol:102, No:B3, 5005-5017. https://doi.org/10.1029/96JB03860.
  • Yurdakul, Ö. (2023). Performance investigation of GLONASS in the static PPP technique with independent short measurement times using online processing services. Survey Review, 55:393, 567-577. DOI: 10.1080/00396265.2023.2192850.
  • Ogutcu, S. (2020). Assessing the contribution of Galileo to GPS+GLONASS PPP: Towards full operational capability. Measurement, Volume 151, 107143, ISSN 0263-2241. https://doi.org/10.1016/j.measurement.2019.107143.
  • Choy, S., Zhang, S., Lahaye, F., & Héroux, P. (2013). A comparison between GPS-only and combined GPS+GLONASS Precise Point Positioning. Journal of Spatial Science, 58:2, 169-190. DOI: 10.1080/14498596.2013.808164.
  • Kouba, J., & Héroux, P. (2001). Precise Point Positioning Using IGS Orbit and Clock Products. GPS Solutions, Vol: 5, No: 2, 12-28. https://link.springer.com/article/10.1007/PL00012883.
  • Ogutcu, S. (2019). The contribution of Multi-GNSS Experiment (MGEX) to precise point positioning over Turkey: Consideration of observation time and satellite geometry. El-Cezerî Journal of Science and Engineering, 6(3), 642-658. DOI:10.31202/ecjse.563802.
  • Li, P., Zhang, X., Ren, X., Zuo, X., & Pan, Y. (2016). Generating GPS satellite fractional cycle bias for ambiguity-fixed precise point positioning. GPS Solut, 20, 771-782. https://doi.org/10.1007/s10291-015-0483-z.
  • Zhao, X., Wang, S., Liu, C., Ou, J., & Yu, X. (2017). Assessing the performance of multi-GNSS precise point positioning in Asia-Pacific region. Survey Review, 49:354, 186-196. DOI:10.1080/00396265.2016.1151576.
  • Zhou, F., Dong, D., Li, P., Li, X., & Schuh, H. (2019). Influence of stochastic modeling for inter-system biases on multi-GNSS undifferenced and uncombined precise point positioning. GPS Solut, 23:59. https://doi.org/10.1007/s10291-019-0852-0.
  • Doucet, K., Herwig, M., Kipka, A., Kreikenbohm, P., Landau, H., Leandro, R., Moessmer, M., & Pagels, C. (2012). Introducing Ambiguity Resolution in Web-hosted Global Multi-GNSS Precise Point Positioning with Trimble RTX-PP. Proceedings of the 25th International Technical Meeting of the Satellite Division of The Institute of Navigation (ION GNSS 2012). September 2012, 1115-1125 Nashville, TN/USA. https://www.ion.org/publications/abstract.cfm?articleID=10324.
  • Trimble CenterPoint RTX Post-Processing service official website, https://trimblertx.com/UploadForm.aspx (Access date: 25.08.2023).
  • Trimble CenterPoint RTX Post-Processing service official website, http://trl.trimble.com/docushare/dsweb/Get/Document-792295/TAP201606-0017-FAQ%20-%20Frequently%20Asked%20Questions%20-%20Trimble%20CenterPoint%20RTX%20Post-Processing.pdf (Access date: 25.08.2023).
  • Atiz, O.F., Shakor, A.Q., Ogutcu, S., & Alcay, S. (2021). Performance investigation of Trimble RTX correction service with multi-GNSS constellation. Survey Review, 55:388, 44-54. DOI: 10.1080/00396265.2021.1999128.
  • Yurdakul, Ö., & Kalaycı, İ. (2022). The effect of GLONASS on position accuracy in CORS-TR measurements at different baseline distances. International Journal of Engineering and Geosciences, 7(3), 229-246. https://doi.org/10.26833/ijeg.975204.
  • Cankurt, İ., Salgın, Ö., Karan, Z.S., & İlbey, A. (2019). Tusaga-Aktif (CORS-TR) Sistemi İşletilmesi ve Güncelleştirilmesi. Union of Chambers of Turkish Engineer and Architect 6th Geographic Information Systems Congress, 23-25 October 2019, Ankara/Türkiye. https://obs.hkmo.org.tr/show-media/resimler/ekler/976fa0c289261ea_ek.pdf.
  • CORS-TR official website, https://www.tusaga-aktif.gov.tr/ (Access date: 29.08.2023).
  • Geng, J., & Shi, C. (2017). Rapid initialization of real-time PPP by resolving undifferenced GPS and GLONASS ambiguities simultaneously. Journal of Geodesy, Vol: 91, 361–374. https://link.springer.com/article/10.1007/s00190-016-0969-7.
  • Tiryakioğlu, İ., Umutlu, A.İ., & Poyraz, F. (2019). Jeodezik Yöntemlerle Deprem Tekrarlama Periyotlarının Belirlenmesi: Alaşehir Bölgesi Örneği. Afyon Kocatepe University Journal of Science and Engineering, 19(3), 762-768. DOI: 10.35414/akufemubid.605885.
  • Altuntas, C., & Tunalioglu, N. (2022). Retrieving the SNR metrics with different antenna configurations for GNSS-IR. Turkish Journal of Engineering, 6(1), 87-94. https://doi.org/10.31127/tuje.870620.
  • Tiryakioğlu, İ., Aktuğ, B., Yiğit, C.Ö., Yavaşoğlu, H.H., Sözbilir, H., Özkaymak, Ç., Poyraz, F., Taneli, E., Bulut, F., Doğru, A., & Özener, H. (2018). Slip distribution and source parameters of the 20 July 2017 Bodrum-Kos earthquake (Mw6.6) from GPS observations. Geodinamica Acta, 30:1, 1-14. DOI: 10.1080/09853111.2017.1408264.
  • Bilgen, B., İnal, C., & Bülbül, S. (2016). GNSS Tekniği İle Yatay Yöndeki Deformasyonların Araştırılması. Chamber of Mapping and Cadastre Engineers - Engineering Measurements STB Commission 8th National Engineering Measurements Symposium 19-21 Oct 2016 Yıldız Teknik University Istanbul/Türkiye. http://acikerisimarsiv.selcuk.edu.tr:8080/xmlui/handle/123456789/7699.
  • Wang, B., Shi, W., & Miao, Z. (2015). Confidence Analysis of Standard Deviational Ellipse and Its Extension into HigherDimensional Euclidean Space. PLoS ONE, 10(3), e0118537. https://doi.org/10.1371/journal.pone.0118537.
  • Carena, S., Friedrich, A.M., Verdecchia, A., Kahle, B., Rieger, S., & Kubler, S. (2023). Identification of source faults of large earthquakes in the Turkey-Syria border region between 1000 CE and the present, and their relevance for the 2023 Mw 7.8 Pazarcık earthquake. Tectonics, 42, e2023TC007890. https://doi.org/10.1029/2023TC007890.
  • Ertuğrul, Ö. L., & Zahin, B. B. (2023). A parametric study on the dynamic lateral earth forces on retaining walls according to European and Turkish Building Earthquake Codes. Turkish Journal of Engineering, 7(3), 196-207. https://doi.org/10.31127/tuje.1100015.
  • Feizizadeh, B., & Omarzadeh, D. (2025). A GIS based spatiotemporal modelling approach for cycling risk mapping using crowd-sourced sensor data. Annals of GIS. 31:2, 333-351, DOI: 10.1080/19475683.2025.2453550.
  • Abdulwahid, W.M., Feizizadeh, B., Blaschke, T., & Karimzadeh, S. (2025). A Geoinformation Approach for Spatiotemporal Mapping of Climate Change Environmental Impacts on Sustainable Food Production in Iraq. Int J Environ Res. 19, 175. https://doi.org/10.1007/s41742-025-00821-8.
  • Hasanzadeh, M., Kamran, K.V., Feizizadeh, B., & Mollabashi, S.H. (2024). GIS based spatial decision-making approach for solar energy site selection, Ardabil, Iran. International Journal of Engineering and Geosciences. 9 (1), 115-130, https://doi.org/10.26833/ijeg.1341451.
  • Azari, M., Paydar, A., Feizizadeh, B., & Hasanlou, V.G. (2023). A GIS-based approach for accident hotspots mapping in mountain roads using seasonal and geometric indicators. Appl Geomat. 15, 127–139, https://doi.org/10.1007/s12518-023-00490-2.

