Research Article
BibTex RIS Cite

Optimizing Visibility of Historical Structures Using mWDE: Insights from the Kromni Valley, Gümüşhane, Türkiye

Year 2025, Volume: 10 Issue: 1, 107 - 126, 01.02.2025
https://doi.org/10.26833/ijeg.1529351

Abstract

It is very important for historical structures to see each other in order to reveal the historical and cultural identity of a region. Historical structures in the Kromni Valley of Gümüşhane, located near the Sümela Monastery, served as places of worship, communication, trade, and social activity centers during their period of active use. This study analyses the spatial relationships of 38 historic buildings, including churches, chapels and castles, whose 3D models are created by in-situ measurements and point clouds obtained by unmanned aerial vehicles, using a 3D viewshed analysis using geographic information systems and remote sensing data. The research introduces a modified weighted differential evolution-based viewshed analysis (mWDE-WS) to enhance the visibility of these structures. In order to assess the applicability of the proposed method, a statistical comparison was conducted between four different Differential Evolution (DE) algorithms (standard DE, LSHADE, CobiDE, JADE and WDE) and the mWDE. The Wilcoxon signed-rank test indicates that mWDE is a more effective solution than alternative methods for addressing the relevant real-world issues. The study also integrates drainage network analysis to assess flood risks and the relationship between cultural structures and water flow. Findings show that historical structures in the region were built not randomly but within a rational approach and 64% of the study area is visible from structures and 2% of the area is visible from ten or more structures. mWDE-WS analysis revealed that the visible area could increase by 20% to 84.37% if the historic structures were placed in optimal locations. In addition, the historical structures were built away from 3rd order streams to minimize flood risk and humidity, demonstrating the community's awareness of the local topography and hydrology

