Research Article
BibTex RIS Cite
Year 2018, Volume: 3 Issue: 3, 98 - 107, 01.10.2018
https://doi.org/10.26833/ijeg.384822

Abstract

References

  • Bildirici, O. I., Ustun, A., Selvi, Z. H., Abbak, A. R. and Bugdayci, I., 2009. Assessment of shuttle radar topography mission elevation data based on topographic maps in Turkey. Cartography and Geographic Information Science, 36 (1), 95-104.
  • Bildirici, İ. Ö. and Abbak, R. A., 2017. Comparison of Aster and SRTM Digital Elevation Models at One-Arc- Second Resolution over Turkey. Selçuk Üniversitesi Mühendislik, Bilim ve Teknoloji Dergisi, 5 (1), 16-25.
  • Bundesamt für Kartographie und Geodäsie (BKG), 2012. Digital Terrain Models for Germany, http://www.bkg.bund.de/nn_171776/EN/FederalOffice/P roducts/Geo-Data/Digital-Terrain-Models/DGM- Germany/DGMGermany__node.html__nnn=true (Accessed on 15 June 2012).
  • Canada Centre for Topographic Information, 2007. Canadian Digital Elevation Data, Level 1 Product Specifications Edition 3.0, 01 June 2007. http://www.geobase.ca/doc/specs/pdf/GeoBase_product _specs_CDED1_3_0.pdf (Accessed on 29 June 2012).
  • DGIWG, 2013. 116-1 Elevation Surface Model Standardized Profile, http://www.dgiwg.or (Accessed on 08 April 2013).
  • Federal Geographic Data Committee, 2008. Geographic Information Framework Data Content Standard, Part 3: Elevation, May 2008. http://www.fgdc.gov/standards/projects/FGDC- standards-projects/framework-data- standard/GI_FrameworkDataStandard_Part3_Elevation. pdf (Accessed on 15 June 2012).
  • Fırat, O. and Erdoğan, M., 2015. TerraSAR-X ve TanDEM-X uydularından elde edilen yüksek çözünürlüklü yükseklik verisinin farklı arazi tiplerinde doğruluk analizi. TUFUAB VIII. Technical Symposium.
  • Fisher, P.F. and Tate, N.J., 2006. Causes and consequences of error in digital elevation models. Progress in Physical Geography 30 (4), 467–489.
  • Gesch, D.B., Oimoen, M., Greenlee, S.K., Nelson, C.A., Steuck, M., and Tyler, D., 2002. The National Elevation Dataset. Photogrammetric Engineering & Remote Sensing, 68 (1), 5–11.
  • Gesch, D., J. Oimoen, M., and A. Evans, G. 2014. Accuracy assessment of the U.S. geological survey national elevation dataset, and comparison with other large-area elevation datasets—SRTM and ASTER: U.S. Geological Survey Open-File Report 2014–1008, 10 p., https://dx.doi.org/10.3133/ofr20141008 (Accessed on 02 July 2012)
  • Geoscience Australia, 2011. National Elevation Data Audit 2011, National Elevation Data Framework (NEDF): The Shared Digital Representation of Australia’s Landform and Seabed, http://www.ga.gov.au/image_cache/GA20006.pdf (Accessed on 02 July 2012).
  • Haala, N. and Rothermel, M., 2012. Dense multi-stereo matching for high quality digital elevation models. Photogrammetrie - Fernerkundung - Geoinformation, 2012 (4), 331-343.
  • Hirschmüller, H., 2011. Semi-global matching- motivation, developments and applications. In: Photogrammetric Week 11, pp. 173-184. Wichmann. Photogrammetric Week, 9-13 Sept 2011, Stuttgart, Germany.
  • Höhle, J., 2009. DEM generation using a digital large format frame camera. Photogrammetric Engineering & Remote Sensing, 75 (1), 87–93.
  • Hovenbitzer, M., 2004. The Digital Elevation Model 1:25.000 (DEM25) for the Federal Republic of Germany. XXth ISPRS Congress Proceedings, Commission 4, İstanbul, pp.1240-1243.
  • INSPIRE, 2012. D2.8.II.1 Data Specification on Elevation–Technical Guidelines. http://inspire.ec.europa.eu/documents/Data_Specifications/INSPIRE_DataSpecification_EL_v3.0.pdf, (Accessed on 24 January 2018).
  • Pulighe, G., and Fava, F., 2013. DEM extraction from archive aerial photos: accuracy assessment in areas of complex topography. European Journal of Remote Sensing, 46 (1), 363-378.
  • Tepeköylü, S. and Üstün, A., 2008. Türkiye'deki GPS- Nivelman verileriyle global jeopotansiyel modellerin değerlendirilmesi. Harita Dergisi, 139, 49-65
  • U.S. Geological Survey (USGS), 2012. National Elevation Dataset. ftp://edcsgs9.cr.usgs.gov/data/topo/NED_History/DEM_ Manual_2ndEd_Chap4_NED.pdf, (Accessed on 15 June 2012).
  • Yilmaz, M , Turgut, B , Gullu, M and Yilmaz, I ., 2016. Evaluation of recent global geopotential models by GNSS/Levelling data: internal Aegean region. International Journal of Engineering and Geosciences, 1 (1), 15-19.
  • Yue, L., Shen, H., Zhang, L., Zheng, X., Zhang, F., and Yuan, Q., 2017. High-quality seamless DEM generation blending SRTM-1, ASTER GDEM v2 and ICESat/GLAS observations. ISPRS Journal of Photogrammetry and Remote Sensing, 123, 20-34.

