Research Article
BibTex RIS Cite

A Comparative Analysis Machine Learning Techniques for LULC Classification Using Landsat-8 Satellite Imagery

Year 2025, Volume: 10 Issue: 1, 84 - 92
https://doi.org/10.26833/ijeg.1503104

Abstract

This study compares various categorization methods to assign land use and land cover (LULC) classes. Using Geographic Information Systems (GIS) and Remote Sensing (RS) to leverage the dynamic and complex area of LULC, this study examines the potential of different machine learning classification methods. Precise differentiation and classification of various land cover categories, such as green vegetation, urban areas, water bodies, dark green vegetation, and bare terrain, are made possible by the great spatial and spectral resolution of Landsat imagery. For efficient land management and planning, the integration of Landsat data with GIS and RS approaches provides insightful information about the distribution and temporal changes in LULC. This study uses four classifiers to explore the principles of supervised machine learning techniques and identify their drawbacks and advantages. Testing results show that the Support Vector Machine with four kernel linear-99.17%, radial basis (RBF)-99.11%, Sigmoid-99.11% and Polynomial-99.11% is a reliable option for LULC classification, outperforming than other classifiers in terms of accuracy, including the Minimum Distance Classifier (MD-93.47%), Maximum Likelihood Classifier (MLC- 98.98%), and Mahalanobis Distance Classifier (MH-97.83%). Among the tested classifiers, SVM with four kernels notably shows the highest accuracy. With their essential insights for well-informed decision-making towards sustainable development and resource utilization, our findings add to a thorough understanding of LULC dynamics. For accurate mapping and long-term monitoring of deviations in land cover (LC), the study emphasizes the value of using front-line classification systems in remote sensing applications