Analysis of Surface Displacements Occurring in the February 6, 2023 Türkiye Earthquake Sequence with GNSS Observations Based on CORS Stations and the Static PPP Technique

Year 2026, Volume: 11 Issue: 2, 510 - 528, 16.12.2025
https://doi.org/10.26833/ijeg.1765899

Abstract

Two major earthquakes with moment magnitudes (Mw) of 7.7 and 7.6 occurred in the East Anatolian Fault Zone (EAFZ) in Türkiye on February 6, 2023, followed by another earthquake of Mw = 6.4 on February 20, 2023. In addition to the damage to buildings and infrastructure during the earthquake, surface ruptures and ground movements were also observed. The use of Global Navigation Satellite System (GNSS) observations have been implemented in seismic and geodynamic studies since the 1980s. In particular, GNSS observations based on Continuously Operating Reference Stations (CORS) are used to determine pre- and post-earthquake surface movements. A review of the literature revealed that no study has been conducted to observe the surface displacements over a 6-month period using the static PPP technique based on CORS stations for the earthquakes that occurred in Türkiye in February 2023. In this study, 18 of the CORS stations covering the 11 provinces most affected by the earthquakes were selected to detect surface movements and displacements utilizing GNSS data derived from CORS stations. The 24-hour Receiver Independent Exchange (RINEX) data of these stations were obtained. Pre-earthquake and post-earthquake data of the stations were processed separately. Processes were carried out online using the Trimble CenterPoint RTX Post-Processing software with the static precise point positioning (PPP) technique. These stations were then monitored for 6 months after the earthquake. The effect of the ongoing aftershocks was also revealed by comparing the monthly coordinate differences. According to the 6-month results, it was observed that the maximum displacement was 250.07 cm in the x direction, -395.20 cm in the y direction and 30.63 cm in the z direction at Ekinözü (EKZ1) station, and the 3-dimensional displacement was 468.67 cm. The minimum 3-dimensional displacement was observed to be 0.10 cm at the Adana (ADN2) station. This applied method distinguishes this study from other studies and makes it original in its field. This study simultaneously contributed to earthquake researchers and scientific literature

Ethical Statement

The author declares no conflicts of interest.

