Research Article
BibTex RIS Cite

Decadal evolution of GIS in disaster management and risk assessment

Year 2025, Volume: 10 Issue: 2, 173 - 196
https://doi.org/10.26833/ijeg.1544048

Abstract

This study conducts a bibliometric analysis of the evolution of Geographic Information Systems (GIS) in disaster risk management and assessment over a 25-year period, from 2000 to 2024. Utilizing a dataset derived from academic publications indexed in prominent scientific databases, we examine the growth trajectory, thematic evolution, scholarly collaboration, and technological advancements within the field. Our findings reveal a significant increase in the volume of GIS-related research in disaster management, underscored by a shift from foundational applications toward the integration of cutting-edge computational techniques. Analysis of collaboration networks highlights the global nature of research efforts, demonstrating extensive international cooperation that transcends geographical and disciplinary boundaries. Thematic analysis indicates a progressive focus on vulnerability assessments, climate change impacts, and the incorporation of remote sensing and machine learning technologies, reflecting the field's response to emerging challenges and the dynamic landscape of disaster risk management. The study not only charts the historical development of GIS applications in this domain but also identifies key research trends, influential works, and potential future directions, underscoring the critical role of GIS in enhancing disaster resilience. This bibliometric perspective provides valuable insights into the maturation of GIS as an indispensable tool in disaster management and offers a roadmap for future research and technological innovation aimed at mitigating disaster risks and building resilient communities