Designing high resolution countrywide DEM for Turkey

Year 2018, Volume: 3 Issue: 3, 98 - 107, 01.10.2018
https://doi.org/10.26833/ijeg.384822

Abstract

Digital Elevation Models (DEM) are widely used in many different applications such as orthophoto production, 3D city models, hydrological modeling, visibility, flood, flood analysis and etc. The densest grid spacing DEM covering Turkey is the DTED-2 data produced by the General Command of Mapping with a grid spacing of 1 second (approximately 30 m). Denser and more accurate DEM is produced by several institutions in only required areas but not covering whole country. Governmental institutions need denser, more accurate, homogeneous and countrywide DEM. This study is conducted to meet DEM demands with optimum accuracy and density by stereo aerial photos. In order to investigate the optimal resolution for a countrywide DEM, test DEMs are produced in three different areas representing the general topographic structure of Turkey by using 45 cm ground sampling distance stereo aerial photos. The Root Mean Square Error (RMSE) of the heights of three areas are respectively ± 2.51 m, ± 1.38 m and ± 1.30 m. The proposed grid spacing by INSPIRE with these accuracies is 3-30 m in flat terrain and 3-15 m in mountainous terrain. It is concluded that 5 m grid spacing will be suitable for a countrywide DEM with the above mentioned accuracies. It is also proposed that production format of DEM should be 32 Bit Floating GeoTiff.

References

  • Bildirici, O. I., Ustun, A., Selvi, Z. H., Abbak, A. R. and Bugdayci, I., 2009. Assessment of shuttle radar topography mission elevation data based on topographic maps in Turkey. Cartography and Geographic Information Science, 36 (1), 95-104.
  • Bildirici, İ. Ö. and Abbak, R. A., 2017. Comparison of Aster and SRTM Digital Elevation Models at One-Arc- Second Resolution over Turkey. Selçuk Üniversitesi Mühendislik, Bilim ve Teknoloji Dergisi, 5 (1), 16-25.
  • Bundesamt für Kartographie und Geodäsie (BKG), 2012. Digital Terrain Models for Germany, http://www.bkg.bund.de/nn_171776/EN/FederalOffice/P roducts/Geo-Data/Digital-Terrain-Models/DGM- Germany/DGMGermany__node.html__nnn=true (Accessed on 15 June 2012).
  • Canada Centre for Topographic Information, 2007. Canadian Digital Elevation Data, Level 1 Product Specifications Edition 3.0, 01 June 2007. http://www.geobase.ca/doc/specs/pdf/GeoBase_product _specs_CDED1_3_0.pdf (Accessed on 29 June 2012).
  • DGIWG, 2013. 116-1 Elevation Surface Model Standardized Profile, http://www.dgiwg.or (Accessed on 08 April 2013).
  • Federal Geographic Data Committee, 2008. Geographic Information Framework Data Content Standard, Part 3: Elevation, May 2008. http://www.fgdc.gov/standards/projects/FGDC- standards-projects/framework-data- standard/GI_FrameworkDataStandard_Part3_Elevation. pdf (Accessed on 15 June 2012).
  • Fırat, O. and Erdoğan, M., 2015. TerraSAR-X ve TanDEM-X uydularından elde edilen yüksek çözünürlüklü yükseklik verisinin farklı arazi tiplerinde doğruluk analizi. TUFUAB VIII. Technical Symposium.
  • Fisher, P.F. and Tate, N.J., 2006. Causes and consequences of error in digital elevation models. Progress in Physical Geography 30 (4), 467–489.
  • Gesch, D.B., Oimoen, M., Greenlee, S.K., Nelson, C.A., Steuck, M., and Tyler, D., 2002. The National Elevation Dataset. Photogrammetric Engineering & Remote Sensing, 68 (1), 5–11.
  • Gesch, D., J. Oimoen, M., and A. Evans, G. 2014. Accuracy assessment of the U.S. geological survey national elevation dataset, and comparison with other large-area elevation datasets—SRTM and ASTER: U.S. Geological Survey Open-File Report 2014–1008, 10 p., https://dx.doi.org/10.3133/ofr20141008 (Accessed on 02 July 2012)
  • Geoscience Australia, 2011. National Elevation Data Audit 2011, National Elevation Data Framework (NEDF): The Shared Digital Representation of Australia’s Landform and Seabed, http://www.ga.gov.au/image_cache/GA20006.pdf (Accessed on 02 July 2012).
  • Haala, N. and Rothermel, M., 2012. Dense multi-stereo matching for high quality digital elevation models. Photogrammetrie - Fernerkundung - Geoinformation, 2012 (4), 331-343.
  • Hirschmüller, H., 2011. Semi-global matching- motivation, developments and applications. In: Photogrammetric Week 11, pp. 173-184. Wichmann. Photogrammetric Week, 9-13 Sept 2011, Stuttgart, Germany.
  • Höhle, J., 2009. DEM generation using a digital large format frame camera. Photogrammetric Engineering & Remote Sensing, 75 (1), 87–93.
  • Hovenbitzer, M., 2004. The Digital Elevation Model 1:25.000 (DEM25) for the Federal Republic of Germany. XXth ISPRS Congress Proceedings, Commission 4, İstanbul, pp.1240-1243.
  • INSPIRE, 2012. D2.8.II.1 Data Specification on Elevation–Technical Guidelines. http://inspire.ec.europa.eu/documents/Data_Specifications/INSPIRE_DataSpecification_EL_v3.0.pdf, (Accessed on 24 January 2018).
  • Pulighe, G., and Fava, F., 2013. DEM extraction from archive aerial photos: accuracy assessment in areas of complex topography. European Journal of Remote Sensing, 46 (1), 363-378.
  • Tepeköylü, S. and Üstün, A., 2008. Türkiye'deki GPS- Nivelman verileriyle global jeopotansiyel modellerin değerlendirilmesi. Harita Dergisi, 139, 49-65
  • U.S. Geological Survey (USGS), 2012. National Elevation Dataset. ftp://edcsgs9.cr.usgs.gov/data/topo/NED_History/DEM_ Manual_2ndEd_Chap4_NED.pdf, (Accessed on 15 June 2012).
  • Yilmaz, M , Turgut, B , Gullu, M and Yilmaz, I ., 2016. Evaluation of recent global geopotential models by GNSS/Levelling data: internal Aegean region. International Journal of Engineering and Geosciences, 1 (1), 15-19.
  • Yue, L., Shen, H., Zhang, L., Zheng, X., Zhang, F., and Yuan, Q., 2017. High-quality seamless DEM generation blending SRTM-1, ASTER GDEM v2 and ICESat/GLAS observations. ISPRS Journal of Photogrammetry and Remote Sensing, 123, 20-34.
There are 21 citations in total.