Thanks

The author greatly appreciates the General Directorate of Land Registry and Cadastre for CORS-TR data and Trimble Inc. for Trimble CenterPoint RTX Post-Processing Service. The author also thanks the editors and the anonymous reviewers for their valuable comments that significantly improved the quality of the manuscript.

References

  • Koeri. (2023). Boğaziçi University Kandilli Observatory and Earthquake Research Institute. 06 Şubat 2023 Sofalaca-Şehitkamil-Gaziantep; Ekinözü-Kahramanmaraş ve 20 Şubat 2023 Hatay Depremleri Ön Değerlendirme Raporu. Istanbul/Türkiye. http://www.koeri.boun.edu.tr/sismo/2/wp-content/uploads/2023/02/022023_Kahramanmaras-Gaziantep_Hatay_-BDTIM_On_degerlendirme_raporu.pdf.
  • Terra. (2023). Türkiye Earthquakes Recovery And Reconstruction Assessment, Strategy and Budget Office (SBO) of the Presidency of the Republic of Türkiye, Ankara/Türkiye. https://www.sbb.gov.tr/wp-content/uploads/2023/03/Turkiye-Recovery-and-Reconstruction-Assessment.pdf.
  • Demp. (2023a). Disaster and Emergency Management Presidency, 06 Şubat 2023 Kahramanmaraş (Pazarcık ve Elbistan) Depremleri Saha Çalışmaları Ön Değerlendirme Raporu. 24 February 2023, Ankara/Türkiye. https://deprem.afad.gov.tr/assets/pdf/Arazi_Onrapor_28022023_surum1_revize.pdf.
  • Aktug, B., Ozener, H., Doğru, A., Sabuncu, A., Turgut, B., Halicioglu, K., Yilmaz, O., & Havazli, E. (2016). Slip Rates and Seismic Potential on the East Anatolian Fault System Using an Improved GPS Velocity Field. Journal of Geodynamics 94-95 1-12. https://doi.org/10.1016/j.jog.2016.01.001.
  • Ozener, H., Arpat, E., Ergintav, S., Dogru, A., Cakmak, R., Turgut, B., & Dogan, U. (2010). Kinematics of the Eastern Part of the North Anatolian Fault Zone. Journal of Geodynamics, 49 (3–4), 141–150. https://doi.org/10.1016/j.jog.2010.01.003.
  • Reilinger, R., McClusky, S., Vernant, P., Lawrence, S., Ergintav, S., Cakmak, R., Ozener, H., Kadirov, F., Guliev, I., Stepanyan, R., Nadariya, M., Hahubia, G., Mahmoud, S., Sakr, K., ArRajehi, A., Paradissis, D., Al-Aydrus, A., Prilepin, M., Guseva, T., Evren, E., Dmitrotsa, A., Filikov, S.V., Gomez, F., Al-Ghazzi, R., & Karam, G. (2006). GPS constraints on continental deformation in the Africa–Arabia–Eurasia continental collision zone and implications for the dynamics of plate interactions. Journal of Geophysical Research, Vol: 111, No: B05411. doi:10.1029/2005JB004051.
  • McClusky, S., Balassanian, S., Barka, A., Demir, C., Ergintav, S., Georgiev, I., Gürkan, O., Hamburger, M., Hurst, K., Kahle, H., Kastens, K., Kekelidze, G., King, R.V., Kotzev, V., Lenk, O., Mahmoud, S., Mishin, A., Nadariya, M., Ouzounis, A., Paradisssis, D., Peter, Y., Prilepin, M., Reilinger, R., Sanli, I., Seeger, H., Tealeb, A., Toksöz, M.N., & Veiss, G. (2000). Global Positioning System constraints on plate kinematics and dynamics in the eastern Mediterranean and Caucasus. Journal of Geophysical Research, Vol: 105, No: B3 ,5695-5719. https://doi.org/10.1029/1999JB900351.
  • Gündüz, A.M. (2019). TUSAGA-Aktif Noktalarının Deformasyon Belirlemede Kullanılabilirliği. Ph.D Thesis Graduate Education Institute Konya Technical University, Konya/Türkiye. https://tez.yok.gov.tr/UlusalTezMerkezi/tezSorguSonucYeni.jsp.
  • Ansari, K., Corumluoglu, O., & Sharma, S.K. (2017). Numerical Simulation of Crustal Strain in Turkey from Continuous GNSS Measurements in the Interval 2009–2017. Journal of Geodetic Science. Vol: 7 Issue 1 113-129. https://doi.org/10.1515/jogs-2017-0013.
  • Yildirim, O., Yaprak, S., & Inal, C. (2014). Determination of 2011 Van/Turkey earthquake (M=7.2) effects from measurements of CORS-TR network. Geomatics, Natural Hazards and Risk, 5(2), 132-144. http://dx.doi.org/10.1080/19475705.2013.789453.
  • Özbey, V., Mutlu, B., Erol, S., Selbesoğlu, M. O., Yavasoğlu, H. H., & Alkan, R. M. (2025). Performance analysis of multi-GNSS PPP for accurate ship-borne positioning in Antarctic region. International Journal of Engineering and Geosciences, 10(3), 428-439, https://doi.org/10.26833/ijeg.1574964.
  • Bezcioğlu, M. (2024). Farklı açık kaynak kodlu tek-frekanslı hassas nokta konum belirleme (SF-PPP) yazılımlarının statik moddaki konum belirleme yeteneklerinin değerlendirilmesi. Geomatik, 9(3), 313-322. https://doi.org/10.29128/geomatik.1477892.
  • Bezcioğlu, M., Ucar, T., & Yiğit, C. Ö. (2023). Investigation of the capability of multi-GNSS PPP-AR method in detecting permanent displacements. International Journal of Engineering and Geosciences, 8(3), 251-261. https://doi.org/10.26833/ijeg.1140959.