References

  • Kwan, M. P., & Ransberger, D. M. (2010). LiDAR assisted emergency response: Detection of transport network obstructions caused by major disasters. Computers, Environment and Urban Systems, 34(3), 179–188. https://doi.org/10.1016/j.compenvurbsys.2010.02.001
  • McEntire, D. A. (2005). Why vulnerability matters: Exploring the merit of an inclusive disaster reduction concept. Disaster Prevention and Management: An International Journal, 14(2), 206–222. https://doi.org/10.1108/09653560510595209/full/html
  • Cutter, S. L. (2012). Hazards, vulnerability and environmental justice. Hazards, Vulnerability and Environmental Justice, 1–418. https://doi.org/10.4324/9781849771542
  • Coşkun, M., & Toprak, F. (2023). Coğrafi bilgi sistemleri (CBS) tabanlı orman yangını risk analizi: Bartın İli örneği. Geomatik, 8(3), 250–263. https://doi.org/10.29128/geomatik.1192219
  • Perry, R. W. (2007). What is a disaster?. In Handbooks of Sociology and Social Research (pp. 1–15). https://doi.org/10.1007/978-0-387-32353-4_1
  • Zerger, A., & Smith, D. I. (2003). Impediments to using GIS for real-time disaster decision support. Computers, Environment and Urban Systems, 27(2), 123–141. https://doi.org/10.1016/S0198-9715(01)00021-7
  • Sui, D. Z., & Sui, D. Z. (2008). The wikification of GIS and its consequences: Or Angelina Jolie’s new tattoo and the future of GIS. Computers, Environment and Urban Systems, 32(1), 1–5. https://doi.org/10.1016/j.compenvurbsys.2007.12.001
  • Zanuttigh, B., et al. (2014). THESEUS decision support system for coastal risk management. Coastal Engineering, 87, 218–239. https://doi.org/10.1016/j.coastaleng.2013.11.013
  • Napieralski, J., Barr, I., Kamp, U., & Kervyn, M. (2013). Remote sensing and GIScience in geomorphological mapping. In Treatise on Geomorphology: Volume 1-14, 1–14, 187–227. https://doi.org/10.1016/B978-0-12-374739-6.00050-6
  • Elwood, S. (2010). Mixed methods: Thinking, doing, and asking in multiple ways. In The SAGE Handbook of Qualitative Geography, 1, 94–114. Retrieved March 23, 2024, from https://www.torrossa.com/gs/resourceProxy?an=4913729&publisher=FZ7200#page=107
  • Cova, T. J. (1999). GIS in emergency management. Retrieved March 23, 2024, from https://www.geos.ed.ac.uk/~gisteac/gis_book_abridged/files/ch60.pdf
  • Miller, H. J., & Goodchild, M. F. (2015). Data-driven geography. GeoJournal, 80(4), 449–461. https://doi.org/10.1007/S10708-014-9602-6
  • Al Kalbanı, K., & Rahman, A. A. (2022). 3D city model for monitoring flash flood risks in Salalah, Oman. International Journal of Engineering and Geosciences, 7(1), 17–23. https://doi.org/10.26833/ijeg.857971
  • Morsy, S., & Hadi, M. (2022). Impact of land use/land cover on land surface temperature and its relationship with spectral indices in Dakahlia Governorate, Egypt. International Journal of Engineering and Geosciences, 7(3), 272–282. https://doi.org/10.26833/ijeg.978961
  • Yuan, M., & Nara, A. (2015). Space-Time Analytics of Tracks for the Understanding of Patterns of Life. In Space-Time Integration in Geography and GIScience (pp. 373–398). Springer Netherlands. https://doi.org/10.1007/978-94-017-9205-9_20
  • Tomaszewski, B. (2020). Geographic Information Systems (GIS) for Disaster Management. Geographic Information Systems (GIS) for Disaster Management. https://doi.org/10.4324/9781351034869/geographic-information-systems-gis-disaster-management-brian-tomaszewski
  • Cutter, S. L., Ash, K. D., & Emrich, C. T. (2014). The geographies of community disaster resilience. Global Environmental Change, 29, 65–77. https://doi.org/10.1016/j.gloenvcha.2014.08.005
  • Tate, E. (2013). Uncertainty Analysis for a Social Vulnerability Index. Annals of the Association of American Geographers, 103(3), 526–543. https://doi.org/10.1080/00045608.2012.700616
  • Batty, M. (2013). The New Science of Cities. The MIT Press. https://doi.org/10.7551/mitpress/9399.001.0001
  • Goodchild, M. F., & Glennon, J. A. (2010). Crowdsourcing geographic information for disaster response: a research frontier. International Journal of Digital Earth, 3(3), 231–241. https://doi.org/10.1080/17538941003759255
  • Kulkarni, A. V., Aziz, B., Shams, I., & Busse, J. W. (2009). Comparisons of Citations in Web of Science, Scopus, and Google Scholar for Articles Published in General Medical Journals. JAMA, 302(10), 1092–1096. https://doi.org/10.1001/JAMA.2009.1307
  • Harzing, A. W., & Alakangas, S. (2016). Google Scholar, Scopus and the Web of Science: a longitudinal and cross-disciplinary comparison. Scientometrics, 106(2), 787–804. https://doi.org/10.1007/S11192-015-1798-9/tables/4
  • Aksnes, D. W., Langfeldt, L., & Wouters, P. (2019). Citations, Citation Indicators, and Research Quality: An Overview of Basic Concepts and Theories. SAGE Open, 9(1). https://doi.org/10.1177/2158244019829575
  • Page, M. J., et al. (2021). The PRISMA 2020 statement: an updated guideline for reporting systematic reviews. BMJ, n71. https://doi.org/10.1136/bmj.n71
  • van Eck, N. J., & Waltman, L. (2014). Visualizing Bibliometric Networks. In Measuring Scholarly Impact (pp. 285–320). Springer International Publishing. https://doi.org/10.1007/978-3-319-10377-8_13
  • van Eck, N. J., & Waltman, L. (2009). Software survey: VOSviewer, a computer program for bibliometric mapping. Scientometrics, 84(2), 523–538. https://doi.org/10.1007/S11192-009-0146-3
  • Aria, M., & Cuccurullo, C. (2017). bibliometrix: An R-tool for comprehensive science mapping analysis. Journal of Informetrics, 11(4), 959–975. https://doi.org/10.1016/j.joi.2017.08.007
  • Cobo, M. J., López-Herrera, A. G., Herrera-Viedma, E., & Herrera, F. (2011). Science mapping software tools: Review, analysis, and cooperative study among tools. Journal of the American Society for Information Science and Technology, 62(7), 1382–1402. https://doi.org/10.1002/asi.21525