References

  • Bijaber, N., Rochdi, A., Yessef, M., & El Yacoubi, H. (2024). Mapping the structural vulnerability to drought in Morocco. International Journal of Engineering and Geosciences, 9(2), 264-280.
  • Ernst, F., Akdağ, S., Polat, N., Akaslan, D., Önal, M., & Ekinci, A. (2024). Development of a virtual reality application for the Old Harran School. International Journal of Engineering and Geosciences, 9(1), 77-85.
  • Buhur, S., Uluğtekin, N., Gümüşay, M. Ü., & Musaoğlu, N. (2023). Turistik amaçlı mekânsal sanal ortamların oluşturulması: Tarihi Yarımada Örneği. Geomatik, 8(2), 99-106.
  • Yurtsever, A. (2023). Taşınır ve taşınmaz kültür varlıklarının yeni nesil LiDAR sensörlü tablet bilgisayar ile belgelenmesi. Geomatik, 8(2), 200-207.
  • Günen, M. A., Kulakoğlu, F., & Besdok, E. (2024). Accuracy assessment of UAV-based documentation of archaeological site: Kültepe-Kaneš. Digital Applications in Archaeology and Cultural Heritage, 35, e00380.
  • Silwal, A., Tamang, S. & Adhikari, R. (2022). Use of unmanned aerial vehicle (UAV) for mapping, and accuracy assessment of the orthophoto with and without using GCPs: A case study in Nepal. Mersin Photogrammetry Journal, 4(2): p. 45-52.
  • Doğan, Y. & Yakar, M., (2018). GIS and three-dimensional modeling for cultural heritages. International Journal of Engineering and Geosciences, 3(2): p. 50-55.
  • Tabakoğlu, C. (2024). A review: detection types and systems in remote sensing. Advanced GIS, 4(2): p. 100-105.
  • Fiumi, L. (2023). Remote sensing analysis on Rome’s squares. Advanced Remote Sensing, 3(2): p. 79-89.
  • Inglis, N. C., Vukomanovic, J., Costanza, J., & Singh, K. K. (2022). From viewsheds to viewscapes: Trends in landscape visibility and visual quality research. Landscape and Urban Planning, 224, 104424.
  • Ogburn DE. (2006) Assessing the level of visibility of cultural objects in past landscapes. Journal of Archaeological Science. 33-:405-413.
  • Baek, J., & Choi, Y. (2018). Comparison of communication viewsheds derived from high-resolution digital surface models using line-of-sight, 2D Fresnel zone, and 3D Fresnel zone analysis. ISPRS International Journal of Geo-Information, 7(8), 322.
  • Dana Negula, I., Moise, C., Lazăr, A. M., Rișcuța, N. C., Cristescu, C., Dedulescu, A. L., & Badea, A. (2020). Satellite remote sensing for the analysis of the micia and germisara archaeological sites. Remote Sensing, 12(12), 2003.
  • Beck, A., Wilkinson, K., & Philip, G. (2007, October). Some techniques for improving the detection of archaeological features from satellite imagery. In Remote sensing for environmental monitoring, GIS applications, and geology VII (Vol. 6749, pp. 17-28). SPIE.
  • Bridgwood, I., Rasmussen, M. S., Sørensen, M. K., Carlucci, R., Bernardini, F., & Osman, A. (2007). Automatic detection of archaeological sites using a hybrid process of remote sensing, GIS techniques and a Shape Detection Algorithm. In ENVISAT Symposium 2007.
  • Gillings, M. (2015). Mapping invisibility: GIS approaches to the analysis of hiding and seclusion. Journal of Archaeological Science, 62, 1-14.
  • Sánchez-Pardo, J. C., Carrero-Pazos, M., Fernández-Ferreiro, M., & Espinosa-Espinosa, D. (2020). Exploring the landscape dimension of the early medieval churches. A case study from A Mariña region (north-west Spain). Landscape History, 41(1), 5-28.
  • Wang, Y., & Dou, W. (2020). A fast candidate viewpoints filtering algorithm for multiple viewshed site planning. International Journal of Geographical Information Science, 34(3), 448-463.
  • Prus, B., Wilkosz-Mamcarczyk, M., & Salata, T. (2020). Landmarks as cultural heritage assets affecting the distribution of settlements in rural areas—An analysis based on lidar dtm, digital photographs, and historical maps. Remote sensing, 12(11), 1778.
  • Bachagha, N., Wang, X., Luo, L., Li, L., Khatteli, H., & Lasaponara, R. (2020). Remote sensing and GIS techniques for reconstructing the military fort system on the Roman boundary (Tunisian section) and identifying archaeological sites. Remote Sensing of Environment, 236, 111418.
  • Riso, M., Randazzo, M. G., & Arena, A. E. (2022). Churches at a Crossroads: Assessing a Rural Sacred Landmark in Central Sicily (Sixth to Twelfth Centuries AD). Landscapes, 23(2), 103-122.
  • Doneus, M., Neubauer, W., Filzwieser, R., & Sevara, C. (2022). Stratigraphy from topography II. The practical application of the Harris Matrix for the GIS-based spatio-temporal archaeological interpretation of topographical data. Archaeologia Austriaca, 106, 223-252.