  • Gong, Y,. Liu, Z., Yu, S., Chan, P.W., & Hon, K.K. (2024). Improving GNSS PPP performance in the South China under different weather conditions by using the Weather Research and Forecasting (WRF) model‐derived wet delay corrections. Earth and Space Science, 11, e2023EA003136. https://doi.org/10.1029/2023EA003136.
  • Mosad, R., El-kutb, A., El-Hattab, A., Rabah, M., & El-Koshy, A. (2021). Using PPP-GNSS Technique for Detecting Surface Motion due to Earthquake Shaking based on time-domain analysis. Port Said Engineering Research Journal, Vol: 25, No: 1, 32 -40. doi: 10.21608/PSERJ.2020.35670.1052.
  • Yigit, C.O., & Gurlek, E. (2017). Experimental testing of high-rate GNSS precise point positioning (PPP) mehod for detecting dynamic vertical displacement response of engineering structures. Geomatics, Natural Hazards and Risk, 8:2, 893-904. DOI: 10.1080/19475705.2017.1284160.
  • Li, X., Ge, M., Zhang, X., Zhang, Y., Guo, B., Wang, R., Klotz, J., & Wickert. J. (2013). Real-time high-rate co-seismic displacement from ambiguity-fixed precise point positioning: Application to earthquake early warning. Geophysical Research Letters, Vol: 40, 295–300. doi:10.1002/GRL.50138.
  • Gokceoglu, C., Kocaman, S., Nefeslioglu, H.A., & Ok, A.O. (2021). Use of multisensor and multitemporal geosatial datasets to extract the foundation characteristics of a large building: a case study. Bulletin of Engineering Geology and the Environment, 80, 3251–3269. https://doi.org/10.1007/s10064-021-02116-6.
  • Kaloop, M.R., Yigit, C.O., Dindar, A.A., Elsharawy, M., & Hu, J.W. (2020). Evaluation of the high-rate GNSS-PPP metho for vertical structural motion. Survey Review, 52:371, 159-171. DOI: 10.1080/00396265.2018.1534362.
  • Yigit, C.O. (2016). Experimental assessment of post-processed kinematic Precise Point Positioning method for structural health monitoring. Geomatics, Natural Hazards and Risk, 7:1, 360-383. DOI: 10.1080/19475705.2014.917724.
  • Şimşek, M., Taşkıran, M., & Doğan, U. (2025). Yinelemeli sinir ağlarıyla GNSS verilerinde birleştirilmiş ve bireysel model karşılaştırılması. Geomatik, 10(1), 66-75. https://doi.org/10.29128/geomatik.1530761.
  • Yakar, M., Yilmaz, H. M., & Yurt, K. (2010). The effect of grid resolution in defining terrain surface. Experimental Techniques, 34(6), 23-29.
  • Yakar, M. (2011). Using close range photogrammetry to measure the position of inaccessible geological features. Experimental Techniques, 35(1), 54-59.
  • Şaşa, S., Gümüş, K., & Gümüş, M. G. (2025). Türkiye’de 6 Şubat 2023’te meydana gelen depremlerin farklı gün ve saatlerdeki konumsal etkilerinin internet tabanlı GNSS değerlendirme servisleri ile istatistiksel analizi. Niğde Ömer Halisdemir Üniversitesi Mühendislik Bilimleri Dergisi, 14(1), 325-339. htps://doi.org/10.28948/ngumuh.1591690.
  • Ergintav, S., Vernant, P., Tan, O., Karabulut, H., Özarpacı, S., Floyd, M., Konca, .Ö. Çakır, Z., Acarel, D., Çakmak, R., Vasyura-Bathke, H., Doğan, U., Kurt, A.İ., Özdemir, A., Ayruk, E.T., Turğut, M., Özel, Ö. & Farımaz, İ. (2024). Unexpected far-field deformation of the 2023 Kahramanmaraş earthquakes revealed by space geodesy. Science, Vol 386, Issue 6719, pp. 328-335, DOI: 10.1126/science.ado4220.
  • Eyübagil, E.E., Şafak Yaşar, Ş., Çakanşimşek, E.B., Duman, H., Solak, H.İ., Özkan, A., Gezgin, C., Yavaşoğlu, H.H., Tiryakioglu, İ., Poyraz, F., Aktuğ, B., Yiğit, C.Ö., Özkaymak, Ç., & Özener, H. (2023). 6 Şubat 2023 Sofalaca-Şehitkamil Gaziantep (Mw:7.7) ve Ekinözü Kahramanmaraş (Mw:7.6) Depremlerinin GNSS Gözlemlerine Bağlı Öncül Sonuçları. Afyon Kocatepe University Journal of Science and Engineering 23(1), 160-176, DOI: 10.35414/akufemubid.1251601.
  • Goldberg, D.E., Taymaz, T., Reitman, N.G., Hatem, A.E., Yolsal-Çevikbilen, S., Barnhart, W.D., Irmak, T.S., Wald, D.J., Öcalan, T., Yeck, W.L., Özkan, B., Thompson-Jobe, J.A., Shelly, D.R., Thompson, E.M., DuRoss, C.B., Earle, P.S., Briggs, R.W., Benz, H., Erman, C., Doğan, A.H., & Altuntaş, C. (2023). Rapid Characterization of the February 2023 Kahramanmaraş, Türkiye, Earthquake Sequence. The Seismic Record, 3(2), 156–167. doi: 10.1785/0320230009.
  • Melgar, D., Taymaz, T., Ganas, A., Crowell, B., Öcalan, T., Kahraman, M., Tsironi, V., Yolsal-Çevikbilen, S., Valkaniotis, S., Irmak, T.S., Eken, T., Erman, C., Özkan, B., Dogan, A.H., & Altuntaş, C. (2023). Sub- and super-shear ruptures during the 2023 Mw 7.8 and Mw 7.6 earthquake doublet in SE Türkiye. Seismica, 2(3). https://doi.org/10.26443/seismica.v2i3.387.
