Araştırma Makalesi
BibTex RIS Kaynak Göster
Yıl 2020, Cilt: 5 Sayı: 3, 150 - 159, 01.10.2020
https://doi.org/10.26833/ijeg.649961

Öz

Kaynakça

  • Avşar Aydın, E , Gençoğlan, D. (2016). A bow-tie antenna design for breast cancer detection. The International Journal of Energy and Engineering Sciences, 1 (2), pp. 15-24. Retrieved from https://dergipark.org.tr/tr/pub/ijees/issue/48356/612250
  • Baird, C., Kersey, W, Giles, R. and Nixon, W. (2005). Exploitation of ISAR imagery in Euler parameter space, Proceedings of SPIE Radar Sensor Technology IX, Vol. 5788, pp. 116–127.
  • Bertl, S., Dallinger, A. and Detlefsen, J. (2007). Broadband circular interferometric millimetre-wave ISAR for threat detection. Advances in Radio Science, 5, pp. 147-151.
  • Bertl, S., Dallinger, A. and Detlefsen, J. (2008). Bistatic extension for coherent MMW-ISAR-imaging of objects and humans. Advances in Radio Science, 6, pp. 63-66.
  • Bertl, S., Dallinger, A. and Detlefsen, J. (2010). Interferometric focusing for the imaging of humans. IET Radar Sonar & Navigation, 4 (3), pp. 457-463.
  • Bicer, M. B., Akdagli, A. and Ozdemir, C., (2018). A matching-pursuit based approach for detecting and imaging breast cancer tumor. Progress in Electromagnetics Research M, 64, pp. 65-76.
  • Çelik A. R., Kurt M. B. and Helhel S. (2019). An experimental performance investigation of an ultrawideband directional antenna in the microwave imaging of breast cancer tumor. Applied Computational Electromagnetics Society Journal, 34, pp.1549-1556.
  • Cetinkaya, H., Kizilhan. A., Vertiy, A., Demirci, S., Ozdemir, C., Yigit, E., (2011). The millimeter-wave imaging of concealed objects, Spokane-USA, The 2011 IEEE International Symposium on Antennas and Propagation and USNC/URSI National Radio Science Meeting, pp. 228-231.
  • Chen, C. C. and Andrews, H. C. (1980). Multifrequency imaging of radar turntable data. IEEE Transactions on Aerospace and Electronic Systems, AES-16 (1), pp. 15–22.
  • Cottard, G. and Arien, Y. (2006). Anechoic chamber measurement improvement. Microwave Journal, 49(3), pp. 94.
  • Currie, N. C. (1989). Radar reflectivity measurement: Techniques and applications. ISBN: 0890063249, Artech House, Norwood, United States.
  • Demirci, S., Cetinkaya, H., Tekbas, M., Yigit, E., Ozdemir, C. and Vertiy, A. (2011). Back-projection algorithm for ISAR imaging of near-field concealed objects, Istanbul, Turkey, XXXth URSI 2011 URSI General Assembly and Scientific Symposium.
  • Demirci, S., Cetinkaya, H., Yigit, E., Ozdemir, C. and Vertiy, A. (2012). A study on millimeter-wave imaging of concealed objects: Application using back-projection algorithm. Progress in Electromagnetics Research (PIER), 128, pp. 457-477.
  • Demirci, S. and Ozdemir, C. (2013). Compressed sensing based imaging of millimeter-wave ISAR data. Microwave and Optical Technology Letters, 55 (12), pp. 2967-2972.
  • Demirci, S., Yigit, E. and Ozdemir C. (2015). Wide-field circular SAR imaging: An empirical assessment of layover effects. Microwave Opt. Tech. Letters, 57, (2), pp. 489-497.
  • Detlefsen, J., Dallinger, A., Huber, S. and Schelkshorn, S. (2005). Effective reconstruction approaches to millimeter-wave imaging of humans, New Delhi, India, Proceedings of the 28th General Assembly of International Union of Radio Science, pp. 23–29.
  • Hong, C. R. and Büyüköztürk, O. (2000). Wideband microwave imaging of concrete for nondestructive testing. Journal of Structural Engineering, 126 (12), pp. 1451–1457.
  • Kempf, T., Peichl, M., Dill, S. and Suess, H. (2007). 3D Tower-Turntable ISAR Imaging, Munich, Germany, 2007 European Radar Conference (EuRAD 2007), pp. 114–117.
  • Knaell, K. and Cardillo, G. P. (1995). Radar tomography for the generation of three-dimensional images. IEE Proceedings - Radar, Sonar and Navigation, 142 (2), pp. 55-60.
  • Knott, E. F. (2006). Radar cross section measurements. ISBN: 1-891121-55-3, Raleigh, NC, SciTech Publishing.
  • Mensa, D. L. (1991). High resolution radar cross-section imaging. ISBN: 0890063893, Artech House, Norwood, United States.
  • Munson, D. C., O’Brien, J. D. and Jenkins, W. K. (1983). A tomographic formulation of spotlight-mode synthetic aperture radar. Proceedings of the IEEE, 71 (8), pp. 917-925.
  • Naseri, M. (2015). Microwave tomography for breast cancer detection, Thesis (M.Sc.). Istanbul Technical University, Instıtute of Science and Technology.
  • Ozdemir, C., Kırık, O., Yilmaz, B., (2009). Sub-aperture method for the wide-bandwidth wide-angle inverse synthetic aperture radar imaging, Bursa, Turkey, Int. Conference on Electrical and Electronics Engineering - ELECO'2009, Bursa, 2, pp. 288-292.
  • Ozdemir, C. (2012). Inverse synthetic aperture radar imaging with MATLAB algorithms. ISBN: 9780470284841, Wiley Series in Microwave and Optical Engineering, John Wiley & Sons, Inc., Hoboken, New Jersey.
  • Sheen, D. M., McMakin, D. L. and Hall, T. E. (2010). Near-field three-dimensional radar imaging techniques and applications. Applied Optics, 49 (19), pp. E83-E93.
  • Soumekh, D. R. (1999). Synthetic aperture radar signal processing with MATLAB Algorithms. ISBN: 0471297062, John Wiley & Sons Inc, New York, United States.
  • To, L., Bati, A., and Hilliard, D. (2009). Radar cross section measurements of small unmanned air vehicle systems in non-cooperative field environments, Munich, Germany, 2009 3rd European Conference on Antennas and Propagation (EuCAP), pp. 3637–3641.
  • Wehner, D. R. (1994). High resolution radar. ISBN: 0890067279, Artech House, Norwood, United States.