References

  • Land Use Land Cover Change Analysis And Detection Of Its Drivers Using Geospatial Techniques: A Case Of South-Central Ethiopia, All Earth 2023, Vol. 34, No. 1, 309–332 Https://Doi.Org/10.1080/27669645.2022.2139023
  • Monia Digra, Renu Dhir, Nonita Sharma, Land Use Land Cover Classification Of Remote Sensing Images Based On The Deep Learning Approaches: A Statistical Analysis And Review, Arabian Journal Of Geosciences (2022) 15: 1003 Https://Doi.Org/10.1007/S12517-022-10246-8
  • Sekela Twisa And Manfred F. Buchroithner, Land-Use And Land-Cover (Lulc) Change Detection In Wamiriver Basin, Tanzania, Land 2019, 8, 136; Doi:10.3390/Land8090136
  • Chuanrong Zhang And Xinba Li, Land Use And Land Cover Mapping In The Era Of Big Data, Land 2022, 11, 1692. Https://Doi.Org/10.3390/Land11101692
  • Ahmed Mohammed Hamud, Husni Mobarak Prince, Helmi Zulhaidi Shafri, Landuse/Landcover Mapping And Monitoring Using Remote Sensing And Gis With Environmental Integration, Iop Conf. Series: Earth And Environmental Science 357 (2019) 012038 Doi:10.1088/1755-1315/357/1/012038
  • . Parviz Azizi, Ali Soltani, Farokh Bagheri, Shahrzad Sharifi And Mehdi Mikaeili, An Integrated Modelling Approach To Urban Growth And Land Use/Cover Change, Land 2022, 11, 1715. Https://Doi.Org/10.3390/Land11101715
  • Gn Vivekananda ,Rswathi And Avln Sujith, Multi-Temporal Image Analysis For Lulc Classification And Change Detection, European Journal Of Remote Sensing 2021, Vol. 54, No. S2, 189–199 Https://Doi.Org/10.1080/22797254.2020.1771215
  • Kai Zhu ,Yufeng Cheng , Weiye Zang, Moaaz Kabil , Quan Zhou, Youssef El Archi , Katalin Csobán And Lóránt Dénes Dávid, Multiscenario Simulation Of Land-Use Change In Hubei Province, China Based On The Markov-Flus Model, Land 2023, 12, 744. Https://Doi.Org/10.3390/Land12040744
  • .Shahfahad, Mohd Waseem Naikoo, Tanmoy Das, Swapan Talukdar, Md. Sarfaraz Asgher, Asif And Atiqur Rahman, Prediction Of Land Use Changes At A Metropolitan City Using Integrated Cellular Automata: Past And Future, Geology, Ecology, And Landscapes Https://Doi.Org/10.1080/24749508.2022.2132010
  • Ramita Manandhar , Inakwu O. A. Odeh And Tiho Ancev , Improving The Accuracy Of Land Use And Land Cover Classification Of Landsat Data Using Post-Classification Enhancement, Remote Sens. 2009, 1, 330-344; Doi:10.3390/Rs1030330
  • Laleh Ghayour , Aminreza Neshat Et.Al., Performance Evaluation Of Sentinel-2 And Landsat 8 Oli Data For Land Cover/Use Classification Using A Comparison Between Machine Learning Algorithms , Remote Sens. 2021, 13, 1349. Https://Doi.Org/10.3390/Rs13071349
  • .Meriame Mohajane, Ali Essahlaoui , Fatiha Oudija , Mohammed El Hafyani , Abdellah El Hmaidi , Abdelhadi El Ouali , Giovanni Randazzo And Ana C. Teodoro, Land Use/Land Cover (Lulc) Using Landsat Data Series (Mss, Tm, Etm+ And Oli) In Azrou Forest, In The Central Middle Atlas Of Morocco, Environments 2018, 5, 131; Doi:10.3390/Environments512013.
  • Le Dilemme Entre Developpement Et Protection Dans Les Montagnes Du Maroc-Le Cas Des Parcs Du Moyen Atlas. Available Online: Https://Journals.Openedition.Org/Geocarrefour/3002
  • Leah M. Mungai,Joseph P. Messina , Leo C. Zulu, Modeling Spatiotemporal Patterns Of Land Use/Land Cover Change In Central Malawi Using A Neural Network Model, Remote Sens. 2022, 14, 3477. Https://Doi.Org/10.3390/Rs14143477
  • Barbara Parmenter And Irina Rasputnis, Arcgis Basics: India Creating A Map With Arcmap , Updated On August 30, 2016
  • Doğan, Y., & Yakar, M. (2018). Gis And Three-Dimensional Modeling For Cultural Heritages. International Journal Of Engineering And Geosciences, 3(2), 50-55.