  • Ren, Y., Lian, L., & Wang, J. (2021). Analysis of Seismic Deformation from Global Three-Decade GNSS Displacements: Implications for a Three-Dimensional Earth GNSS Velocity Field. Remote Sensing, 13(17), 3369. https://doi.org/10.3390/rs13173369.
  • Maciuk, K., & Szombara, S. (2018). Annual crustal deformation based on GNSS observations between 1996 and 2016. Arab J Geosci, 11, 667. https://doi.org/10.1007/s12517-018-4022-4.
  • Ozener, H., Dogru, A., & Acar, M. (2013). Determination of the displacements along the Tuzla fault (Aegean region-Turkey): Preliminary results from GPS and precise leveling techniques. Journal of Geodynamics, Vol. 67, 13-20. https://doi.org/10.1016/j.jog.2012.06.001.
  • Gu, G., & Wang, W. (2013). Advantages of GNSS in Monitoring Crustal Deformation for Detection of Precursors to Strong Earthquakes. Positioning, 2013, 4, 11-19. doi: 10.4236/pos.2013.41003.
  • Ruhl, C.J., Melgar, D., Grapenthin, R., & Allen, R.M. (2017). The value of real-time GNSS to earthquake early warning. Geophys. Res. Lett., 44, 8311–8319. doi:10.1002/2017GL074502.
  • Topçu, O., Kara, T., Bulut, A.A., Salgın, Ö., & Bakıcı, S. (2017). Küresel Seyrüsefer Uydu Sistemi (GNSS) Verileri İle Deprem Tahmini Yapmak. 4th International Earthquake Engineering and Seismology Conference, 11-13 October 2017, Anadolu University Eskişehir/Türkiye.
  • Hudnut, K., & Determan, D. (2015). USGS Earthquake Program GPS Use Case: Earthquake Early Warning. GPS Adjacent Band Workshop III, 12 March 2015, Aerospace Corp El Segundo, CA/USA.
  • Saraçoğlu, M. H., & Özkaya, A. (2023). Investigation of acceleration on non-structural building elements under earthquake effect. Turkish Journal of Engineering, 7(1), 56-63. https://doi.org/10.31127/tuje.1021866.
  • U.S. Geological Survey official website, https://www.usgs.gov/programs/earthquake-hazards/science-earthquakes (Access date: 9 July 2024).
  • U.S. Geological Survey official website, https://www.usgs.gov/programs/earthquake-hazards/earthquake-magnitude-energy-release-and-shaking-intensity#:~:text=Magnitude%20is%20the%20size%20of,surface%20material%2C%20and%20other%20factors. (Access date: 9 July 2024).
  • Bilim, F. (2019). The correlation of b-value in the earthquake frequency-magnitude distribution, heat flow and gravity data in the Sivas Basin, central eastern Turkey. Bitlis Eren University Journal of Science and Technology. Vol. 9, no. 1, pp. 11–15. doi: 10.17678/beuscitech.467269.
  • Gutenberg, B., & Richter, C.F. (1944). Frequency of Earthquakes in California, Bulletin of the Seismological Society of America. 34, 185-188.
  • Convertito, V., Tramelli, A., & Godano, C. (2024). Evaluation of the b maps on the faults of the major (M > 7) South California earthquakes. Earth and Space Science, 11, e2023EA002933. https://doi.org/10.1029/2023EA002933.
  • DEMP. (2023b). Disaster and Emergency Management Presidency, 06 Şubat 2023 Pazarcık-Elbistan (Kahramanmaraş) Mw: 7.7 – Mw: 7.6 Depremleri Raporu. 02 June 2023, Ankara/Türkiye. https://deprem.afad.gov.tr/assets/pdf/Kahramanmara%C5%9F%20Depremi%20%20Raporu_02.06.2023.pdf.
  • Bahadır, M., Ocak, F., & Şen, H. (2024). Determination of the development of settlements above earthquake susceptibility classes in Atakum district (Samsun/Türkiye). International Journal of Engineering and Geosciences, 9 (3), 390-405. https://doi.org/10.26833/ijeg.1465072.
  • Yakar, M., Yıldız, F., Uray, F., & Metin, A. (2010) Photogrammetric Measurement of The Meke Lake and Its Environment with Kite Photographs to Monitoring of Water Level to Climate Change. In ISPRS Commission V Mid-Term Symposium (pp. 613-616.
  • Solak, H. İ., Gezgin, C., Kilinç, A. S., Tiryakioğlu, İ., vd. (2025). Kahramanmaraş Deprem dizisinin Erzurum ve çevresinde meydana getirdiği Kosismik Deformasyonlar ve bölgenin Sismik Parametre Analizi. Geomatik, 10(3), 375-392. https://doi.org/10.29128/geomatik.1652700.
  • Çimen, Ö., & Günaydın, H. İ. (2024). Assessment of engineering geology and grouting applications in Yalnızardıç Dam Site (Antalya, Türkiye). Turkish Journal of Engineering, 8(1), 20-30, https://doi.org/10.31127/tuje.1221774.
  • Karabacak, V., Özkaymak, Ç., Sözbilir, H., Tatar, O., Aktuğ, B., Özdağ, Ö.C., Çakir, R., Aksoy, E., Koçbulut, F., Softa, M., Akgün, E., Demir, A., & Arslan, G. (2023). The 2023 Pazarcık (Kahramanmaraş, Türkiye) earthquake (Mw 7.7): implications for surface rupture dynamics along the East Anatolian Fault Zone. Journal of the Geological Society, Vol. 180, jgs2023-020. https://doi.org/10.1144/jgs2023-020.