Anechoic chamber measurements for circular isar imaging at Mersin University’s Meatrc Lab

Yıl 2020, Cilt: 5 Sayı: 3, 150 - 159, 01.10.2020
https://doi.org/10.26833/ijeg.649961

Öz

Inverse synthetic aperture radar (ISAR) imaging is a reliable detection and classification technique for maneuvering targets at near and far-field ranges. In this study, we examine the near-field circular (turntable) ISAR imaging by conducting various real measurement experiments that were performed in the microwave anechoic chamber of the Mersin University’s MEATRC laboratory. The backscattered data were collected via a vector network analyzer that works as a Stepped Frequency Continuous Wave (SFCW) radar and for a number of simple and complex metal objects. The collected raw data were calibrated by using the backscattering data of a canonical object and then focused by applying a near-field backprojection image reconstruction algorithm. The resultant circular ISAR images demonstrate successful and well localized detection of various types of targets even though they are camouflaged by clothing. The obtained results reveal the preliminary efficacy of C band ISAR imaging in concealed object detection problem encountered at security checkpoints such as airports. 

Kaynakça

  • Avşar Aydın, E , Gençoğlan, D. (2016). A bow-tie antenna design for breast cancer detection. The International Journal of Energy and Engineering Sciences, 1 (2), pp. 15-24. Retrieved from https://dergipark.org.tr/tr/pub/ijees/issue/48356/612250
  • Baird, C., Kersey, W, Giles, R. and Nixon, W. (2005). Exploitation of ISAR imagery in Euler parameter space, Proceedings of SPIE Radar Sensor Technology IX, Vol. 5788, pp. 116–127.
  • Bertl, S., Dallinger, A. and Detlefsen, J. (2007). Broadband circular interferometric millimetre-wave ISAR for threat detection. Advances in Radio Science, 5, pp. 147-151.
  • Bertl, S., Dallinger, A. and Detlefsen, J. (2008). Bistatic extension for coherent MMW-ISAR-imaging of objects and humans. Advances in Radio Science, 6, pp. 63-66.
  • Bertl, S., Dallinger, A. and Detlefsen, J. (2010). Interferometric focusing for the imaging of humans. IET Radar Sonar & Navigation, 4 (3), pp. 457-463.
  • Bicer, M. B., Akdagli, A. and Ozdemir, C., (2018). A matching-pursuit based approach for detecting and imaging breast cancer tumor. Progress in Electromagnetics Research M, 64, pp. 65-76.
  • Çelik A. R., Kurt M. B. and Helhel S. (2019). An experimental performance investigation of an ultrawideband directional antenna in the microwave imaging of breast cancer tumor. Applied Computational Electromagnetics Society Journal, 34, pp.1549-1556.
  • Cetinkaya, H., Kizilhan. A., Vertiy, A., Demirci, S., Ozdemir, C., Yigit, E., (2011). The millimeter-wave imaging of concealed objects, Spokane-USA, The 2011 IEEE International Symposium on Antennas and Propagation and USNC/URSI National Radio Science Meeting, pp. 228-231.
  • Chen, C. C. and Andrews, H. C. (1980). Multifrequency imaging of radar turntable data. IEEE Transactions on Aerospace and Electronic Systems, AES-16 (1), pp. 15–22.
  • Cottard, G. and Arien, Y. (2006). Anechoic chamber measurement improvement. Microwave Journal, 49(3), pp. 94.
  • Currie, N. C. (1989). Radar reflectivity measurement: Techniques and applications. ISBN: 0890063249, Artech House, Norwood, United States.