Details

Primary Language English
Journal Section Articles
Authors

Altan Yılmaz 0000-0002-1926-0633

Mustafa Erdoğan 0000-0003-3219-5546

Publication Date October 1, 2018
Published in Issue Year 2018 Volume: 3 Issue: 3

Cite

APA Yılmaz, A., & Erdoğan, M. (2018). Designing high resolution countrywide DEM for Turkey. International Journal of Engineering and Geosciences, 3(3), 98-107. https://doi.org/10.26833/ijeg.384822
AMA Yılmaz A, Erdoğan M. Designing high resolution countrywide DEM for Turkey. IJEG. October 2018;3(3):98-107. doi:10.26833/ijeg.384822
Chicago Yılmaz, Altan, and Mustafa Erdoğan. “Designing High Resolution Countrywide DEM for Turkey”. International Journal of Engineering and Geosciences 3, no. 3 (October 2018): 98-107. https://doi.org/10.26833/ijeg.384822.
EndNote Yılmaz A, Erdoğan M (October 1, 2018) Designing high resolution countrywide DEM for Turkey. International Journal of Engineering and Geosciences 3 3 98–107.
IEEE A. Yılmaz and M. Erdoğan, “Designing high resolution countrywide DEM for Turkey”, IJEG, vol. 3, no. 3, pp. 98–107, 2018, doi: 10.26833/ijeg.384822.
ISNAD Yılmaz, Altan - Erdoğan, Mustafa. “Designing High Resolution Countrywide DEM for Turkey”. International Journal of Engineering and Geosciences 3/3 (October 2018), 98-107. https://doi.org/10.26833/ijeg.384822.
JAMA Yılmaz A, Erdoğan M. Designing high resolution countrywide DEM for Turkey. IJEG. 2018;3:98–107.
MLA Yılmaz, Altan and Mustafa Erdoğan. “Designing High Resolution Countrywide DEM for Turkey”. International Journal of Engineering and Geosciences, vol. 3, no. 3, 2018, pp. 98-107, doi:10.26833/ijeg.384822.
Vancouver Yılmaz A, Erdoğan M. Designing high resolution countrywide DEM for Turkey. IJEG. 2018;3(3):98-107.