  • Ellegaard, O., & Wallin, J. A. (2015). The bibliometric analysis of scholarly production: How great is the impact?. Scientometrics, 105(3), 1809–1831. https://doi.org/10.1007/s11192-015-1645-z
  • Dai, F. C., Lee, C. F., & Ngai, Y. Y. (2002). Landslide risk assessment and management: an overview. Engineering Geology, 64(1), 65–87. https://doi.org/10.1016/S0013-7952(01)00093-X
  • Martínez, J., Vega-Garcia, C., & Chuvieco, E. (2009). Human-caused wildfire risk rating for prevention planning in Spain. Journal of Environmental Management, 90(2), 1241–1252. https://doi.org/10.1016/j.jenvman.2008.07.005
  • Guan, Q., et al. (2018). Source apportionment of heavy metals in agricultural soil based on PMF: A case study in Hexi Corridor, northwest China. Chemosphere, 193, 189–197. https://doi.org/10.1016/j.chemosphere.2017.10.151
  • Huang, Y., et al. (2018). Heavy metal pollution and health risk assessment of agricultural soils in a typical peri-urban area in southeast China. Journal of Environmental Management, 207, 159–168. https://doi.org/10.1016/j.jenvman.2017.10.072
  • Chuvieco, E., et al. (2010). Development of a framework for fire risk assessment using remote sensing and geographic information system technologies. Ecological Modelling, 221(1), 46–58. https://doi.org/10.1016/j.ecolmodel.2008.11.017
  • Alcántara-Ayala, I. (2002). Geomorphology, natural hazards, vulnerability and prevention of natural disasters in developing countries. Geomorphology, 47(2–4), 107–124. https://doi.org/10.1016/S0169-555X(02)00083-1
  • Babiker, I. S., Mohamed, M. A. A., Hiyama, T., & Kato, K. (2005). A GIS-based DRASTIC model for assessing aquifer vulnerability in Kakamigahara Heights, Gifu Prefecture, central Japan. Science of The Total Environment, 345(1–3), 127–140. https://doi.org/10.1016/j.scitotenv.2004.11.005
  • Benz, U. C., Hofmann, P., Willhauck, G., Lingenfelder, I., & Heynen, M. (2004). Multi-resolution, object-oriented fuzzy analysis of remote sensing data for GIS-ready information. ISPRS Journal of Photogrammetry and Remote Sensing, 58(3–4), 239–258. https://doi.org/10.1016/j.isprsjprs.2003.10.002
  • Devkota, K. C., et al. (2013). Landslide susceptibility mapping using certainty factor, index of entropy and logistic regression models in GIS and their comparison at Mugling–Narayanghat road section in Nepal Himalaya. Natural Hazards, 65(1), 135–165. https://doi.org/10.1007/s11069-012-0347-6
  • Maanan, M., Saddik, M., Maanan, M., Chaibi, M., Assobhei, O., & Zourarah, B. (2015). Environmental and ecological risk assessment of heavy metals in sediments of Nador lagoon, Morocco. Ecological Indicators, 48, 616–626. https://doi.org/10.1016/j.ecolind.2014.09.034
  • Regmi, N. R., Giardino, J. R., & Vitek, J. D. (2010). Modeling susceptibility to landslides using the weight of evidence approach: Western Colorado, USA. Geomorphology, 115(1–2), 172–187. https://doi.org/10.1016/j.geomorph.2009.10.002
  • Saha, A. K., Gupta, R. P., Sarkar, I., Arora, M. K., & Csaplovics, E. (2005). An approach for GIS-based statistical landslide susceptibility zonation?with a case study in the Himalayas. Landslides, 2(1), 61–69. https://doi.org/10.1007/s10346-004-0039-8
  • Tran, P., Shaw, R., Chantry, G., & Norton, J. (2009). GIS and local knowledge in disaster management: a case study of flood risk mapping in Viet Nam. Disasters, 33(1), 152–169. https://doi.org/10.1111/j.1467-7717.2008.01067.x
  • Ullah, K., & Zhang, J. (2020). GIS-based flood hazard mapping using relative frequency ratio method: A case study of Panjkora River Basin, eastern Hindu Kush, Pakistan. PLoS One, 15(3), e0229153. https://doi.org/10.1371/journal.pone.0229153
  • Remondo, J., Bonachea, J., & Cendrero, A. (2008). Quantitative landslide risk assessment and mapping on the basis of recent occurrences. Geomorphology, 94(3–4), 496–507. https://doi.org/10.1016/j.geomorph.2006.10.041
  • Kusak, L., Unel, F. B., Alptekin, A., Celik, M. O., & Yakar, M. (2021). Apriori association rule and K-means clustering algorithms for interpretation of pre-event landslide areas and landslide inventory mapping. Open Geosciences, 13(1), 1226-1244
  • Dahal, R. K., Hasegawa, S., Nonomura, A., Yamanaka, M., Dhakal, S., & Paudyal, P. (2008). Predictive modelling of rainfall-induced landslide hazard in the Lesser Himalaya of Nepal based on weights-of-evidence. Geomorphology, 102(3–4), 496–510. https://doi.org/10.1016/j.geomorph.2008.05.041
  • Umar, Z., Pradhan, B., Ahmad, A., Jebur, M. N., & Tehrany, M. S. (2014). Earthquake induced landslide susceptibility mapping using an integrated ensemble frequency ratio and logistic regression models in West Sumatera Province, Indonesia. Catena (Amst), 118, 124–135. https://doi.org/10.1016/j.catena.2014.02.005
  • Mishra, K., & Sinha, R. (2020). Flood risk assessment in the Kosi megafan using multi-criteria decision analysis: A hydro-geomorphic approach. Geomorphology, 350, 106861. https://doi.org/10.1016/j.geomorph.2019.106861
  • Abdulwahid, W. M., & Pradhan, B. (2017). Landslide vulnerability and risk assessment for multi-hazard scenarios using airborne laser scanning data (LiDAR). Landslides, 14(3), 1057–1076. https://doi.org/10.1007/s10346-016-0744-0
  • Remondo, J., Bonachea, J., & Cendrero, A. (2005). A statistical approach to landslide risk modelling at basin scale: from landslide susceptibility to quantitative risk assessment. Landslides, 2(4), 321–328. https://doi.org/10.1007/s10346-005-0016-x
  • Yakar, M., Yılmaz, H. M., & Mutluoǧlu, Ö. (2010). Comparative evaluation of excavation volume by TLS and total topographic station based methods