  • Demirci, S., Cetinkaya, H., Tekbas, M., Yigit, E., Ozdemir, C. and Vertiy, A. (2011). Back-projection algorithm for ISAR imaging of near-field concealed objects, Istanbul, Turkey, XXXth URSI 2011 URSI General Assembly and Scientific Symposium.
  • Demirci, S., Cetinkaya, H., Yigit, E., Ozdemir, C. and Vertiy, A. (2012). A study on millimeter-wave imaging of concealed objects: Application using back-projection algorithm. Progress in Electromagnetics Research (PIER), 128, pp. 457-477.
  • Demirci, S. and Ozdemir, C. (2013). Compressed sensing based imaging of millimeter-wave ISAR data. Microwave and Optical Technology Letters, 55 (12), pp. 2967-2972.
  • Demirci, S., Yigit, E. and Ozdemir C. (2015). Wide-field circular SAR imaging: An empirical assessment of layover effects. Microwave Opt. Tech. Letters, 57, (2), pp. 489-497.
  • Detlefsen, J., Dallinger, A., Huber, S. and Schelkshorn, S. (2005). Effective reconstruction approaches to millimeter-wave imaging of humans, New Delhi, India, Proceedings of the 28th General Assembly of International Union of Radio Science, pp. 23–29.
  • Hong, C. R. and Büyüköztürk, O. (2000). Wideband microwave imaging of concrete for nondestructive testing. Journal of Structural Engineering, 126 (12), pp. 1451–1457.
  • Kempf, T., Peichl, M., Dill, S. and Suess, H. (2007). 3D Tower-Turntable ISAR Imaging, Munich, Germany, 2007 European Radar Conference (EuRAD 2007), pp. 114–117.
  • Knaell, K. and Cardillo, G. P. (1995). Radar tomography for the generation of three-dimensional images. IEE Proceedings - Radar, Sonar and Navigation, 142 (2), pp. 55-60.
  • Knott, E. F. (2006). Radar cross section measurements. ISBN: 1-891121-55-3, Raleigh, NC, SciTech Publishing.
  • Mensa, D. L. (1991). High resolution radar cross-section imaging. ISBN: 0890063893, Artech House, Norwood, United States.
  • Munson, D. C., O’Brien, J. D. and Jenkins, W. K. (1983). A tomographic formulation of spotlight-mode synthetic aperture radar. Proceedings of the IEEE, 71 (8), pp. 917-925.
  • Naseri, M. (2015). Microwave tomography for breast cancer detection, Thesis (M.Sc.). Istanbul Technical University, Instıtute of Science and Technology.
  • Ozdemir, C., Kırık, O., Yilmaz, B., (2009). Sub-aperture method for the wide-bandwidth wide-angle inverse synthetic aperture radar imaging, Bursa, Turkey, Int. Conference on Electrical and Electronics Engineering - ELECO'2009, Bursa, 2, pp. 288-292.
  • Ozdemir, C. (2012). Inverse synthetic aperture radar imaging with MATLAB algorithms. ISBN: 9780470284841, Wiley Series in Microwave and Optical Engineering, John Wiley & Sons, Inc., Hoboken, New Jersey.
  • Sheen, D. M., McMakin, D. L. and Hall, T. E. (2010). Near-field three-dimensional radar imaging techniques and applications. Applied Optics, 49 (19), pp. E83-E93.
  • Soumekh, D. R. (1999). Synthetic aperture radar signal processing with MATLAB Algorithms. ISBN: 0471297062, John Wiley & Sons Inc, New York, United States.
  • To, L., Bati, A., and Hilliard, D. (2009). Radar cross section measurements of small unmanned air vehicle systems in non-cooperative field environments, Munich, Germany, 2009 3rd European Conference on Antennas and Propagation (EuCAP), pp. 3637–3641.
  • Wehner, D. R. (1994). High resolution radar. ISBN: 0890067279, Artech House, Norwood, United States.
Toplam 29 adet kaynakça vardır.