  • Uysal, A., Sunkar, M., & Avci, V. (2025). Malatya ve Çevresinde Aletsel Dönem (1900-2024) Depremlerinin Mekânsal Analizleri. Geomatik, 10(2), 218-240. https://doi.org/10.29128/geomatik.1593289.
  • Gokceoglu, C. (2023). 6 February 2023 Kahramanmaraş – Türkiye Earthquakes: A General Overview, The International Archives of the Photogrammetry. Remote Sensing and Spatial Information Sciences, Volume XLVIII-M-1-2023, 39th International Symposium on Remote Sensing of Environment (ISRSE-39) “From Human Needs to SDGs”, 24–28 April 2023, Antalya/Türkiye. https://isprs-archives.copernicus.org/articles/XLVIII-M-1-2023/417/2023/isprs-archives-XLVIII-M-1-2023-417-2023.pdf.
  • Deringöl, A. H., & Güneyisi, E. M. (2023). Enhancing the seismic performance of high-rise buildings with lead rubber bearing isolators. Turkish Journal of Engineering, 7(2), 99-107, https://doi.org/10.31127/tuje.1026994.
  • Provost, F., Karabacak, V., Malet, J.P., Woerd, J.V., Meghraoui, M., Masson, F., Ferry, M., Michéa, D., & Pointal, E. (2024). High-resolution co-seismic fault offsets of the 2023 Türkiye earthquake ruptures using satellite imagery. Scientific Reports, 14, 6834. https://doi.org/10.1038/s41598-024-55009-5.
  • Eraslan, S., Hatipoğlu, İ. K., Ocak, F., Işık, F., vd. (2024). 6 Şubat 2023 Kahramanmaraş depremlerinde yıkılan binalar ile zemin ilişkisinin incelenmesi ve depremde yıkıma uğrama riski analizi. Geomatik, 9(2), 207-226. https://doi.org/10.29128/geomatik.1422639.
  • Boğaziçi University Kandilli Observatory Earthquake Inquiry System official website, http://www.koeri.boun.edu.tr/sismo/zeqdb/ (Access date: 18.08.2023).
  • Boğaziçi University Kandilli Observatory Magnitude/Intensity Comparison official website, http://www.koeri.boun.edu.tr/sismo/bilgi/xMercalli.htm (Access date: 18.08.2023).
  • Zumberge, J.F., Heflin, M.B., Jefferson, D.C., Watkins, M.M., & Webb, F.H. (1997). Precise point positioning for the efficient and robust analysis of GPS data from large networks. Journal of Geophysical Research, Vol:102, No:B3, 5005-5017. https://doi.org/10.1029/96JB03860.
  • Yurdakul, Ö. (2023). Performance investigation of GLONASS in the static PPP technique with independent short measurement times using online processing services. Survey Review, 55:393, 567-577. DOI: 10.1080/00396265.2023.2192850.
  • Ogutcu, S. (2020). Assessing the contribution of Galileo to GPS+GLONASS PPP: Towards full operational capability. Measurement, Volume 151, 107143, ISSN 0263-2241. https://doi.org/10.1016/j.measurement.2019.107143.
  • Choy, S., Zhang, S., Lahaye, F., & Héroux, P. (2013). A comparison between GPS-only and combined GPS+GLONASS Precise Point Positioning. Journal of Spatial Science, 58:2, 169-190. DOI: 10.1080/14498596.2013.808164.
  • Kouba, J., & Héroux, P. (2001). Precise Point Positioning Using IGS Orbit and Clock Products. GPS Solutions, Vol: 5, No: 2, 12-28. https://link.springer.com/article/10.1007/PL00012883.
  • Ogutcu, S. (2019). The contribution of Multi-GNSS Experiment (MGEX) to precise point positioning over Turkey: Consideration of observation time and satellite geometry. El-Cezerî Journal of Science and Engineering, 6(3), 642-658. DOI:10.31202/ecjse.563802.
  • Li, P., Zhang, X., Ren, X., Zuo, X., & Pan, Y. (2016). Generating GPS satellite fractional cycle bias for ambiguity-fixed precise point positioning. GPS Solut, 20, 771-782. https://doi.org/10.1007/s10291-015-0483-z.
  • Zhao, X., Wang, S., Liu, C., Ou, J., & Yu, X. (2017). Assessing the performance of multi-GNSS precise point positioning in Asia-Pacific region. Survey Review, 49:354, 186-196. DOI:10.1080/00396265.2016.1151576.
  • Zhou, F., Dong, D., Li, P., Li, X., & Schuh, H. (2019). Influence of stochastic modeling for inter-system biases on multi-GNSS undifferenced and uncombined precise point positioning. GPS Solut, 23:59. https://doi.org/10.1007/s10291-019-0852-0.
  • Doucet, K., Herwig, M., Kipka, A., Kreikenbohm, P., Landau, H., Leandro, R., Moessmer, M., & Pagels, C. (2012). Introducing Ambiguity Resolution in Web-hosted Global Multi-GNSS Precise Point Positioning with Trimble RTX-PP. Proceedings of the 25th International Technical Meeting of the Satellite Division of The Institute of Navigation (ION GNSS 2012). September 2012, 1115-1125 Nashville, TN/USA. https://www.ion.org/publications/abstract.cfm?articleID=10324.
  • Trimble CenterPoint RTX Post-Processing service official website, https://trimblertx.com/UploadForm.aspx (Access date: 25.08.2023).
