Araştırma Makalesi
BibTex RIS Kaynak Göster
Yıl 2019, Cilt: 4 Sayı: 3, 106 - 114, 01.10.2019
https://doi.org/10.26833/ijeg.492496

Öz

Kaynakça

  • Seeber, G. (2003). Setallite Geodesy, Foundations, Methods and Applications, second edition , de Gruyer.
  • Gumus, K., Celik, C., Erkaya H. (2012). Investıgatıon Of Accurate Method In 3-D Posıtıon Usıng Cors-Net In Istanbul.
  • Sunantyo, T. Aris. (2009). GNSS CORS Infrastructure and Standard in Indonesia. 7th FIG Regional Conference, Spatial Data Serving People: Land Governance and the Environment – Building the Capacity, Hanoi, Vietnam, 19-22 October.
  • Öcalan, T., Tunalıoğlu, N. (2010). Data communication for real-time positioning and navigation in global navigation satellite systems (GNSS)/continuously operating reference stations (CORS) Networks. Sci. Res. Essays,Vol. 5(18), pp. 2630-2639.
  • Wanninger L., (2003). Virtual reference stations (VRS). GPS Solutions 7:143–144.
  • Wübena G., Bagge A. (1998). GNSS multi-station adjustment for permanent deformation analysis networks, Symp. on Geodesy for Geotechnical & Structural Engineering of the IAG Special Commission 4, Eisenstadt, Austria, 20-22 April, 139-144.
  • Brown N., Keenan R., Richter B., Troyer L. (2005). Advances in ambiguity resolution for RTK applications using the new RTCM V3.0 Master-Auxiliary messages. In: Proc ION GNSS 2005, Long Beach, California, September 13-16.
  • Eren K., Uzel T., Gülal E., Yıldırım O., Cingöz A. (2009). Results from a Comprehensive Global Navigation Satellite System Test in the CORS-TR Network: Case Study.
  • Bütün O. F., Baybura T. (2010). Tusaga Aktif (Cors-TR) Istayonlarınıdan Elde edilen Nokta Koordinat Dogrulugunun Incelenmesi, 5. Ulusal Muhendislik Olcmeleri Semposyumu, 20-22 Ekim 2010, Zonguldak, Turkiye.
  • Bulbul S., Inal C., Yildirim O. and Basciftci F. (2017). Velocity Estimation of Turkish National Permanent GNSS Network- Active Points Located at Central Anatolia Region. Bilge International Journal of Science and Technology Research, 1(Special Issue), 18-25, 2017
  • Pırtı A. (2016). The Seasonal Effects Of Decıduous Tree Folıage In Cors-Gnss Measurements (Vrs/Fkp).
  • Gümüş K., Selbesoğu M., Celik C. (2016). Accuracy investigation of height obtained from Classical and Network RTK with ANOVA Test.
  • Öğütücü S., Kalaycı I. (2016). Investigation of networkbased RTK techniques: a case study in urban area.
  • Musa T., A., Lim S., Rizos C. (2005). Low latitude troposphere: A preliminary study using GPS CORS data in South East Asia. U.S. Institute of Navigation National Tech. Meeting, San Diego, California, January 24-26, pp. 685-693.
  • Brownjohn J. M., Rizos C, Tan G. H., Pan T. C. (2004). Real-time long-term monitoring and static and dynamic displacements of an office tower, combining RTK GPS and accelerometer data. 1st FIG Int. Symp. On Engineering Surveys for Construction Works & Structural Engineering.
  • Kempe C., Alfredsson A., Engberg L. E., Lilje M. (2006). Correction model to rectify distorted co-ordinate system. XXIII FIG Congress.
  • Yıldırım O., Yaprak S., Inal C. (2013). Determination of 2011 Van/Turkey earthquake (M= 7.2) effects from measurements of CORS-TR network.
  • Mekik C., Yildirim O., Bakici S. (2011). The Turkish real time kinematic GPS network (TUSAGA-Active) infrastructure. Sci Res Essays. 6(19):3986–3999.
  • Aykut N. O., Gülal E., Akpınar B. (2015). Performance of Single Base RTK GNSS Method versus Network RTK, Earth Sci. Res. J. Vol. 19, No. 2 (December, 2015): 135 – 139.
  • Uzel T., Eren K., Gulal E., Dindar A., Tiryakioglu I., Yilmaz H. (2011). Tectonic plate displacement monitoring with TUSAGA - Active (CORS-TR) data. Paper presented at: 13th Turkey Map Scientific and Technical Conference; Ankara, Turkey (In Turkish).
  • Kahveci M. (2009). Kinematik GNSS ve RTK CORS Ağları.
  • Park, B. and Kee, C. (2010). The Compact Network RTK Method: An Effective Solution to Reduce GNSS Temporal and Spatial Decorrelation Error. J. Navig., 63, 343–362.
  • Landau H. Vollath U. Chen X. (2003). Virtual Reference Stations, Joumal of Global Positioning System, (2): 137- 143.
  • Raquet, J. (1998). Development of a Method for Kinematic GPS Carrier-Phase Ambiguity Resolution Using Multiple Reference Receivers. PhD Thesis, University of Calgary.
  • Rizos, C. (2002). Network RTK Research and Implementation –A GeodeticPerspective, Journal of Global PositioningSystems, Vol.1, No.2:144- 150.
  • Kim, J., Song, J., No, H., Han, D., Kim, D., Park, B., Kee, C. (2017). Accuracy Improvement of DGPS for LowCost Single-Frequency Receiver Using Modified Flächen Korrektur Parameter Correction, ISPRS International Journal of Geo-Information 6 (7) : 222.
  • Bascifci, F., Inal, C., Yildirim, O., Bülbül, S. (2018). Comparison Of Regional And Global Tec Values: Turkey Model, International Journal of Engineering And Geosciences, 3(2), 61-72.
  • Tusat, E., Ozyuksel, F. (2018). Comparison of GPS Satellite Coordinates Computed From Broadcast and IGS Final Ephemeridides, International Journal of Engineering and Geosciences (IJEG),3 (1), 012-019.