  • Bou Kheir, R., Cerdan, O., & Abdallah, C. (2006). Regional soil erosion risk mapping in Lebanon. Geomorphology, 82(3–4), 347–359. https://doi.org/10.1016/j.geomorph.2006.05.012
  • Thiery, Y., Malet, J.-P., Sterlacchini, S., Puissant, A., & Maquaire, O. (2007). Landslide susceptibility assessment by bivariate methods at large scales: Application to a complex mountainous environment. Geomorphology, 92(1–2), 38–59. https://doi.org/10.1016/j.geomorph.2007.02.020
  • Shahabi, H., Khezri, S., Bin Ahmad, B., & Hashim, M. (2014). RETRACTED: Landslide susceptibility mapping at central Zab basin, Iran: A comparison between analytical hierarchy process, frequency ratio and logistic regression models. Catena (Amst), 115, 55–70. https://doi.org/10.1016/j.catena.2013.11.014
  • Zou, Q., Cui, P., He, J., Lei, Y., & Li, S. (2019). Regional risk assessment of debris flows in China—An HRU-based approach. Geomorphology, 340, 84–102. https://doi.org/10.1016/j.geomorph.2019.04.027
  • Erkal, T., & Yildirim, U. (2012). Soil Erosion Risk Assessment in the Sincanlı Sub-Watershed of the Akarçay Basin (Afyonkarahisar, Turkey) Using the Universal Soil Loss Equation (USLE). Ekoloji, 21(84), 18–29. https://doi.org/10.5053/ekoloji.2012.843
  • Ünel, F. B., Kuşak, L., Yakar, M., & Doğan, H. Coğrafi bilgi sistemleri ve analitik hiyerarşi prosesi kullanarak Mersin ilinde otomatik meteoroloji gözlem istasyonu yer seçimi. Geomatik, 8(2), 107-123
  • Abbasnia, A., et al. (2018). Groundwater quality assessment for irrigation purposes based on irrigation water quality index and its zoning with GIS in the villages of Chabahar, Sistan and Baluchistan, Iran. Data Brief, 19, 623–631. https://doi.org/10.1016/j.dib.2018.05.061
  • Shalyari, N., Alinejad, A., Hashemi, A. H. G., RadFard, M., & Dehghani, M. (2019). Health risk assessment of nitrate in groundwater resources of Iranshahr using Monte Carlo simulation and geographic information system (GIS). MethodsX, 6, 1812–1821. https://doi.org/10.1016/j.mex.2019.07.024
  • Goodchild, M. F., Anselin, L., & Deichmann, U. (1993). A Framework for the Areal Interpolation of Socioeconomic Data. Environment and Planning A: Economy and Space, 25(3), 383–397. https://doi.org/10.1068/a250383
  • Cutter, S. L. (2006). Hazards Vulnerability and Environmental Justice. Routledge. https://doi.org/10.4324/9781849771542
  • Demir, M., & Altaş, N. T. (2024). Kars kentinde deprem hasar risk potansiyeli taşıyan alanların CBS tabanlı AHP analizlerine dayalı olarak belirlenmesi. Geomatik, 9(1), 123–140. https://doi.org/10.29128/geomatik.1375650
  • Hamilton, J. D. (2003). Exploring Technical and Cultural Appeals in Strategic Risk Communication: The Fernald Radium Case. Risk Analysis, 23(2), 291–302. https://doi.org/10.1111/1539-6924.00309
  • (2014). Summary for Policymakers. In Climate Change 2013 – The Physical Science Basis. Cambridge University Press. https://doi.org/10.1017/CBO9781107415324.004
  • Yilmaz, H. M., Yakar, M., Mutluoglu, O., Kavurmaci, M. M., & Yurt, K. (2012). Monitoring of soil erosion in Cappadocia region (Selime-Aksaray-Turkey). Environmental Earth Sciences, 66, 75-81.
  • Barton, S., & Pineo, R. (2023). Human Benefits of Green Spaces | Cooperative Extension | University of Delaware. Retrieved September 24, 2023, from https://www.udel.edu/academics/colleges/canr/cooperative-extension/fact-sheets/human-benefits-of-green-spaces/
  • Cooper, R. (2022). Coronavirus: Scientists reveal reduction in global air pollution and nitrogen dioxide levels. Retrieved April 5, 2022, from https://www.climateaction.org/news/coronavirus-scientists-reveal-reduction-in-global-air-pollution-and-nitrogen-dioxide-levels
  • Partigöç, N. S., & Dinçer, C. (2024). The Multi–Disaster risk assessment: A-GIS based approach for Izmir City. International Journal of Engineering and Geosciences, 9(1), 61-76. https://doi.org/10.26833/ijeg.1295657
  • Polat, Z. A., Kırtıloğlu, O. S., & Kayalık, M. (2023). Evolution and future trends in global research on geographic information system (GIS): a bibliometric analysis. Advanced GIS, 3(1), 22–30. Retrieved from https://publish.mersin.edu.tr/index.php/agis/article/view/886
  • Şahin, M. A. ., & Yakar, M. (2021). WebGIS technology and architectures. Advanced GIS, 1(1), 22–26. Retrieved from https://publish.mersin.edu.tr/index.php/agis/article/view/63
  • Partigöç, N. S., & Dinçer, C. (2024). Coğrafi bilgi sistemleri (CBS) tabanlı afet risk analizi: Denizli ili örneği. Geomatik, 9(1), 27-44. https://doi.org/10.29128/geomatik.1261051 Adesina E., Ajayi O, Odumosu J & Illah A (2023). GIS-based soil loss estimation using revised universal soil loss equation (RUSLE). Intercontinental Geoinformation Days (IGD), 7, 44-48, Peshawar, Pakistan
  • Kankanamge , H. P. N. K. ., & Mahmood, S. (2024). Post-Flood Disaster Management Challenges and Issues in the Bulathsinghala Divisional Secretariat Division, Sri Lanka: A Comprehensive Analysis and Strategic Framework for Resilience and Recovery. Advanced Geomatics, 4(1), 09–16. Retrieved from https://publish.mersin.edu.tr/index.php/geomatics/article/view/1092
  • Noor, S., Mahmood, S., & Habib, W. (2024). Risk Assessment of Attabad lake Outburst Flooding using integrated Hydrological and Geo-spatial Approach. Advanced Geomatics, 4(1), 57–67. Retrieved from https://publish.mersin.edu.tr/index.php/geomatics/article/view/1322
  • Gull, A., Liaqut, A., & Mahmood, S. (2023). Landslide Risk Assessment using Geo-spatial Technique: A study of District Abbottabad, Khyber Pakhtunkhwa, Pakistan. Advanced Geomatics, 3(2), 47–55. Retrieved from https://publish.mersin.edu.tr/index.php/geomatics/article/view/983
Year 2025, Volume: 10 Issue: 2, 173 - 196
https://doi.org/10.26833/ijeg.1544048