  • Chavez, P.S., Jr. An Improved Dark-Object Subtraction Technique For Atmospheric Scattering Correction Of Multispectral Data. Remote Sens. Environ. 1988, 24, 459–479.
  • Navarro-Cerrillo, R.M.; Manzanedo, R.D.; Bohorque, J.; Sánchez, R.; Sánchez, J.; De Miguel, S.; Solano, D.; Qarro, M.; Griffith, D.; Palacios, G. Structure And Spatio-Temporal Dynamics Of Cedar Forests Along A Management Gradient In The Middle Atlas, Morocco. For. Ecol. Manag. 2013, 289, 341–353.
  • Ünel, F. B., Kuşak, L., Yakar, M., & Doğan, H. Coğrafi Bilgi Sistemleri Ve Analitik Hiyerarşi Prosesi Kullanarak Mersin Ilinde Otomatik Meteoroloji Gözlem Istasyonu Yer Seçimi. Geomatik, 8(2), 107-123
  • Schroeder,T.A.; Cohen,W.B.; Song,C.; Canty,M.J.; Yang,Z.Radiometriccorrectionofmulti-Temporallandsat Data For Characterization Of Early Successional Forest Patterns In Western Oregon. Remote Sens. Environ. 2006, 103, 16–26.
  • Tan,K.C.; San Lim, H.; Matjafri, M.Z.; Abdullah, K. Landsat Data To Evaluate Urban Expansion And Determine Land Use/Land Cover Changes In Penang Island, Malaysia. Environ. Earth Sci. 2010, 60, 1509–1521.
  • Li, L., Tan, Y., Ying, S., Yu, Z., Li, Z. And Lan, H. (2014) Impact Of Land Cover And Population Density On Land Surface Temperature: Case Study In Wuhan, China. Journal Of Applied Remote Sensing, 8, 1-19. Https://Doi.Org/10.1117/1.Jrs.8.084993
  • Giannini, M.B., Belfiore, O.R., Parente, C. And Santamaria, R. (2015) Land Surface Temperature From Landsat 5 Tm Images: Comparison Of Different Methods Using Airborne Thermal Data. Journal Of Engineering Science And Technology Review, 8, 83-90
  • Mohamed Aboelnour, Bernard A. Engel, Application Of Remote Sensing Techniques And Geographic Information Systems To Analyze Land Surface Temperature In Response To Land Use/Land Cover Change In Greater Cairo Region, Egypt, Journal Of Geographic Information System, 2018, 10, 57-88 Http://Www.Scirp.Org/Journal/Jgis
  • Meriame Mohajane, Ali Essahlaoui , Fatiha Oudija , Mohammed El Hafyani , Abdellah El Hmaidi , Abdelhadi El Ouali , Giovanni Randazzo And Ana C. Teodoro, Land Use/Land Cover (Lulc) Using Landsat Data Series (Mss, Tm, Etm+ And Oli) In Azrou Forest, In The Central Middle Atlas Of Morocco, Environments 2018, 5, 131; Doi:10.3390/Environments512013.
  • Strahler, A. H., 1980, The Use Of Prior Probabilities In Maximum Likelihood Classification Of Remotely-Sensed Data. Remote Sensing Of Environment, 10, 135–163.
  • Thomas, I. L., Benning, V. M., And Ching, N. P., 1987, Classification Of Remotely-Sensed Images (Bristol: Iop)
  • Pratik S. Matkar1, Abhijit M. Zende, Land Use/Land Cover Changes Pattern Using Geospatial Techniques - Satara District, Maharashtra, India : A Case Study, Hydro-2017 International, L.D. College Of Engineering Ahmadabad, India
  • Nizar Polat , Yunus Kaya, Investigation Of The Performance Of Different Pixel-Based Classification Methods In Land, Türkiye İnsansız Hava Araçları Dergisi– 2021; 3(1); 01-06
  • De Maesschalck R, Jouan-Rimbaud D & Massart D L (2000). The Mahalanobis Distance. Chemometrics And Intelligent Laboratory Systems, 50(1), 1-18.
  • Ajay D. Nagne, Rajesh K. Dhumal, Amol D. Vibhute, Yogesh D. Rajendra, Sandeep Gaikwad, K. V. Kale, Senior Member, Ieee. C. Mehrotra, Performance Evaluation Of Urban Areas Land Use Classification From Hyperspectral Data By Using Mahalanobis Classifier, 2017 11 Th International Conference On Intelligent Systems And Control (Isco)
  • Vapnik, V. (1998). The Support Vector Method Of Function Estimation. In Nonlinear Modeling (Pp. 55-85). Springer, Boston, Ma.
  • Qian, Y., Zhou, W., Yan, J., Li, W., & Han, L. (2015). Comparing Machine Learning Classifiers For Object- Based Land Cover Classification Using Very High-Resolution Imagery. Remote Sensing, 7(1), 153-168.