Performance of network RTK correction techniques (FKP, MAC and VRS) under limited sky view condition

Yıl 2019, Cilt: 4 Sayı: 3, 106 - 114, 01.10.2019
https://doi.org/10.26833/ijeg.492496

Öz

In recent years, the continuously operating reference station – Turkey (CORS-TR) system has been widely used in engineering and cadastral work in Turkey due to ease of use, low cost, and national legislative requirements. In this study, long-term Network RTK (Real-time Kinematic) data were collected under 10°, 20°, 30° and 40° satellite views using a different approach from previous work. In order to evaluate the positioning performance of the system, the measurements were undertaken at different elevation angles (open, partially blocked and extremely blocked) and by considering three different correction techniques (FKP, VRS and MAC), and the results were evaluated in terms of repeatability. From the analysis of the data, it was understood that the performances of the three correction techniques were generally similar, and even in the case of a limited satellite view, the errors remained below 7 cm in all three techniques. However, when the 2D and 3D components were analyzed together, VRS technique showed better results than the other two techniques.

Kaynakça

  • Seeber, G. (2003). Setallite Geodesy, Foundations, Methods and Applications, second edition , de Gruyer.
  • Gumus, K., Celik, C., Erkaya H. (2012). Investıgatıon Of Accurate Method In 3-D Posıtıon Usıng Cors-Net In Istanbul.
  • Sunantyo, T. Aris. (2009). GNSS CORS Infrastructure and Standard in Indonesia. 7th FIG Regional Conference, Spatial Data Serving People: Land Governance and the Environment – Building the Capacity, Hanoi, Vietnam, 19-22 October.
  • Öcalan, T., Tunalıoğlu, N. (2010). Data communication for real-time positioning and navigation in global navigation satellite systems (GNSS)/continuously operating reference stations (CORS) Networks. Sci. Res. Essays,Vol. 5(18), pp. 2630-2639.
  • Wanninger L., (2003). Virtual reference stations (VRS). GPS Solutions 7:143–144.
  • Wübena G., Bagge A. (1998). GNSS multi-station adjustment for permanent deformation analysis networks, Symp. on Geodesy for Geotechnical & Structural Engineering of the IAG Special Commission 4, Eisenstadt, Austria, 20-22 April, 139-144.
  • Brown N., Keenan R., Richter B., Troyer L. (2005). Advances in ambiguity resolution for RTK applications using the new RTCM V3.0 Master-Auxiliary messages. In: Proc ION GNSS 2005, Long Beach, California, September 13-16.
  • Eren K., Uzel T., Gülal E., Yıldırım O., Cingöz A. (2009). Results from a Comprehensive Global Navigation Satellite System Test in the CORS-TR Network: Case Study.
  • Bütün O. F., Baybura T. (2010). Tusaga Aktif (Cors-TR) Istayonlarınıdan Elde edilen Nokta Koordinat Dogrulugunun Incelenmesi, 5. Ulusal Muhendislik Olcmeleri Semposyumu, 20-22 Ekim 2010, Zonguldak, Turkiye.
  • Bulbul S., Inal C., Yildirim O. and Basciftci F. (2017). Velocity Estimation of Turkish National Permanent GNSS Network- Active Points Located at Central Anatolia Region. Bilge International Journal of Science and Technology Research, 1(Special Issue), 18-25, 2017