Abstract

References

  • Kwan, M. P., & Ransberger, D. M. (2010). LiDAR assisted emergency response: Detection of transport network obstructions caused by major disasters. Computers, Environment and Urban Systems, 34(3), 179–188. https://doi.org/10.1016/j.compenvurbsys.2010.02.001
  • McEntire, D. A. (2005). Why vulnerability matters: Exploring the merit of an inclusive disaster reduction concept. Disaster Prevention and Management: An International Journal, 14(2), 206–222. https://doi.org/10.1108/09653560510595209/full/html
  • Cutter, S. L. (2012). Hazards, vulnerability and environmental justice. Hazards, Vulnerability and Environmental Justice, 1–418. https://doi.org/10.4324/9781849771542
  • Coşkun, M., & Toprak, F. (2023). Coğrafi bilgi sistemleri (CBS) tabanlı orman yangını risk analizi: Bartın İli örneği. Geomatik, 8(3), 250–263. https://doi.org/10.29128/geomatik.1192219
  • Perry, R. W. (2007). What is a disaster?. In Handbooks of Sociology and Social Research (pp. 1–15). https://doi.org/10.1007/978-0-387-32353-4_1
  • Zerger, A., & Smith, D. I. (2003). Impediments to using GIS for real-time disaster decision support. Computers, Environment and Urban Systems, 27(2), 123–141. https://doi.org/10.1016/S0198-9715(01)00021-7
  • Sui, D. Z., & Sui, D. Z. (2008). The wikification of GIS and its consequences: Or Angelina Jolie’s new tattoo and the future of GIS. Computers, Environment and Urban Systems, 32(1), 1–5. https://doi.org/10.1016/j.compenvurbsys.2007.12.001
  • Zanuttigh, B., et al. (2014). THESEUS decision support system for coastal risk management. Coastal Engineering, 87, 218–239. https://doi.org/10.1016/j.coastaleng.2013.11.013
  • Napieralski, J., Barr, I., Kamp, U., & Kervyn, M. (2013). Remote sensing and GIScience in geomorphological mapping. In Treatise on Geomorphology: Volume 1-14, 1–14, 187–227. https://doi.org/10.1016/B978-0-12-374739-6.00050-6
  • Elwood, S. (2010). Mixed methods: Thinking, doing, and asking in multiple ways. In The SAGE Handbook of Qualitative Geography, 1, 94–114. Retrieved March 23, 2024, from https://www.torrossa.com/gs/resourceProxy?an=4913729&publisher=FZ7200#page=107
  • Cova, T. J. (1999). GIS in emergency management. Retrieved March 23, 2024, from https://www.geos.ed.ac.uk/~gisteac/gis_book_abridged/files/ch60.pdf
  • Miller, H. J., & Goodchild, M. F. (2015). Data-driven geography. GeoJournal, 80(4), 449–461. https://doi.org/10.1007/S10708-014-9602-6
  • Al Kalbanı, K., & Rahman, A. A. (2022). 3D city model for monitoring flash flood risks in Salalah, Oman. International Journal of Engineering and Geosciences, 7(1), 17–23. https://doi.org/10.26833/ijeg.857971
  • Morsy, S., & Hadi, M. (2022). Impact of land use/land cover on land surface temperature and its relationship with spectral indices in Dakahlia Governorate, Egypt. International Journal of Engineering and Geosciences, 7(3), 272–282. https://doi.org/10.26833/ijeg.978961
  • Yuan, M., & Nara, A. (2015). Space-Time Analytics of Tracks for the Understanding of Patterns of Life. In Space-Time Integration in Geography and GIScience (pp. 373–398). Springer Netherlands. https://doi.org/10.1007/978-94-017-9205-9_20
  • Tomaszewski, B. (2020). Geographic Information Systems (GIS) for Disaster Management. Geographic Information Systems (GIS) for Disaster Management. https://doi.org/10.4324/9781351034869/geographic-information-systems-gis-disaster-management-brian-tomaszewski
  • Cutter, S. L., Ash, K. D., & Emrich, C. T. (2014). The geographies of community disaster resilience. Global Environmental Change, 29, 65–77. https://doi.org/10.1016/j.gloenvcha.2014.08.005
  • Tate, E. (2013). Uncertainty Analysis for a Social Vulnerability Index. Annals of the Association of American Geographers, 103(3), 526–543. https://doi.org/10.1080/00045608.2012.700616
  • Batty, M. (2013). The New Science of Cities. The MIT Press. https://doi.org/10.7551/mitpress/9399.001.0001
  • Goodchild, M. F., & Glennon, J. A. (2010). Crowdsourcing geographic information for disaster response: a research frontier. International Journal of Digital Earth, 3(3), 231–241. https://doi.org/10.1080/17538941003759255
  • Kulkarni, A. V., Aziz, B., Shams, I., & Busse, J. W. (2009). Comparisons of Citations in Web of Science, Scopus, and Google Scholar for Articles Published in General Medical Journals. JAMA, 302(10), 1092–1096. https://doi.org/10.1001/JAMA.2009.1307
  • Harzing, A. W., & Alakangas, S. (2016). Google Scholar, Scopus and the Web of Science: a longitudinal and cross-disciplinary comparison. Scientometrics, 106(2), 787–804. https://doi.org/10.1007/S11192-015-1798-9/tables/4
  • Aksnes, D. W., Langfeldt, L., & Wouters, P. (2019). Citations, Citation Indicators, and Research Quality: An Overview of Basic Concepts and Theories. SAGE Open, 9(1). https://doi.org/10.1177/2158244019829575
  • Page, M. J., et al. (2021). The PRISMA 2020 statement: an updated guideline for reporting systematic reviews. BMJ, n71. https://doi.org/10.1136/bmj.n71
  • van Eck, N. J., & Waltman, L. (2014). Visualizing Bibliometric Networks. In Measuring Scholarly Impact (pp. 285–320). Springer International Publishing. https://doi.org/10.1007/978-3-319-10377-8_13
  • van Eck, N. J., & Waltman, L. (2009). Software survey: VOSviewer, a computer program for bibliometric mapping. Scientometrics, 84(2), 523–538. https://doi.org/10.1007/S11192-009-0146-3
  • Aria, M., & Cuccurullo, C. (2017). bibliometrix: An R-tool for comprehensive science mapping analysis. Journal of Informetrics, 11(4), 959–975. https://doi.org/10.1016/j.joi.2017.08.007