  • Han, X., Pan, J., & Devlin, A. T. (2018). Remote Sensing Study Of Wetlands In The Pearl River Delta During 1995–2015 With The Support Vector Machine Method. Frontiers Of Earth Science, 12(3), 521-531.
  • Pretorius, L., Brown, L. R., Bredenkamp, G. J. & Van Huyssteen, C. W. (2016). The Ecology And Classification Of Wetland Vegetation In The Maputaland Coastal Plain, South Africa. Phytocoenologia, 46(2), 125-139.
  • Cengiz Avci , Muhammed Budak , Nur Yagmur , Filiz Bektas Balcik, Comparison Between Random Forest And Support Vector Machine Algorithms For Lulc Classification, Nternational Journal Of Engineering And Geosciences– 2023, 8(1), 01-10
  • Lillesand, T.M., Kiefer, R.W. And Chipman, J.W. (2004) Remote Sensing And Image Interpretation. Chap.7 Digital Image Processing. 5th Edition, Vol. 53, Wiley & Sons, New York. Https://Doi.Org/10.1017/Cbo9781107415324.004
  • Shreesty. Pal, Dr. Sk Pandey, Dr. Sk Sharma And Dr. Reena Nair , Land Use And Land Cover Classification Of Jabalpur District Using Minimum Distance Classifier , The Pharma Innovation Journal 2022; Sp-11(11): 1161-1163
  • Pal, S. And Ziaul, S. (2016) Detection Of Land Use And Land Cover Change And Land Surface Temperature In English Bazar Urban Centre. The Egyptian Journal Of Re Mote Sensing And Space Science, 20, 125-145. Https://Doi.Org/10.1016/J.Ejrs.2016.11.003
  • Tran, D.X., Pla, F., Latorre-Carmona, P., Myint, S.W., Caetano, M. And Kieu, H.V. (2017) Characterizing The Relationship Between Land Use Land Cover Change And Land Surface Temperature. Isprs Journal Of Photogrammetry And Remote Sensing, 124, 119-132. Https://Doi.Org/10.1016/J.Isprsjprs.2017.01.001
  • Congalton, R.G. (1991) A Review Of Assessing The Accuracy Of Classifications Of Remotely Sensed Data. Remote Sensing Of Environment, 37, 35-46. Https://Doi.Org/10.1016/0034-4257(91)90048-B
  • .Gwet, K. (2002) Kappa Statistic Is Not Satisfactory For Assessing The Extent Of Agreement Between Raters. Statistical Methods For Inter-Rater Reliability Assess Men, 1, 1-6.
  • Viera, A.J. And Garrett, J.M. (2005) Understanding Interobserver Agreement: The Kappa Statistic. Family Medicine, 37, 360-363.
  • Thanh Noi, Phan, And Martin Kappas. "Comparison Of Random Forest, K-Nearest Neighbor, And Support Vector Machine Classifiers For Land Cover Classification Using Sentinel-2 Imagery." Sensors 18.1 (2017): 18.
  • Kavzoglu, Taskin, And Ismail Colkesen. "A Kernel Functions Analysis For Support Vector Machines For Land Cover Classification." International Journal Of Applied Earth Observation And Geoinformation 11.5 (2009): 352-359.
  • Yakar, M., & Dogan, Y. (2019). 3d Reconstruction Of Residential Areas With Sfm Photogrammetry. In Advances In Remote Sensing And Geo Informatics Applications: Proceedings Of The 1st Springer Conference Of The Arabian Journal Of Geosciences (Cajg-1), Tunisia 2018 (Pp. 73-75). Springer International Publishing.
  • Unel, F. B., Kusak, L., & Yakar, M. (2023). GeoValueIndex map of public property assets generating via Analytic Hierarchy Process and Geographic Information System for Mass Appraisal: GeoValueIndex. Aestimum, 82, 51-69.
  • Orhan, O., Kırtıloğlu, O. S., & Yakar, M. (2020). Konya kapalı havzası obruk envanter bilgi sisteminin oluşturulması. Geomatik, 5(2), 81-90.
  • Ünel, F. B., Kuşak, L., Yakar, M., & Doğan, H. Coğrafi bilgi sistemleri ve analitik hiyerarşi prosesi kullanarak Mersin ilinde otomatik meteoroloji gözlem istasyonu yer seçimi. Geomatik, 8(2), 107-123.
Year 2025, Volume: 10 Issue: 1, 84 - 92
https://doi.org/10.26833/ijeg.1503104