  • Pırtı A. (2016). The Seasonal Effects Of Decıduous Tree Folıage In Cors-Gnss Measurements (Vrs/Fkp).
  • Gümüş K., Selbesoğu M., Celik C. (2016). Accuracy investigation of height obtained from Classical and Network RTK with ANOVA Test.
  • Öğütücü S., Kalaycı I. (2016). Investigation of networkbased RTK techniques: a case study in urban area.
  • Musa T., A., Lim S., Rizos C. (2005). Low latitude troposphere: A preliminary study using GPS CORS data in South East Asia. U.S. Institute of Navigation National Tech. Meeting, San Diego, California, January 24-26, pp. 685-693.
  • Brownjohn J. M., Rizos C, Tan G. H., Pan T. C. (2004). Real-time long-term monitoring and static and dynamic displacements of an office tower, combining RTK GPS and accelerometer data. 1st FIG Int. Symp. On Engineering Surveys for Construction Works & Structural Engineering.
  • Kempe C., Alfredsson A., Engberg L. E., Lilje M. (2006). Correction model to rectify distorted co-ordinate system. XXIII FIG Congress.
  • Yıldırım O., Yaprak S., Inal C. (2013). Determination of 2011 Van/Turkey earthquake (M= 7.2) effects from measurements of CORS-TR network.
  • Mekik C., Yildirim O., Bakici S. (2011). The Turkish real time kinematic GPS network (TUSAGA-Active) infrastructure. Sci Res Essays. 6(19):3986–3999.
  • Aykut N. O., Gülal E., Akpınar B. (2015). Performance of Single Base RTK GNSS Method versus Network RTK, Earth Sci. Res. J. Vol. 19, No. 2 (December, 2015): 135 – 139.
  • Uzel T., Eren K., Gulal E., Dindar A., Tiryakioglu I., Yilmaz H. (2011). Tectonic plate displacement monitoring with TUSAGA - Active (CORS-TR) data. Paper presented at: 13th Turkey Map Scientific and Technical Conference; Ankara, Turkey (In Turkish).
  • Kahveci M. (2009). Kinematik GNSS ve RTK CORS Ağları.
  • Park, B. and Kee, C. (2010). The Compact Network RTK Method: An Effective Solution to Reduce GNSS Temporal and Spatial Decorrelation Error. J. Navig., 63, 343–362.
  • Landau H. Vollath U. Chen X. (2003). Virtual Reference Stations, Joumal of Global Positioning System, (2): 137- 143.
  • Raquet, J. (1998). Development of a Method for Kinematic GPS Carrier-Phase Ambiguity Resolution Using Multiple Reference Receivers. PhD Thesis, University of Calgary.
  • Rizos, C. (2002). Network RTK Research and Implementation –A GeodeticPerspective, Journal of Global PositioningSystems, Vol.1, No.2:144- 150.
  • Kim, J., Song, J., No, H., Han, D., Kim, D., Park, B., Kee, C. (2017). Accuracy Improvement of DGPS for LowCost Single-Frequency Receiver Using Modified Flächen Korrektur Parameter Correction, ISPRS International Journal of Geo-Information 6 (7) : 222.
  • Bascifci, F., Inal, C., Yildirim, O., Bülbül, S. (2018). Comparison Of Regional And Global Tec Values: Turkey Model, International Journal of Engineering And Geosciences, 3(2), 61-72.
  • Tusat, E., Ozyuksel, F. (2018). Comparison of GPS Satellite Coordinates Computed From Broadcast and IGS Final Ephemeridides, International Journal of Engineering and Geosciences (IJEG),3 (1), 012-019.
Toplam 28 adet kaynakça vardır.