  • Cobo, M. J., López-Herrera, A. G., Herrera-Viedma, E., & Herrera, F. (2011). Science mapping software tools: Review, analysis, and cooperative study among tools. Journal of the American Society for Information Science and Technology, 62(7), 1382–1402. https://doi.org/10.1002/asi.21525
  • Ellegaard, O., & Wallin, J. A. (2015). The bibliometric analysis of scholarly production: How great is the impact?. Scientometrics, 105(3), 1809–1831. https://doi.org/10.1007/s11192-015-1645-z
  • Dai, F. C., Lee, C. F., & Ngai, Y. Y. (2002). Landslide risk assessment and management: an overview. Engineering Geology, 64(1), 65–87. https://doi.org/10.1016/S0013-7952(01)00093-X
  • Martínez, J., Vega-Garcia, C., & Chuvieco, E. (2009). Human-caused wildfire risk rating for prevention planning in Spain. Journal of Environmental Management, 90(2), 1241–1252. https://doi.org/10.1016/j.jenvman.2008.07.005
  • Guan, Q., et al. (2018). Source apportionment of heavy metals in agricultural soil based on PMF: A case study in Hexi Corridor, northwest China. Chemosphere, 193, 189–197. https://doi.org/10.1016/j.chemosphere.2017.10.151
  • Huang, Y., et al. (2018). Heavy metal pollution and health risk assessment of agricultural soils in a typical peri-urban area in southeast China. Journal of Environmental Management, 207, 159–168. https://doi.org/10.1016/j.jenvman.2017.10.072
  • Chuvieco, E., et al. (2010). Development of a framework for fire risk assessment using remote sensing and geographic information system technologies. Ecological Modelling, 221(1), 46–58. https://doi.org/10.1016/j.ecolmodel.2008.11.017
  • Alcántara-Ayala, I. (2002). Geomorphology, natural hazards, vulnerability and prevention of natural disasters in developing countries. Geomorphology, 47(2–4), 107–124. https://doi.org/10.1016/S0169-555X(02)00083-1
  • Babiker, I. S., Mohamed, M. A. A., Hiyama, T., & Kato, K. (2005). A GIS-based DRASTIC model for assessing aquifer vulnerability in Kakamigahara Heights, Gifu Prefecture, central Japan. Science of The Total Environment, 345(1–3), 127–140. https://doi.org/10.1016/j.scitotenv.2004.11.005
  • Benz, U. C., Hofmann, P., Willhauck, G., Lingenfelder, I., & Heynen, M. (2004). Multi-resolution, object-oriented fuzzy analysis of remote sensing data for GIS-ready information. ISPRS Journal of Photogrammetry and Remote Sensing, 58(3–4), 239–258. https://doi.org/10.1016/j.isprsjprs.2003.10.002
  • Devkota, K. C., et al. (2013). Landslide susceptibility mapping using certainty factor, index of entropy and logistic regression models in GIS and their comparison at Mugling–Narayanghat road section in Nepal Himalaya. Natural Hazards, 65(1), 135–165. https://doi.org/10.1007/s11069-012-0347-6
  • Maanan, M., Saddik, M., Maanan, M., Chaibi, M., Assobhei, O., & Zourarah, B. (2015). Environmental and ecological risk assessment of heavy metals in sediments of Nador lagoon, Morocco. Ecological Indicators, 48, 616–626. https://doi.org/10.1016/j.ecolind.2014.09.034
  • Regmi, N. R., Giardino, J. R., & Vitek, J. D. (2010). Modeling susceptibility to landslides using the weight of evidence approach: Western Colorado, USA. Geomorphology, 115(1–2), 172–187. https://doi.org/10.1016/j.geomorph.2009.10.002
  • Saha, A. K., Gupta, R. P., Sarkar, I., Arora, M. K., & Csaplovics, E. (2005). An approach for GIS-based statistical landslide susceptibility zonation?with a case study in the Himalayas. Landslides, 2(1), 61–69. https://doi.org/10.1007/s10346-004-0039-8
  • Tran, P., Shaw, R., Chantry, G., & Norton, J. (2009). GIS and local knowledge in disaster management: a case study of flood risk mapping in Viet Nam. Disasters, 33(1), 152–169. https://doi.org/10.1111/j.1467-7717.2008.01067.x
  • Ullah, K., & Zhang, J. (2020). GIS-based flood hazard mapping using relative frequency ratio method: A case study of Panjkora River Basin, eastern Hindu Kush, Pakistan. PLoS One, 15(3), e0229153. https://doi.org/10.1371/journal.pone.0229153
  • Remondo, J., Bonachea, J., & Cendrero, A. (2008). Quantitative landslide risk assessment and mapping on the basis of recent occurrences. Geomorphology, 94(3–4), 496–507. https://doi.org/10.1016/j.geomorph.2006.10.041
  • Kusak, L., Unel, F. B., Alptekin, A., Celik, M. O., & Yakar, M. (2021). Apriori association rule and K-means clustering algorithms for interpretation of pre-event landslide areas and landslide inventory mapping. Open Geosciences, 13(1), 1226-1244
  • Dahal, R. K., Hasegawa, S., Nonomura, A., Yamanaka, M., Dhakal, S., & Paudyal, P. (2008). Predictive modelling of rainfall-induced landslide hazard in the Lesser Himalaya of Nepal based on weights-of-evidence. Geomorphology, 102(3–4), 496–510. https://doi.org/10.1016/j.geomorph.2008.05.041
  • Umar, Z., Pradhan, B., Ahmad, A., Jebur, M. N., & Tehrany, M. S. (2014). Earthquake induced landslide susceptibility mapping using an integrated ensemble frequency ratio and logistic regression models in West Sumatera Province, Indonesia. Catena (Amst), 118, 124–135. https://doi.org/10.1016/j.catena.2014.02.005
  • Mishra, K., & Sinha, R. (2020). Flood risk assessment in the Kosi megafan using multi-criteria decision analysis: A hydro-geomorphic approach. Geomorphology, 350, 106861. https://doi.org/10.1016/j.geomorph.2019.106861
  • Abdulwahid, W. M., & Pradhan, B. (2017). Landslide vulnerability and risk assessment for multi-hazard scenarios using airborne laser scanning data (LiDAR). Landslides, 14(3), 1057–1076. https://doi.org/10.1007/s10346-016-0744-0
  • Remondo, J., Bonachea, J., & Cendrero, A. (2005). A statistical approach to landslide risk modelling at basin scale: from landslide susceptibility to quantitative risk assessment. Landslides, 2(4), 321–328. https://doi.org/10.1007/s10346-005-0016-x
  • Yakar, M., Yılmaz, H. M., & Mutluoǧlu, Ö. (2010). Comparative evaluation of excavation volume by TLS and total topographic station based methods