Abstract

References

  • Land Use Land Cover Change Analysis And Detection Of Its Drivers Using Geospatial Techniques: A Case Of South-Central Ethiopia, All Earth 2023, Vol. 34, No. 1, 309–332 Https://Doi.Org/10.1080/27669645.2022.2139023
  • Monia Digra, Renu Dhir, Nonita Sharma, Land Use Land Cover Classification Of Remote Sensing Images Based On The Deep Learning Approaches: A Statistical Analysis And Review, Arabian Journal Of Geosciences (2022) 15: 1003 Https://Doi.Org/10.1007/S12517-022-10246-8
  • Sekela Twisa And Manfred F. Buchroithner, Land-Use And Land-Cover (Lulc) Change Detection In Wamiriver Basin, Tanzania, Land 2019, 8, 136; Doi:10.3390/Land8090136
  • Chuanrong Zhang And Xinba Li, Land Use And Land Cover Mapping In The Era Of Big Data, Land 2022, 11, 1692. Https://Doi.Org/10.3390/Land11101692
  • Ahmed Mohammed Hamud, Husni Mobarak Prince, Helmi Zulhaidi Shafri, Landuse/Landcover Mapping And Monitoring Using Remote Sensing And Gis With Environmental Integration, Iop Conf. Series: Earth And Environmental Science 357 (2019) 012038 Doi:10.1088/1755-1315/357/1/012038
  • . Parviz Azizi, Ali Soltani, Farokh Bagheri, Shahrzad Sharifi And Mehdi Mikaeili, An Integrated Modelling Approach To Urban Growth And Land Use/Cover Change, Land 2022, 11, 1715. Https://Doi.Org/10.3390/Land11101715
  • Gn Vivekananda ,Rswathi And Avln Sujith, Multi-Temporal Image Analysis For Lulc Classification And Change Detection, European Journal Of Remote Sensing 2021, Vol. 54, No. S2, 189–199 Https://Doi.Org/10.1080/22797254.2020.1771215
  • Kai Zhu ,Yufeng Cheng , Weiye Zang, Moaaz Kabil , Quan Zhou, Youssef El Archi , Katalin Csobán And Lóránt Dénes Dávid, Multiscenario Simulation Of Land-Use Change In Hubei Province, China Based On The Markov-Flus Model, Land 2023, 12, 744. Https://Doi.Org/10.3390/Land12040744
  • .Shahfahad, Mohd Waseem Naikoo, Tanmoy Das, Swapan Talukdar, Md. Sarfaraz Asgher, Asif And Atiqur Rahman, Prediction Of Land Use Changes At A Metropolitan City Using Integrated Cellular Automata: Past And Future, Geology, Ecology, And Landscapes Https://Doi.Org/10.1080/24749508.2022.2132010
  • Ramita Manandhar , Inakwu O. A. Odeh And Tiho Ancev , Improving The Accuracy Of Land Use And Land Cover Classification Of Landsat Data Using Post-Classification Enhancement, Remote Sens. 2009, 1, 330-344; Doi:10.3390/Rs1030330
  • Laleh Ghayour , Aminreza Neshat Et.Al., Performance Evaluation Of Sentinel-2 And Landsat 8 Oli Data For Land Cover/Use Classification Using A Comparison Between Machine Learning Algorithms , Remote Sens. 2021, 13, 1349. Https://Doi.Org/10.3390/Rs13071349
  • .Meriame Mohajane, Ali Essahlaoui , Fatiha Oudija , Mohammed El Hafyani , Abdellah El Hmaidi , Abdelhadi El Ouali , Giovanni Randazzo And Ana C. Teodoro, Land Use/Land Cover (Lulc) Using Landsat Data Series (Mss, Tm, Etm+ And Oli) In Azrou Forest, In The Central Middle Atlas Of Morocco, Environments 2018, 5, 131; Doi:10.3390/Environments512013.
  • Le Dilemme Entre Developpement Et Protection Dans Les Montagnes Du Maroc-Le Cas Des Parcs Du Moyen Atlas. Available Online: Https://Journals.Openedition.Org/Geocarrefour/3002
  • Leah M. Mungai,Joseph P. Messina , Leo C. Zulu, Modeling Spatiotemporal Patterns Of Land Use/Land Cover Change In Central Malawi Using A Neural Network Model, Remote Sens. 2022, 14, 3477. Https://Doi.Org/10.3390/Rs14143477
  • Barbara Parmenter And Irina Rasputnis, Arcgis Basics: India Creating A Map With Arcmap , Updated On August 30, 2016
  • Doğan, Y., & Yakar, M. (2018). Gis And Three-Dimensional Modeling For Cultural Heritages. International Journal Of Engineering And Geosciences, 3(2), 50-55.