Ayrıntılar

Birincil Dil İngilizce
Bölüm Articles
Yazarlar

Hüseyin Pehlivan 0000-0002-0018-6912

Mert Bezcioğlu 0000-0001-7179-8361

Muhammet Yılmaz Bu kişi benim 0000-0003-0106-2396

Yayımlanma Tarihi 1 Ekim 2019
Yayımlandığı Sayı Yıl 2019 Cilt: 4 Sayı: 3

Kaynak Göster

APA Pehlivan, H., Bezcioğlu, M., & Yılmaz, M. (2019). Performance of network RTK correction techniques (FKP, MAC and VRS) under limited sky view condition. International Journal of Engineering and Geosciences, 4(3), 106-114. https://doi.org/10.26833/ijeg.492496
AMA Pehlivan H, Bezcioğlu M, Yılmaz M. Performance of network RTK correction techniques (FKP, MAC and VRS) under limited sky view condition. IJEG. Ekim 2019;4(3):106-114. doi:10.26833/ijeg.492496
Chicago Pehlivan, Hüseyin, Mert Bezcioğlu, ve Muhammet Yılmaz. “Performance of Network RTK Correction Techniques (FKP, MAC and VRS) under Limited Sky View Condition”. International Journal of Engineering and Geosciences 4, sy. 3 (Ekim 2019): 106-14. https://doi.org/10.26833/ijeg.492496.
EndNote Pehlivan H, Bezcioğlu M, Yılmaz M (01 Ekim 2019) Performance of network RTK correction techniques (FKP, MAC and VRS) under limited sky view condition. International Journal of Engineering and Geosciences 4 3 106–114.
IEEE H. Pehlivan, M. Bezcioğlu, ve M. Yılmaz, “Performance of network RTK correction techniques (FKP, MAC and VRS) under limited sky view condition”, IJEG, c. 4, sy. 3, ss. 106–114, 2019, doi: 10.26833/ijeg.492496.
ISNAD Pehlivan, Hüseyin vd. “Performance of Network RTK Correction Techniques (FKP, MAC and VRS) under Limited Sky View Condition”. International Journal of Engineering and Geosciences 4/3 (Ekim 2019), 106-114. https://doi.org/10.26833/ijeg.492496.
JAMA Pehlivan H, Bezcioğlu M, Yılmaz M. Performance of network RTK correction techniques (FKP, MAC and VRS) under limited sky view condition. IJEG. 2019;4:106–114.
MLA Pehlivan, Hüseyin vd. “Performance of Network RTK Correction Techniques (FKP, MAC and VRS) under Limited Sky View Condition”. International Journal of Engineering and Geosciences, c. 4, sy. 3, 2019, ss. 106-14, doi:10.26833/ijeg.492496.
Vancouver Pehlivan H, Bezcioğlu M, Yılmaz M. Performance of network RTK correction techniques (FKP, MAC and VRS) under limited sky view condition. IJEG. 2019;4(3):106-14.