  • Polat, N. (2023). Utilizing GIS for the exploration of possible neolithic sites contemporary to Göbeklitepe. Geocarto International, 38(1), 2240277. Brașoveanu, C., Mihu-Pintilie, A., & Brunchi, R. A. (2023). Inside Late Bronze Age Settlements in NE Romania: GIS-Based Surface Characterization of Ashmound Structures Using Airborne Laser Scanning and Aerial Photography Techniques. Remote Sensing, 15(17), 4124.
  • Civicioglu, P., & Besdok, E. (2024). Colony-Based Search Algorithm for numerical optimization. Applied Soft Computing, 151, 111162.
  • Abdelal, Q., Al-Rawabdeh, A., Al Qudah, K., Hamarneh, C., & Abu-Jaber, N. (2021). Hydrological assessment and management implications for the ancient Nabataean flood control system in Petra, Jordan. Journal of Hydrology, 601, 126583.
  • Hupy, J. P., & Wilson, C. O. (2021). Modeling streamflow and sediment loads with a photogrammetrically derived UAS digital terrain model: Empirical evaluation from a fluvial aggregate excavation operation. Drones, 5(1), 20.
  • Ismail, M., Singh, H., Farooq, I., & Yousuf, N. (2022). Quantitative morphometric analysis of Veshav and Rembi Ara watersheds, India, using quantum GIS. Applied Geomatics, 14(2), 119-134.
  • Elmakayes, Y., Ben-Shlomo, D., Anker, Y., & Frumkin, A. (2023). Water as a strategic resource in the Western Samaria Region–The Unique Case of Deir Sam’an: the water system that has been operating for 1,500 years. Environmental Archaeology, 1-15.
  • Polat, N. (2023). An investigation of ancient water collection and storage systems near the Karahantepe neolithic site using UAV and GIS. Environmental Archaeology, 28(6), 475-487. Günen, M. A., Erkan, İ., Aliyazıcıoğlu, Ş., & Kumaş, C. (2023). Investigation of geometric object and indoor mapping capacity of Apple iPhone 12 Pro LiDAR. Mersin Photogrammetry Journal, 5(2), 82-89.
  • Yılmaz, H. Ö., & Günen, M. A. (2024). Is environment destiny? Spatial analysis of the relationship between geographic factors and obesity in Türkiye. International Journal of Environmental Health Research, 34(3), 1847-1859.
  • Günen, M. A. (2021). Determination of the suitable sites for constructing solar photovoltaic (PV) power plants in Kayseri, Turkey using GIS-based ranking and AHP methods. Environmental Science and Pollution Research, 28(40), 57232-57247.
  • Yakar, M., Yilmaz, H. M. & Yurt, K. (2010). The effect of grid resolution in defining terrain surface. Experimental Techniques, 34, 23-29.
  • Fisher, P. F. (1993). Algorithm and implementation uncertainty in viewshed analysis. International Journal of Geographical Information Science, 7(4), 331-347.
  • Ren, L., & Cao, Y. (2021). GIS-based viewshed analysis on the conservation planning of historic towns: The case study of Xinchang, Shanghai. The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, 46, 609-616.
  • Santosa, H., Yudono, A., Sutikno, F. R., Adhitama, M. S., Tolle, H., & Zuliana, E. (2023). Visibility Evaluation of Historical Landmark Building Using Photographic Survey Coupled with Isovist and Viewshed Analysis. International Review for Spatial Planning and Sustainable Development, 11(4), 71-92.
  • De Montis, A., & Caschili, S. (2012). Nuraghes and landscape planning: Coupling viewshed with complex network analysis. Landscape and Urban Planning, 105(3), 315-324.
  • Günen, M. A. (2021). Fotogrametrik Nokta bulutunun Görünürlük Analizinde Kullanımı: Gümüşhane Seyir Terası Yer Seçimi. Avrupa Bilim ve Teknoloji Dergisi, (28), 295-299.
  • Sanchez-Fernandez, A. J., Romero, L. F., Bandera, G., & Tabik, S. (2021). VPP: visibility-based path planning heuristic for monitoring large regions of complex terrain using a UAV onboard camera. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 15, 944-955.
  • Hong, X., (2023). The integration of UAV, deep learning, and GIS in the assessment of a new neighborhood concept. Advanced UAV. 3(1): p. 1-9.
  • Bharadwaj, S., Dubey, R., Zafar, M. I., Srivastava, A., Bhushan Sharma, V., & Biswas, S. (2020). Determination of optimal location for setting up cell phone tower in city environment using lidar data. The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, 43, 647-654.
  • Han, Z., Li, S., Cui, C., Song, H., Kong, Y., & Qin, F. (2019). Camera planning for area surveillance: A new method for coverage inference and optimization using location-based service data. Computers, environment and urban systems, 78, 101396.