  • Bou Kheir, R., Cerdan, O., & Abdallah, C. (2006). Regional soil erosion risk mapping in Lebanon. Geomorphology, 82(3–4), 347–359. https://doi.org/10.1016/j.geomorph.2006.05.012
  • Thiery, Y., Malet, J.-P., Sterlacchini, S., Puissant, A., & Maquaire, O. (2007). Landslide susceptibility assessment by bivariate methods at large scales: Application to a complex mountainous environment. Geomorphology, 92(1–2), 38–59. https://doi.org/10.1016/j.geomorph.2007.02.020
  • Shahabi, H., Khezri, S., Bin Ahmad, B., & Hashim, M. (2014). RETRACTED: Landslide susceptibility mapping at central Zab basin, Iran: A comparison between analytical hierarchy process, frequency ratio and logistic regression models. Catena (Amst), 115, 55–70. https://doi.org/10.1016/j.catena.2013.11.014
  • Zou, Q., Cui, P., He, J., Lei, Y., & Li, S. (2019). Regional risk assessment of debris flows in China—An HRU-based approach. Geomorphology, 340, 84–102. https://doi.org/10.1016/j.geomorph.2019.04.027
  • Erkal, T., & Yildirim, U. (2012). Soil Erosion Risk Assessment in the Sincanlı Sub-Watershed of the Akarçay Basin (Afyonkarahisar, Turkey) Using the Universal Soil Loss Equation (USLE). Ekoloji, 21(84), 18–29. https://doi.org/10.5053/ekoloji.2012.843
  • Ünel, F. B., Kuşak, L., Yakar, M., & Doğan, H. Coğrafi bilgi sistemleri ve analitik hiyerarşi prosesi kullanarak Mersin ilinde otomatik meteoroloji gözlem istasyonu yer seçimi. Geomatik, 8(2), 107-123
  • Abbasnia, A., et al. (2018). Groundwater quality assessment for irrigation purposes based on irrigation water quality index and its zoning with GIS in the villages of Chabahar, Sistan and Baluchistan, Iran. Data Brief, 19, 623–631. https://doi.org/10.1016/j.dib.2018.05.061
  • Shalyari, N., Alinejad, A., Hashemi, A. H. G., RadFard, M., & Dehghani, M. (2019). Health risk assessment of nitrate in groundwater resources of Iranshahr using Monte Carlo simulation and geographic information system (GIS). MethodsX, 6, 1812–1821. https://doi.org/10.1016/j.mex.2019.07.024
  • Goodchild, M. F., Anselin, L., & Deichmann, U. (1993). A Framework for the Areal Interpolation of Socioeconomic Data. Environment and Planning A: Economy and Space, 25(3), 383–397. https://doi.org/10.1068/a250383
  • Cutter, S. L. (2006). Hazards Vulnerability and Environmental Justice. Routledge. https://doi.org/10.4324/9781849771542
  • Demir, M., & Altaş, N. T. (2024). Kars kentinde deprem hasar risk potansiyeli taşıyan alanların CBS tabanlı AHP analizlerine dayalı olarak belirlenmesi. Geomatik, 9(1), 123–140. https://doi.org/10.29128/geomatik.1375650
  • Hamilton, J. D. (2003). Exploring Technical and Cultural Appeals in Strategic Risk Communication: The Fernald Radium Case. Risk Analysis, 23(2), 291–302. https://doi.org/10.1111/1539-6924.00309
  • (2014). Summary for Policymakers. In Climate Change 2013 – The Physical Science Basis. Cambridge University Press. https://doi.org/10.1017/CBO9781107415324.004
  • Yilmaz, H. M., Yakar, M., Mutluoglu, O., Kavurmaci, M. M., & Yurt, K. (2012). Monitoring of soil erosion in Cappadocia region (Selime-Aksaray-Turkey). Environmental Earth Sciences, 66, 75-81.
  • Barton, S., & Pineo, R. (2023). Human Benefits of Green Spaces | Cooperative Extension | University of Delaware. Retrieved September 24, 2023, from https://www.udel.edu/academics/colleges/canr/cooperative-extension/fact-sheets/human-benefits-of-green-spaces/
  • Cooper, R. (2022). Coronavirus: Scientists reveal reduction in global air pollution and nitrogen dioxide levels. Retrieved April 5, 2022, from https://www.climateaction.org/news/coronavirus-scientists-reveal-reduction-in-global-air-pollution-and-nitrogen-dioxide-levels
  • Partigöç, N. S., & Dinçer, C. (2024). The Multi–Disaster risk assessment: A-GIS based approach for Izmir City. International Journal of Engineering and Geosciences, 9(1), 61-76. https://doi.org/10.26833/ijeg.1295657
  • Polat, Z. A., Kırtıloğlu, O. S., & Kayalık, M. (2023). Evolution and future trends in global research on geographic information system (GIS): a bibliometric analysis. Advanced GIS, 3(1), 22–30. Retrieved from https://publish.mersin.edu.tr/index.php/agis/article/view/886
  • Şahin, M. A. ., & Yakar, M. (2021). WebGIS technology and architectures. Advanced GIS, 1(1), 22–26. Retrieved from https://publish.mersin.edu.tr/index.php/agis/article/view/63
  • Partigöç, N. S., & Dinçer, C. (2024). Coğrafi bilgi sistemleri (CBS) tabanlı afet risk analizi: Denizli ili örneği. Geomatik, 9(1), 27-44. https://doi.org/10.29128/geomatik.1261051 Adesina E., Ajayi O, Odumosu J & Illah A (2023). GIS-based soil loss estimation using revised universal soil loss equation (RUSLE). Intercontinental Geoinformation Days (IGD), 7, 44-48, Peshawar, Pakistan
  • Kankanamge , H. P. N. K. ., & Mahmood, S. (2024). Post-Flood Disaster Management Challenges and Issues in the Bulathsinghala Divisional Secretariat Division, Sri Lanka: A Comprehensive Analysis and Strategic Framework for Resilience and Recovery. Advanced Geomatics, 4(1), 09–16. Retrieved from https://publish.mersin.edu.tr/index.php/geomatics/article/view/1092
  • Noor, S., Mahmood, S., & Habib, W. (2024). Risk Assessment of Attabad lake Outburst Flooding using integrated Hydrological and Geo-spatial Approach. Advanced Geomatics, 4(1), 57–67. Retrieved from https://publish.mersin.edu.tr/index.php/geomatics/article/view/1322
  • Gull, A., Liaqut, A., & Mahmood, S. (2023). Landslide Risk Assessment using Geo-spatial Technique: A study of District Abbottabad, Khyber Pakhtunkhwa, Pakistan. Advanced Geomatics, 3(2), 47–55. Retrieved from https://publish.mersin.edu.tr/index.php/geomatics/article/view/983
There are 74 citations in total.