  • Trimble CenterPoint RTX Post-Processing service official website, http://trl.trimble.com/docushare/dsweb/Get/Document-792295/TAP201606-0017-FAQ%20-%20Frequently%20Asked%20Questions%20-%20Trimble%20CenterPoint%20RTX%20Post-Processing.pdf (Access date: 25.08.2023).
  • Atiz, O.F., Shakor, A.Q., Ogutcu, S., & Alcay, S. (2021). Performance investigation of Trimble RTX correction service with multi-GNSS constellation. Survey Review, 55:388, 44-54. DOI: 10.1080/00396265.2021.1999128.
  • Yurdakul, Ö., & Kalaycı, İ. (2022). The effect of GLONASS on position accuracy in CORS-TR measurements at different baseline distances. International Journal of Engineering and Geosciences, 7(3), 229-246. https://doi.org/10.26833/ijeg.975204.
  • Cankurt, İ., Salgın, Ö., Karan, Z.S., & İlbey, A. (2019). Tusaga-Aktif (CORS-TR) Sistemi İşletilmesi ve Güncelleştirilmesi. Union of Chambers of Turkish Engineer and Architect 6th Geographic Information Systems Congress, 23-25 October 2019, Ankara/Türkiye. https://obs.hkmo.org.tr/show-media/resimler/ekler/976fa0c289261ea_ek.pdf.
  • CORS-TR official website, https://www.tusaga-aktif.gov.tr/ (Access date: 29.08.2023).
  • Geng, J., & Shi, C. (2017). Rapid initialization of real-time PPP by resolving undifferenced GPS and GLONASS ambiguities simultaneously. Journal of Geodesy, Vol: 91, 361–374. https://link.springer.com/article/10.1007/s00190-016-0969-7.
  • Tiryakioğlu, İ., Umutlu, A.İ., & Poyraz, F. (2019). Jeodezik Yöntemlerle Deprem Tekrarlama Periyotlarının Belirlenmesi: Alaşehir Bölgesi Örneği. Afyon Kocatepe University Journal of Science and Engineering, 19(3), 762-768. DOI: 10.35414/akufemubid.605885.
  • Altuntas, C., & Tunalioglu, N. (2022). Retrieving the SNR metrics with different antenna configurations for GNSS-IR. Turkish Journal of Engineering, 6(1), 87-94. https://doi.org/10.31127/tuje.870620.
  • Tiryakioğlu, İ., Aktuğ, B., Yiğit, C.Ö., Yavaşoğlu, H.H., Sözbilir, H., Özkaymak, Ç., Poyraz, F., Taneli, E., Bulut, F., Doğru, A., & Özener, H. (2018). Slip distribution and source parameters of the 20 July 2017 Bodrum-Kos earthquake (Mw6.6) from GPS observations. Geodinamica Acta, 30:1, 1-14. DOI: 10.1080/09853111.2017.1408264.
  • Bilgen, B., İnal, C., & Bülbül, S. (2016). GNSS Tekniği İle Yatay Yöndeki Deformasyonların Araştırılması. Chamber of Mapping and Cadastre Engineers - Engineering Measurements STB Commission 8th National Engineering Measurements Symposium 19-21 Oct 2016 Yıldız Teknik University Istanbul/Türkiye. http://acikerisimarsiv.selcuk.edu.tr:8080/xmlui/handle/123456789/7699.
  • Wang, B., Shi, W., & Miao, Z. (2015). Confidence Analysis of Standard Deviational Ellipse and Its Extension into HigherDimensional Euclidean Space. PLoS ONE, 10(3), e0118537. https://doi.org/10.1371/journal.pone.0118537.
  • Carena, S., Friedrich, A.M., Verdecchia, A., Kahle, B., Rieger, S., & Kubler, S. (2023). Identification of source faults of large earthquakes in the Turkey-Syria border region between 1000 CE and the present, and their relevance for the 2023 Mw 7.8 Pazarcık earthquake. Tectonics, 42, e2023TC007890. https://doi.org/10.1029/2023TC007890.
  • Ertuğrul, Ö. L., & Zahin, B. B. (2023). A parametric study on the dynamic lateral earth forces on retaining walls according to European and Turkish Building Earthquake Codes. Turkish Journal of Engineering, 7(3), 196-207. https://doi.org/10.31127/tuje.1100015.
  • Feizizadeh, B., & Omarzadeh, D. (2025). A GIS based spatiotemporal modelling approach for cycling risk mapping using crowd-sourced sensor data. Annals of GIS. 31:2, 333-351, DOI: 10.1080/19475683.2025.2453550.
  • Abdulwahid, W.M., Feizizadeh, B., Blaschke, T., & Karimzadeh, S. (2025). A Geoinformation Approach for Spatiotemporal Mapping of Climate Change Environmental Impacts on Sustainable Food Production in Iraq. Int J Environ Res. 19, 175. https://doi.org/10.1007/s41742-025-00821-8.
  • Hasanzadeh, M., Kamran, K.V., Feizizadeh, B., & Mollabashi, S.H. (2024). GIS based spatial decision-making approach for solar energy site selection, Ardabil, Iran. International Journal of Engineering and Geosciences. 9 (1), 115-130, https://doi.org/10.26833/ijeg.1341451.
  • Azari, M., Paydar, A., Feizizadeh, B., & Hasanlou, V.G. (2023). A GIS-based approach for accident hotspots mapping in mountain roads using seasonal and geometric indicators. Appl Geomat. 15, 127–139, https://doi.org/10.1007/s12518-023-00490-2.
There are 82 citations in total.