  • Pérez-Delgado, M. L., & Günen, M. A. (2023). A comparative study of evolutionary computation and swarm-based methods applied to color quantization. Expert Systems with Applications, 231, 120666.
  • Günen, M. A. (2021). Weighted differential evolution algorithm based pansharpening. International Journal of Remote Sensing, 42(22), 8468-8491.
  • Civicioglu, P., Besdok, E., Gunen, M. A., & Atasever, U. H. (2020). Weighted differential evolution algorithm for numerical function optimization: a comparative study with cuckoo search, artificial bee colony, adaptive differential evolution, and backtracking search optimization algorithms. Neural Computing and Applications, 32, 3923-3937.
  • Yakar, M., Yilmaz, H. M. & Mutluoglu, O. (2010). Close range photogrammetry and robotic total station in volume calculation. International Journal of the Physical Sciences. 5(2), 086-096.
  • Gunen, M. A., Besdok, E., Civicioglu, P., & Atasever, U. H. (2020). Camera calibration by using weighted differential evolution algorithm: a comparative study with ABC, PSO, COBIDE, DE, CS, GWO, TLBO, MVMO, FOA, LSHADE, ZHANG and BOUGUET. Neural Computing and Applications, 32(23), 17681-17701.
  • Mohamed, A. W., Hadi, A. A., Fattouh, A. M., & Jambi, K. M. (2017, June). LSHADE with semi-parameter adaptation hybrid with CMA-ES for solving CEC 2017 benchmark problems. In 2017 IEEE Congress on evolutionary computation (CEC) (pp. 145-152). IEEE.
  • Wang, Y., Li, H. X., Huang, T., & Li, L. (2014). Differential evolution based on covariance matrix learning and bimodal distribution parameter setting. Applied Soft Computing, 18, 232-247.
  • Zhang, J., & Sanderson, A. C. (2009). JADE: adaptive differential evolution with optional external archive. IEEE Transactions on evolutionary computation, 13(5), 945-958.
  • Radmehr, A., Bozorg-Haddad, O., & Loáiciga, H. A. (2022). Developing strategies for agricultural water management of large irrigation and drainage networks with fuzzy MCDM. Water Resources Management, 36(13), 4885-4912.
  • Piadeh, F., Behzadian, K., & Alani, A. M. (2022). A critical review of real-time modelling of flood forecasting in urban drainage systems. Journal of Hydrology, 607, 127476.
  • Yazdi, J. (2018). Water quality monitoring network design for urban drainage systems, an entropy method. Urban Water Journal, 15(3), 227-233.
  • Lourenço, I. B., Guimarães, L. F., Alves, M. B., & Miguez, M. G. (2020). Land as a sustainable resource in city planning: The use of open spaces and drainage systems to structure environmental and urban needs. Journal of Cleaner Production, 276, 123096.
  • Martz, L. W., & Garbrecht, J. (1992). Numerical definition of drainage network and subcatchment areas from digital elevation models. Computers & Geosciences, 18(6), 747-761.
  • Jasiewicz, J., & Metz, M. (2011). A new GRASS GIS toolkit for Hortonian analysis of drainage networks. Computers & Geosciences, 37(8), 1162-1173.
  • Al-Saady, Y. I., Al-Suhail, Q. A., Al-Tawash, B. S., & Othman, A. A. (2016). Drainage network extraction and morphometric analysis using remote sensing and GIS mapping techniques (Lesser Zab River Basin, Iraq and Iran). Environmental Earth Sciences, 75, 1-23.
  • Bostan, M. H. (1993). XV-XVI. Asırlarda Trabzon Sancağında Sosyal ve İktisadi Hayat (Doctoral dissertation, Marmara Universitesi (Turkey)).
  • Ünel, F. B., Kuşak, L., Çelik, M., Alptekin, A., & Yakar, M. (2020). Kıyı çizgisinin belirlenerek mülkiyet durumunun incelenmesi. Türkiye Arazi Yönetimi Dergisi, 2(1), 33-40.
  • Kanun, E., Alptekin, A., Karataş, L., & Yakar, M. (2022). The use of UAV photogrammetry in modeling ancient structures: A case study of “Kanytellis”. Advanced UAV, 2(2), 41-50.
  • Civicioglu, P., & Besdok, E. (2021). Bezier Search Differential Evolution Algorithm for numerical function optimization: A comparative study with CRMLSP, MVO, WA, SHADE and LSHADE. Expert Systems with Applications, 165, 113875.
  • Civicioglu, P., & Besdok, E. (2023). Bernstein-Levy differential evolution algorithm for numerical function optimization. Neural Computing and Applications, 35(9), 6603-6621.
  • Günen M. A. (2021). Evolutionary Computing Based Camera Calibration, Institute of Science, Doctoral thesis: Erciyes University.
  • Strahler, A. N. (1957). Quantitative analysis of watershed geomorphology. Eos, Transactions American Geophysical Union, 38(6), 913-920.
Year 2025, Volume: 10 Issue: 1, 107 - 126, 01.02.2025
https://doi.org/10.26833/ijeg.1529351