Details

Primary Language English
Subjects Geographical Information Systems (GIS) in Planning
Journal Section Research Article
Authors

Yusuf Eminoğlu 0009-0005-6000-2934

Çiğdem Tarhan 0000-0002-5891-0635

Early Pub Date January 24, 2025
Publication Date
Submission Date September 5, 2024
Acceptance Date October 19, 2024
Published in Issue Year 2025 Volume: 10 Issue: 2

Cite

APA Eminoğlu, Y., & Tarhan, Ç. (2025). Decadal evolution of GIS in disaster management and risk assessment. International Journal of Engineering and Geosciences, 10(2), 173-196. https://doi.org/10.26833/ijeg.1544048
AMA Eminoğlu Y, Tarhan Ç. Decadal evolution of GIS in disaster management and risk assessment. IJEG. January 2025;10(2):173-196. doi:10.26833/ijeg.1544048
Chicago Eminoğlu, Yusuf, and Çiğdem Tarhan. “Decadal Evolution of GIS in Disaster Management and Risk Assessment”. International Journal of Engineering and Geosciences 10, no. 2 (January 2025): 173-96. https://doi.org/10.26833/ijeg.1544048.
EndNote Eminoğlu Y, Tarhan Ç (January 1, 2025) Decadal evolution of GIS in disaster management and risk assessment. International Journal of Engineering and Geosciences 10 2 173–196.
IEEE Y. Eminoğlu and Ç. Tarhan, “Decadal evolution of GIS in disaster management and risk assessment”, IJEG, vol. 10, no. 2, pp. 173–196, 2025, doi: 10.26833/ijeg.1544048.
ISNAD Eminoğlu, Yusuf - Tarhan, Çiğdem. “Decadal Evolution of GIS in Disaster Management and Risk Assessment”. International Journal of Engineering and Geosciences 10/2 (January 2025), 173-196. https://doi.org/10.26833/ijeg.1544048.
JAMA Eminoğlu Y, Tarhan Ç. Decadal evolution of GIS in disaster management and risk assessment. IJEG. 2025;10:173–196.
MLA Eminoğlu, Yusuf and Çiğdem Tarhan. “Decadal Evolution of GIS in Disaster Management and Risk Assessment”. International Journal of Engineering and Geosciences, vol. 10, no. 2, 2025, pp. 173-96, doi:10.26833/ijeg.1544048.
Vancouver Eminoğlu Y, Tarhan Ç. Decadal evolution of GIS in disaster management and risk assessment. IJEG. 2025;10(2):173-96.