Details

Primary Language English
Subjects Navigation and Position Fixing, Satellite-Based Positioning
Journal Section Research Article
Authors

Ömer Yurdakul 0000-0003-2591-9040

Submission Date August 16, 2025
Acceptance Date December 1, 2025
Early Pub Date December 9, 2025
Publication Date December 16, 2025
Published in Issue Year 2026 Volume: 11 Issue: 2

Cite

APA Yurdakul, Ö. (2025). Analysis of Surface Displacements Occurring in the February 6, 2023 Türkiye Earthquake Sequence with GNSS Observations Based on CORS Stations and the Static PPP Technique. International Journal of Engineering and Geosciences, 11(2), 510-528. https://doi.org/10.26833/ijeg.1765899
AMA Yurdakul Ö. Analysis of Surface Displacements Occurring in the February 6, 2023 Türkiye Earthquake Sequence with GNSS Observations Based on CORS Stations and the Static PPP Technique. IJEG. December 2025;11(2):510-528. doi:10.26833/ijeg.1765899
Chicago Yurdakul, Ömer. “Analysis of Surface Displacements Occurring in the February 6, 2023 Türkiye Earthquake Sequence With GNSS Observations Based on CORS Stations and the Static PPP Technique”. International Journal of Engineering and Geosciences 11, no. 2 (December 2025): 510-28. https://doi.org/10.26833/ijeg.1765899.
EndNote Yurdakul Ö (December 1, 2025) Analysis of Surface Displacements Occurring in the February 6, 2023 Türkiye Earthquake Sequence with GNSS Observations Based on CORS Stations and the Static PPP Technique. International Journal of Engineering and Geosciences 11 2 510–528.
IEEE Ö. Yurdakul, “Analysis of Surface Displacements Occurring in the February 6, 2023 Türkiye Earthquake Sequence with GNSS Observations Based on CORS Stations and the Static PPP Technique”, IJEG, vol. 11, no. 2, pp. 510–528, 2025, doi: 10.26833/ijeg.1765899.
ISNAD Yurdakul, Ömer. “Analysis of Surface Displacements Occurring in the February 6, 2023 Türkiye Earthquake Sequence With GNSS Observations Based on CORS Stations and the Static PPP Technique”. International Journal of Engineering and Geosciences 11/2 (December2025), 510-528. https://doi.org/10.26833/ijeg.1765899.
JAMA Yurdakul Ö. Analysis of Surface Displacements Occurring in the February 6, 2023 Türkiye Earthquake Sequence with GNSS Observations Based on CORS Stations and the Static PPP Technique. IJEG. 2025;11:510–528.
MLA Yurdakul, Ömer. “Analysis of Surface Displacements Occurring in the February 6, 2023 Türkiye Earthquake Sequence With GNSS Observations Based on CORS Stations and the Static PPP Technique”. International Journal of Engineering and Geosciences, vol. 11, no. 2, 2025, pp. 510-28, doi:10.26833/ijeg.1765899.
Vancouver Yurdakul Ö. Analysis of Surface Displacements Occurring in the February 6, 2023 Türkiye Earthquake Sequence with GNSS Observations Based on CORS Stations and the Static PPP Technique. IJEG. 2025;11(2):510-28.