Abstract

References

  • Bijaber, N., Rochdi, A., Yessef, M., & El Yacoubi, H. (2024). Mapping the structural vulnerability to drought in Morocco. International Journal of Engineering and Geosciences, 9(2), 264-280.
  • Ernst, F., Akdağ, S., Polat, N., Akaslan, D., Önal, M., & Ekinci, A. (2024). Development of a virtual reality application for the Old Harran School. International Journal of Engineering and Geosciences, 9(1), 77-85.
  • Buhur, S., Uluğtekin, N., Gümüşay, M. Ü., & Musaoğlu, N. (2023). Turistik amaçlı mekânsal sanal ortamların oluşturulması: Tarihi Yarımada Örneği. Geomatik, 8(2), 99-106.
  • Yurtsever, A. (2023). Taşınır ve taşınmaz kültür varlıklarının yeni nesil LiDAR sensörlü tablet bilgisayar ile belgelenmesi. Geomatik, 8(2), 200-207.
  • Günen, M. A., Kulakoğlu, F., & Besdok, E. (2024). Accuracy assessment of UAV-based documentation of archaeological site: Kültepe-Kaneš. Digital Applications in Archaeology and Cultural Heritage, 35, e00380.
  • Silwal, A., Tamang, S. & Adhikari, R. (2022). Use of unmanned aerial vehicle (UAV) for mapping, and accuracy assessment of the orthophoto with and without using GCPs: A case study in Nepal. Mersin Photogrammetry Journal, 4(2): p. 45-52.
  • Doğan, Y. & Yakar, M., (2018). GIS and three-dimensional modeling for cultural heritages. International Journal of Engineering and Geosciences, 3(2): p. 50-55.
  • Tabakoğlu, C. (2024). A review: detection types and systems in remote sensing. Advanced GIS, 4(2): p. 100-105.
  • Fiumi, L. (2023). Remote sensing analysis on Rome’s squares. Advanced Remote Sensing, 3(2): p. 79-89.
  • Inglis, N. C., Vukomanovic, J., Costanza, J., & Singh, K. K. (2022). From viewsheds to viewscapes: Trends in landscape visibility and visual quality research. Landscape and Urban Planning, 224, 104424.
  • Ogburn DE. (2006) Assessing the level of visibility of cultural objects in past landscapes. Journal of Archaeological Science. 33-:405-413.
  • Baek, J., & Choi, Y. (2018). Comparison of communication viewsheds derived from high-resolution digital surface models using line-of-sight, 2D Fresnel zone, and 3D Fresnel zone analysis. ISPRS International Journal of Geo-Information, 7(8), 322.
  • Dana Negula, I., Moise, C., Lazăr, A. M., Rișcuța, N. C., Cristescu, C., Dedulescu, A. L., & Badea, A. (2020). Satellite remote sensing for the analysis of the micia and germisara archaeological sites. Remote Sensing, 12(12), 2003.
  • Beck, A., Wilkinson, K., & Philip, G. (2007, October). Some techniques for improving the detection of archaeological features from satellite imagery. In Remote sensing for environmental monitoring, GIS applications, and geology VII (Vol. 6749, pp. 17-28). SPIE.
  • Bridgwood, I., Rasmussen, M. S., Sørensen, M. K., Carlucci, R., Bernardini, F., & Osman, A. (2007). Automatic detection of archaeological sites using a hybrid process of remote sensing, GIS techniques and a Shape Detection Algorithm. In ENVISAT Symposium 2007.
  • Gillings, M. (2015). Mapping invisibility: GIS approaches to the analysis of hiding and seclusion. Journal of Archaeological Science, 62, 1-14.
  • Sánchez-Pardo, J. C., Carrero-Pazos, M., Fernández-Ferreiro, M., & Espinosa-Espinosa, D. (2020). Exploring the landscape dimension of the early medieval churches. A case study from A Mariña region (north-west Spain). Landscape History, 41(1), 5-28.
  • Wang, Y., & Dou, W. (2020). A fast candidate viewpoints filtering algorithm for multiple viewshed site planning. International Journal of Geographical Information Science, 34(3), 448-463.
  • Prus, B., Wilkosz-Mamcarczyk, M., & Salata, T. (2020). Landmarks as cultural heritage assets affecting the distribution of settlements in rural areas—An analysis based on lidar dtm, digital photographs, and historical maps. Remote sensing, 12(11), 1778.
  • Bachagha, N., Wang, X., Luo, L., Li, L., Khatteli, H., & Lasaponara, R. (2020). Remote sensing and GIS techniques for reconstructing the military fort system on the Roman boundary (Tunisian section) and identifying archaeological sites. Remote Sensing of Environment, 236, 111418.
  • Riso, M., Randazzo, M. G., & Arena, A. E. (2022). Churches at a Crossroads: Assessing a Rural Sacred Landmark in Central Sicily (Sixth to Twelfth Centuries AD). Landscapes, 23(2), 103-122.
  • Doneus, M., Neubauer, W., Filzwieser, R., & Sevara, C. (2022). Stratigraphy from topography II. The practical application of the Harris Matrix for the GIS-based spatio-temporal archaeological interpretation of topographical data. Archaeologia Austriaca, 106, 223-252.