Ayrıntılar

Birincil Dil İngilizce
Bölüm Articles
Yazarlar

Şevket Demirci 0000-0002-3020-7067

Caner Özdemir 0000-0003-2615-4203

Yayımlanma Tarihi 1 Ekim 2020
Yayımlandığı Sayı Yıl 2020 Cilt: 5 Sayı: 3

Kaynak Göster

APA Demirci, Ş., & Özdemir, C. (2020). Anechoic chamber measurements for circular isar imaging at Mersin University’s Meatrc Lab. International Journal of Engineering and Geosciences, 5(3), 150-159. https://doi.org/10.26833/ijeg.649961
AMA Demirci Ş, Özdemir C. Anechoic chamber measurements for circular isar imaging at Mersin University’s Meatrc Lab. IJEG. Ekim 2020;5(3):150-159. doi:10.26833/ijeg.649961
Chicago Demirci, Şevket, ve Caner Özdemir. “Anechoic Chamber Measurements for Circular Isar Imaging at Mersin University’s Meatrc Lab”. International Journal of Engineering and Geosciences 5, sy. 3 (Ekim 2020): 150-59. https://doi.org/10.26833/ijeg.649961.
EndNote Demirci Ş, Özdemir C (01 Ekim 2020) Anechoic chamber measurements for circular isar imaging at Mersin University’s Meatrc Lab. International Journal of Engineering and Geosciences 5 3 150–159.
IEEE Ş. Demirci ve C. Özdemir, “Anechoic chamber measurements for circular isar imaging at Mersin University’s Meatrc Lab”, IJEG, c. 5, sy. 3, ss. 150–159, 2020, doi: 10.26833/ijeg.649961.
ISNAD Demirci, Şevket - Özdemir, Caner. “Anechoic Chamber Measurements for Circular Isar Imaging at Mersin University’s Meatrc Lab”. International Journal of Engineering and Geosciences 5/3 (Ekim 2020), 150-159. https://doi.org/10.26833/ijeg.649961.
JAMA Demirci Ş, Özdemir C. Anechoic chamber measurements for circular isar imaging at Mersin University’s Meatrc Lab. IJEG. 2020;5:150–159.
MLA Demirci, Şevket ve Caner Özdemir. “Anechoic Chamber Measurements for Circular Isar Imaging at Mersin University’s Meatrc Lab”. International Journal of Engineering and Geosciences, c. 5, sy. 3, 2020, ss. 150-9, doi:10.26833/ijeg.649961.
Vancouver Demirci Ş, Özdemir C. Anechoic chamber measurements for circular isar imaging at Mersin University’s Meatrc Lab. IJEG. 2020;5(3):150-9.