  • Chavez, P.S., Jr. An Improved Dark-Object Subtraction Technique For Atmospheric Scattering Correction Of Multispectral Data. Remote Sens. Environ. 1988, 24, 459–479.
  • Navarro-Cerrillo, R.M.; Manzanedo, R.D.; Bohorque, J.; Sánchez, R.; Sánchez, J.; De Miguel, S.; Solano, D.; Qarro, M.; Griffith, D.; Palacios, G. Structure And Spatio-Temporal Dynamics Of Cedar Forests Along A Management Gradient In The Middle Atlas, Morocco. For. Ecol. Manag. 2013, 289, 341–353.
  • Ünel, F. B., Kuşak, L., Yakar, M., & Doğan, H. Coğrafi Bilgi Sistemleri Ve Analitik Hiyerarşi Prosesi Kullanarak Mersin Ilinde Otomatik Meteoroloji Gözlem Istasyonu Yer Seçimi. Geomatik, 8(2), 107-123
  • Schroeder,T.A.; Cohen,W.B.; Song,C.; Canty,M.J.; Yang,Z.Radiometriccorrectionofmulti-Temporallandsat Data For Characterization Of Early Successional Forest Patterns In Western Oregon. Remote Sens. Environ. 2006, 103, 16–26.
  • Tan,K.C.; San Lim, H.; Matjafri, M.Z.; Abdullah, K. Landsat Data To Evaluate Urban Expansion And Determine Land Use/Land Cover Changes In Penang Island, Malaysia. Environ. Earth Sci. 2010, 60, 1509–1521.
  • Li, L., Tan, Y., Ying, S., Yu, Z., Li, Z. And Lan, H. (2014) Impact Of Land Cover And Population Density On Land Surface Temperature: Case Study In Wuhan, China. Journal Of Applied Remote Sensing, 8, 1-19. Https://Doi.Org/10.1117/1.Jrs.8.084993
  • Giannini, M.B., Belfiore, O.R., Parente, C. And Santamaria, R. (2015) Land Surface Temperature From Landsat 5 Tm Images: Comparison Of Different Methods Using Airborne Thermal Data. Journal Of Engineering Science And Technology Review, 8, 83-90
  • Mohamed Aboelnour, Bernard A. Engel, Application Of Remote Sensing Techniques And Geographic Information Systems To Analyze Land Surface Temperature In Response To Land Use/Land Cover Change In Greater Cairo Region, Egypt, Journal Of Geographic Information System, 2018, 10, 57-88 Http://Www.Scirp.Org/Journal/Jgis
  • Meriame Mohajane, Ali Essahlaoui , Fatiha Oudija , Mohammed El Hafyani , Abdellah El Hmaidi , Abdelhadi El Ouali , Giovanni Randazzo And Ana C. Teodoro, Land Use/Land Cover (Lulc) Using Landsat Data Series (Mss, Tm, Etm+ And Oli) In Azrou Forest, In The Central Middle Atlas Of Morocco, Environments 2018, 5, 131; Doi:10.3390/Environments512013.
  • Strahler, A. H., 1980, The Use Of Prior Probabilities In Maximum Likelihood Classification Of Remotely-Sensed Data. Remote Sensing Of Environment, 10, 135–163.
  • Thomas, I. L., Benning, V. M., And Ching, N. P., 1987, Classification Of Remotely-Sensed Images (Bristol: Iop)
  • Pratik S. Matkar1, Abhijit M. Zende, Land Use/Land Cover Changes Pattern Using Geospatial Techniques - Satara District, Maharashtra, India : A Case Study, Hydro-2017 International, L.D. College Of Engineering Ahmadabad, India
  • Nizar Polat , Yunus Kaya, Investigation Of The Performance Of Different Pixel-Based Classification Methods In Land, Türkiye İnsansız Hava Araçları Dergisi– 2021; 3(1); 01-06
  • De Maesschalck R, Jouan-Rimbaud D & Massart D L (2000). The Mahalanobis Distance. Chemometrics And Intelligent Laboratory Systems, 50(1), 1-18.
  • Ajay D. Nagne, Rajesh K. Dhumal, Amol D. Vibhute, Yogesh D. Rajendra, Sandeep Gaikwad, K. V. Kale, Senior Member, Ieee. C. Mehrotra, Performance Evaluation Of Urban Areas Land Use Classification From Hyperspectral Data By Using Mahalanobis Classifier, 2017 11 Th International Conference On Intelligent Systems And Control (Isco)
  • Vapnik, V. (1998). The Support Vector Method Of Function Estimation. In Nonlinear Modeling (Pp. 55-85). Springer, Boston, Ma.