  • Polat, N. (2023). Utilizing GIS for the exploration of possible neolithic sites contemporary to Göbeklitepe. Geocarto International, 38(1), 2240277. Brașoveanu, C., Mihu-Pintilie, A., & Brunchi, R. A. (2023). Inside Late Bronze Age Settlements in NE Romania: GIS-Based Surface Characterization of Ashmound Structures Using Airborne Laser Scanning and Aerial Photography Techniques. Remote Sensing, 15(17), 4124.
  • Civicioglu, P., & Besdok, E. (2024). Colony-Based Search Algorithm for numerical optimization. Applied Soft Computing, 151, 111162.
  • Abdelal, Q., Al-Rawabdeh, A., Al Qudah, K., Hamarneh, C., & Abu-Jaber, N. (2021). Hydrological assessment and management implications for the ancient Nabataean flood control system in Petra, Jordan. Journal of Hydrology, 601, 126583.
  • Hupy, J. P., & Wilson, C. O. (2021). Modeling streamflow and sediment loads with a photogrammetrically derived UAS digital terrain model: Empirical evaluation from a fluvial aggregate excavation operation. Drones, 5(1), 20.
  • Ismail, M., Singh, H., Farooq, I., & Yousuf, N. (2022). Quantitative morphometric analysis of Veshav and Rembi Ara watersheds, India, using quantum GIS. Applied Geomatics, 14(2), 119-134.
  • Elmakayes, Y., Ben-Shlomo, D., Anker, Y., & Frumkin, A. (2023). Water as a strategic resource in the Western Samaria Region–The Unique Case of Deir Sam’an: the water system that has been operating for 1,500 years. Environmental Archaeology, 1-15.
  • Polat, N. (2023). An investigation of ancient water collection and storage systems near the Karahantepe neolithic site using UAV and GIS. Environmental Archaeology, 28(6), 475-487. Günen, M. A., Erkan, İ., Aliyazıcıoğlu, Ş., & Kumaş, C. (2023). Investigation of geometric object and indoor mapping capacity of Apple iPhone 12 Pro LiDAR. Mersin Photogrammetry Journal, 5(2), 82-89.
  • Yılmaz, H. Ö., & Günen, M. A. (2024). Is environment destiny? Spatial analysis of the relationship between geographic factors and obesity in Türkiye. International Journal of Environmental Health Research, 34(3), 1847-1859.
  • Günen, M. A. (2021). Determination of the suitable sites for constructing solar photovoltaic (PV) power plants in Kayseri, Turkey using GIS-based ranking and AHP methods. Environmental Science and Pollution Research, 28(40), 57232-57247.
  • Yakar, M., Yilmaz, H. M. & Yurt, K. (2010). The effect of grid resolution in defining terrain surface. Experimental Techniques, 34, 23-29.
  • Fisher, P. F. (1993). Algorithm and implementation uncertainty in viewshed analysis. International Journal of Geographical Information Science, 7(4), 331-347.
  • Ren, L., & Cao, Y. (2021). GIS-based viewshed analysis on the conservation planning of historic towns: The case study of Xinchang, Shanghai. The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, 46, 609-616.
  • Santosa, H., Yudono, A., Sutikno, F. R., Adhitama, M. S., Tolle, H., & Zuliana, E. (2023). Visibility Evaluation of Historical Landmark Building Using Photographic Survey Coupled with Isovist and Viewshed Analysis. International Review for Spatial Planning and Sustainable Development, 11(4), 71-92.
  • De Montis, A., & Caschili, S. (2012). Nuraghes and landscape planning: Coupling viewshed with complex network analysis. Landscape and Urban Planning, 105(3), 315-324.
  • Günen, M. A. (2021). Fotogrametrik Nokta bulutunun Görünürlük Analizinde Kullanımı: Gümüşhane Seyir Terası Yer Seçimi. Avrupa Bilim ve Teknoloji Dergisi, (28), 295-299.
  • Sanchez-Fernandez, A. J., Romero, L. F., Bandera, G., & Tabik, S. (2021). VPP: visibility-based path planning heuristic for monitoring large regions of complex terrain using a UAV onboard camera. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 15, 944-955.
  • Hong, X., (2023). The integration of UAV, deep learning, and GIS in the assessment of a new neighborhood concept. Advanced UAV. 3(1): p. 1-9.
  • Bharadwaj, S., Dubey, R., Zafar, M. I., Srivastava, A., Bhushan Sharma, V., & Biswas, S. (2020). Determination of optimal location for setting up cell phone tower in city environment using lidar data. The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, 43, 647-654.
  • Han, Z., Li, S., Cui, C., Song, H., Kong, Y., & Qin, F. (2019). Camera planning for area surveillance: A new method for coverage inference and optimization using location-based service data. Computers, environment and urban systems, 78, 101396.
  • Pérez-Delgado, M. L., & Günen, M. A. (2023). A comparative study of evolutionary computation and swarm-based methods applied to color quantization. Expert Systems with Applications, 231, 120666.
  • Günen, M. A. (2021). Weighted differential evolution algorithm based pansharpening. International Journal of Remote Sensing, 42(22), 8468-8491.
  • Civicioglu, P., Besdok, E., Gunen, M. A., & Atasever, U. H. (2020). Weighted differential evolution algorithm for numerical function optimization: a comparative study with cuckoo search, artificial bee colony, adaptive differential evolution, and backtracking search optimization algorithms. Neural Computing and Applications, 32, 3923-3937.
  • Yakar, M., Yilmaz, H. M. & Mutluoglu, O. (2010). Close range photogrammetry and robotic total station in volume calculation. International Journal of the Physical Sciences. 5(2), 086-096.
  • Gunen, M. A., Besdok, E., Civicioglu, P., & Atasever, U. H. (2020). Camera calibration by using weighted differential evolution algorithm: a comparative study with ABC, PSO, COBIDE, DE, CS, GWO, TLBO, MVMO, FOA, LSHADE, ZHANG and BOUGUET. Neural Computing and Applications, 32(23), 17681-17701.
  • Mohamed, A. W., Hadi, A. A., Fattouh, A. M., & Jambi, K. M. (2017, June). LSHADE with semi-parameter adaptation hybrid with CMA-ES for solving CEC 2017 benchmark problems. In 2017 IEEE Congress on evolutionary computation (CEC) (pp. 145-152). IEEE.
  • Wang, Y., Li, H. X., Huang, T., & Li, L. (2014). Differential evolution based on covariance matrix learning and bimodal distribution parameter setting. Applied Soft Computing, 18, 232-247.
  • Zhang, J., & Sanderson, A. C. (2009). JADE: adaptive differential evolution with optional external archive. IEEE Transactions on evolutionary computation, 13(5), 945-958.
  • Radmehr, A., Bozorg-Haddad, O., & Loáiciga, H. A. (2022). Developing strategies for agricultural water management of large irrigation and drainage networks with fuzzy MCDM. Water Resources Management, 36(13), 4885-4912.
  • Piadeh, F., Behzadian, K., & Alani, A. M. (2022). A critical review of real-time modelling of flood forecasting in urban drainage systems. Journal of Hydrology, 607, 127476.
  • Yazdi, J. (2018). Water quality monitoring network design for urban drainage systems, an entropy method. Urban Water Journal, 15(3), 227-233.
  • Lourenço, I. B., Guimarães, L. F., Alves, M. B., & Miguez, M. G. (2020). Land as a sustainable resource in city planning: The use of open spaces and drainage systems to structure environmental and urban needs. Journal of Cleaner Production, 276, 123096.
  • Martz, L. W., & Garbrecht, J. (1992). Numerical definition of drainage network and subcatchment areas from digital elevation models. Computers & Geosciences, 18(6), 747-761.
  • Jasiewicz, J., & Metz, M. (2011). A new GRASS GIS toolkit for Hortonian analysis of drainage networks. Computers & Geosciences, 37(8), 1162-1173.
  • Al-Saady, Y. I., Al-Suhail, Q. A., Al-Tawash, B. S., & Othman, A. A. (2016). Drainage network extraction and morphometric analysis using remote sensing and GIS mapping techniques (Lesser Zab River Basin, Iraq and Iran). Environmental Earth Sciences, 75, 1-23.
  • Bostan, M. H. (1993). XV-XVI. Asırlarda Trabzon Sancağında Sosyal ve İktisadi Hayat (Doctoral dissertation, Marmara Universitesi (Turkey)).
  • Ünel, F. B., Kuşak, L., Çelik, M., Alptekin, A., & Yakar, M. (2020). Kıyı çizgisinin belirlenerek mülkiyet durumunun incelenmesi. Türkiye Arazi Yönetimi Dergisi, 2(1), 33-40.
  • Kanun, E., Alptekin, A., Karataş, L., & Yakar, M. (2022). The use of UAV photogrammetry in modeling ancient structures: A case study of “Kanytellis”. Advanced UAV, 2(2), 41-50.
  • Civicioglu, P., & Besdok, E. (2021). Bezier Search Differential Evolution Algorithm for numerical function optimization: A comparative study with CRMLSP, MVO, WA, SHADE and LSHADE. Expert Systems with Applications, 165, 113875.
  • Civicioglu, P., & Besdok, E. (2023). Bernstein-Levy differential evolution algorithm for numerical function optimization. Neural Computing and Applications, 35(9), 6603-6621.
  • Günen M. A. (2021). Evolutionary Computing Based Camera Calibration, Institute of Science, Doctoral thesis: Erciyes University.
  • Strahler, A. N. (1957). Quantitative analysis of watershed geomorphology. Eos, Transactions American Geophysical Union, 38(6), 913-920.
There are 63 citations in total.