  • Qian, Y., Zhou, W., Yan, J., Li, W., & Han, L. (2015). Comparing Machine Learning Classifiers For Object- Based Land Cover Classification Using Very High-Resolution Imagery. Remote Sensing, 7(1), 153-168.
  • Han, X., Pan, J., & Devlin, A. T. (2018). Remote Sensing Study Of Wetlands In The Pearl River Delta During 1995–2015 With The Support Vector Machine Method. Frontiers Of Earth Science, 12(3), 521-531.
  • Pretorius, L., Brown, L. R., Bredenkamp, G. J. & Van Huyssteen, C. W. (2016). The Ecology And Classification Of Wetland Vegetation In The Maputaland Coastal Plain, South Africa. Phytocoenologia, 46(2), 125-139.
  • Cengiz Avci , Muhammed Budak , Nur Yagmur , Filiz Bektas Balcik, Comparison Between Random Forest And Support Vector Machine Algorithms For Lulc Classification, Nternational Journal Of Engineering And Geosciences– 2023, 8(1), 01-10
  • Lillesand, T.M., Kiefer, R.W. And Chipman, J.W. (2004) Remote Sensing And Image Interpretation. Chap.7 Digital Image Processing. 5th Edition, Vol. 53, Wiley & Sons, New York. Https://Doi.Org/10.1017/Cbo9781107415324.004
  • Shreesty. Pal, Dr. Sk Pandey, Dr. Sk Sharma And Dr. Reena Nair , Land Use And Land Cover Classification Of Jabalpur District Using Minimum Distance Classifier , The Pharma Innovation Journal 2022; Sp-11(11): 1161-1163
  • Pal, S. And Ziaul, S. (2016) Detection Of Land Use And Land Cover Change And Land Surface Temperature In English Bazar Urban Centre. The Egyptian Journal Of Re Mote Sensing And Space Science, 20, 125-145. Https://Doi.Org/10.1016/J.Ejrs.2016.11.003
  • Tran, D.X., Pla, F., Latorre-Carmona, P., Myint, S.W., Caetano, M. And Kieu, H.V. (2017) Characterizing The Relationship Between Land Use Land Cover Change And Land Surface Temperature. Isprs Journal Of Photogrammetry And Remote Sensing, 124, 119-132. Https://Doi.Org/10.1016/J.Isprsjprs.2017.01.001
  • Congalton, R.G. (1991) A Review Of Assessing The Accuracy Of Classifications Of Remotely Sensed Data. Remote Sensing Of Environment, 37, 35-46. Https://Doi.Org/10.1016/0034-4257(91)90048-B
  • .Gwet, K. (2002) Kappa Statistic Is Not Satisfactory For Assessing The Extent Of Agreement Between Raters. Statistical Methods For Inter-Rater Reliability Assess Men, 1, 1-6.
  • Viera, A.J. And Garrett, J.M. (2005) Understanding Interobserver Agreement: The Kappa Statistic. Family Medicine, 37, 360-363.
  • Thanh Noi, Phan, And Martin Kappas. "Comparison Of Random Forest, K-Nearest Neighbor, And Support Vector Machine Classifiers For Land Cover Classification Using Sentinel-2 Imagery." Sensors 18.1 (2017): 18.
  • Kavzoglu, Taskin, And Ismail Colkesen. "A Kernel Functions Analysis For Support Vector Machines For Land Cover Classification." International Journal Of Applied Earth Observation And Geoinformation 11.5 (2009): 352-359.
  • Yakar, M., & Dogan, Y. (2019). 3d Reconstruction Of Residential Areas With Sfm Photogrammetry. In Advances In Remote Sensing And Geo Informatics Applications: Proceedings Of The 1st Springer Conference Of The Arabian Journal Of Geosciences (Cajg-1), Tunisia 2018 (Pp. 73-75). Springer International Publishing.
  • Unel, F. B., Kusak, L., & Yakar, M. (2023). GeoValueIndex map of public property assets generating via Analytic Hierarchy Process and Geographic Information System for Mass Appraisal: GeoValueIndex. Aestimum, 82, 51-69.
  • Orhan, O., Kırtıloğlu, O. S., & Yakar, M. (2020). Konya kapalı havzası obruk envanter bilgi sisteminin oluşturulması. Geomatik, 5(2), 81-90.
  • Ünel, F. B., Kuşak, L., Yakar, M., & Doğan, H. Coğrafi bilgi sistemleri ve analitik hiyerarşi prosesi kullanarak Mersin ilinde otomatik meteoroloji gözlem istasyonu yer seçimi. Geomatik, 8(2), 107-123.
There are 49 citations in total.