Details

Primary Language English
Subjects Photogrammetry and Remote Sensing, Geographical Information Systems (GIS) in Planning
Journal Section Research Article
Authors

Mehmet Akıf Günen 0000-0001-5164-375X

Kaşif Furkan Öztürk 0000-0002-6325-4222

Şener Aliyazıcıoğlu 0000-0002-5177-8221

Publication Date February 1, 2025
Submission Date August 7, 2024
Acceptance Date October 30, 2024
Published in Issue Year 2025 Volume: 10 Issue: 1

Cite

APA Günen, M. A., Öztürk, K. F., & Aliyazıcıoğlu, Ş. (2025). Optimizing Visibility of Historical Structures Using mWDE: Insights from the Kromni Valley, Gümüşhane, Türkiye. International Journal of Engineering and Geosciences, 10(1), 107-126. https://doi.org/10.26833/ijeg.1529351
AMA Günen MA, Öztürk KF, Aliyazıcıoğlu Ş. Optimizing Visibility of Historical Structures Using mWDE: Insights from the Kromni Valley, Gümüşhane, Türkiye. IJEG. February 2025;10(1):107-126. doi:10.26833/ijeg.1529351
Chicago Günen, Mehmet Akıf, Kaşif Furkan Öztürk, and Şener Aliyazıcıoğlu. “Optimizing Visibility of Historical Structures Using MWDE: Insights from the Kromni Valley, Gümüşhane, Türkiye”. International Journal of Engineering and Geosciences 10, no. 1 (February 2025): 107-26. https://doi.org/10.26833/ijeg.1529351.
EndNote Günen MA, Öztürk KF, Aliyazıcıoğlu Ş (February 1, 2025) Optimizing Visibility of Historical Structures Using mWDE: Insights from the Kromni Valley, Gümüşhane, Türkiye. International Journal of Engineering and Geosciences 10 1 107–126.
IEEE M. A. Günen, K. F. Öztürk, and Ş. Aliyazıcıoğlu, “Optimizing Visibility of Historical Structures Using mWDE: Insights from the Kromni Valley, Gümüşhane, Türkiye”, IJEG, vol. 10, no. 1, pp. 107–126, 2025, doi: 10.26833/ijeg.1529351.
ISNAD Günen, Mehmet Akıf et al. “Optimizing Visibility of Historical Structures Using MWDE: Insights from the Kromni Valley, Gümüşhane, Türkiye”. International Journal of Engineering and Geosciences 10/1 (February 2025), 107-126. https://doi.org/10.26833/ijeg.1529351.
JAMA Günen MA, Öztürk KF, Aliyazıcıoğlu Ş. Optimizing Visibility of Historical Structures Using mWDE: Insights from the Kromni Valley, Gümüşhane, Türkiye. IJEG. 2025;10:107–126.
MLA Günen, Mehmet Akıf et al. “Optimizing Visibility of Historical Structures Using MWDE: Insights from the Kromni Valley, Gümüşhane, Türkiye”. International Journal of Engineering and Geosciences, vol. 10, no. 1, 2025, pp. 107-26, doi:10.26833/ijeg.1529351.
Vancouver Günen MA, Öztürk KF, Aliyazıcıoğlu Ş. Optimizing Visibility of Historical Structures Using mWDE: Insights from the Kromni Valley, Gümüşhane, Türkiye. IJEG. 2025;10(1):107-26.