Details

Primary Language English
Subjects Land Management
Journal Section Research Article
Authors

Pratibha Dapke 0000-0002-5939-6367

Syed Ahteshamuddin Quadri 0000-0003-3590-896X

Samadhan M. Nagare This is me 0000-0002-5749-2777

Sagar B. Bandal This is me 0000-0002-5330-1195

Manasi R. Baheti This is me

Publication Date
Submission Date June 21, 2024
Acceptance Date October 14, 2024
Published in Issue Year 2025 Volume: 10 Issue: 1

Cite

APA Dapke, P., Quadri, S. A., Nagare, S. M., Bandal, S. B., et al. (n.d.). A Comparative Analysis Machine Learning Techniques for LULC Classification Using Landsat-8 Satellite Imagery. International Journal of Engineering and Geosciences, 10(1), 84-92. https://doi.org/10.26833/ijeg.1503104
AMA Dapke P, Quadri SA, Nagare SM, Bandal SB, Baheti MR. A Comparative Analysis Machine Learning Techniques for LULC Classification Using Landsat-8 Satellite Imagery. IJEG. 10(1):84-92. doi:10.26833/ijeg.1503104
Chicago Dapke, Pratibha, Syed Ahteshamuddin Quadri, Samadhan M. Nagare, Sagar B. Bandal, and Manasi R. Baheti. “A Comparative Analysis Machine Learning Techniques for LULC Classification Using Landsat-8 Satellite Imagery”. International Journal of Engineering and Geosciences 10, no. 1 n.d.: 84-92. https://doi.org/10.26833/ijeg.1503104.
EndNote Dapke P, Quadri SA, Nagare SM, Bandal SB, Baheti MR A Comparative Analysis Machine Learning Techniques for LULC Classification Using Landsat-8 Satellite Imagery. International Journal of Engineering and Geosciences 10 1 84–92.
IEEE P. Dapke, S. A. Quadri, S. M. Nagare, S. B. Bandal, and M. R. Baheti, “A Comparative Analysis Machine Learning Techniques for LULC Classification Using Landsat-8 Satellite Imagery”, IJEG, vol. 10, no. 1, pp. 84–92, doi: 10.26833/ijeg.1503104.
ISNAD Dapke, Pratibha et al. “A Comparative Analysis Machine Learning Techniques for LULC Classification Using Landsat-8 Satellite Imagery”. International Journal of Engineering and Geosciences 10/1 (n.d.), 84-92. https://doi.org/10.26833/ijeg.1503104.
JAMA Dapke P, Quadri SA, Nagare SM, Bandal SB, Baheti MR. A Comparative Analysis Machine Learning Techniques for LULC Classification Using Landsat-8 Satellite Imagery. IJEG.;10:84–92.
MLA Dapke, Pratibha et al. “A Comparative Analysis Machine Learning Techniques for LULC Classification Using Landsat-8 Satellite Imagery”. International Journal of Engineering and Geosciences, vol. 10, no. 1, pp. 84-92, doi:10.26833/ijeg.1503104.
Vancouver Dapke P, Quadri SA, Nagare SM, Bandal SB, Baheti MR. A Comparative Analysis Machine Learning Techniques for LULC Classification Using Landsat-8 Satellite Imagery. IJEG. 10(1):84-92.