Research Article
BibTex RIS Cite
Year 2025, Volume: 10 Issue: 3, 329 - 338
https://doi.org/10.26833/ijeg.1589939

Abstract

References

  • Lowe, J., & Zaccheo, P. F. (1991). Subsurface explorations and sampling. Foundation engineering handbook, 1-71. https://doi.org/10.1007/978-1-4757-5271-7_1
  • Hassan, W., Raza, M. F., Alshameri, B., Shahzad, A., Khalid, M. H., & Nawaz, M. N. (2023). Statistical interpolation and spatial mapping of geotechnical soil parameters of District Sargodha, Pakistan. Bulletin of Engineering Geology and the Environment, 82(1),37. https://doi.org/10.1007/s10064-022-03059-2
  • Rahman, M. M. (2019). Foundation design using standard penetration test (spt) n-value. Researchgate,5,1-39. https://doi.org/10.13140/RG.2.2.23159.73123
  • ASTM. (1999). ASTM D1586-99 standard test method for penetration test and split-barrel sampling on soils. Annual Book of ASTM Standards, American Society of Testing and Material: West Conshohocken,PA,USA. https://doi.org/10.1520/D1586-11
  • AASHTO. (2009). AASHTO T-206 method of test for penetration test and split-barrel sampling of soils.
  • Rocha, B. P., & Giacheti, H. L. (2018). Site characterization of a tropical soil by in situ tests. Dyna,85(206),211-219. https://doi.org/10.15446/dyna.v 85n206. 67891
  • Decourt, L. (1990). The Standard Penetration Test, State of the Art Report.(pp. 1-12). Oslo, Norway: Norwegian Geotechnical Institute Publication.
  • Page, M., Bradshaw, A. S., & Mike Sherrill, P. E. (2005). Guidelines for Geotechnical Site Investigations in Rhode Island Final Report. University of Rhode Island: Narragansett, RI, USA.
  • Ghafghazi, M., DeJong, J. T., Sturm, A. P., & Temple, C. E. (2017). Instrumented Becker penetration test. II: iBPT-SPT correlation for characterization and liquefaction assessment of gravelly soils. Journal of Geotechnical and Geoenvironmental Engineering, 143(9),04017063. https://doi.org/10.1061/ (ASCE)GT.1943-5606.0001718
  • Bahmani, S. M., & Briaud, J. L. (2020). Modulus to SPT blow count correlation for settlement of footings on sand. In Geo-Congress 2020 (pp. 343-349). Reston, VA: American Society of Civil Engineers. https://doi.org/10.1061/9780784482780.033
  • Peck, R. B., Hanson, W. E., & Thornburn, T. H. (1991). Foundation engineering. John Wiley & Sons.
  • Craig, R.F. (2004). Soil Mechanics. Spon, Taylor & Francis Group: New York, NY, USA.
  • Matsumoto, T., Phan, L. T., Oshima, A., & Shimono, S. (2015). Measurements of driving energy in SPT and various dynamic cone penetration tests. Soils and Foundations,55(1),201-212. https://doi.org/10.1016/j.sandf.2014.12.016
  • Habib, W., Mahmood, S., Noor, S., Saleem, A., Siraj, M., & Ahmad, H. (2023). A post earthquake damage assessment using GIS in district Mirpur, Pakistan. Advanced GIS, 3(2), 53-58.
  • Onyıl, H. I. (2022). Geospatial intelligence (GeoINT) risk maps producing with geographic information systems (GIS) and creation of the 2D simulation model. Advanced GIS, 2(1), 01-07.
  • Cabalar, A. F., Karabas, B., Mahmutluoglu, B., & Yildiz, O. (2021). An IDW-based GIS application for assessment of geotechnical characterization in Erzincan, Turkey. Arabian Journal of Geosciences, 14(20), 2129. https://doi.org/10.1007/s12517-021-08481-6
  • Al-Maliki, L. A. J., Al-Mamoori, S. K., El-Tawel, K., Hussain, H. M., Al-Ansari, N., & Al Ali, M. J. (2018). Bearing capacity map for An-Najaf and Kufa cities using GIS. Engineering, 10(05), 262. https://doi.org/10.4236/eng.2018.105018
  • Yakar, M., Yilmaz, H. M. & Mutluoglu, O. (2010). Close range photogrammetry and robotic total station in volume calculation. International Journal of the Physical Sciences. 5(2), 086-096
  • Adesina, E., Ajayi, O., Odumosu, J., & Illah, A. (2024). Assessing the risk of soil loss using geographical information system (GIS) and the revised universal soil loss equation (RUSLE). Advanced GIS, 4(2), 42-53.
  • Yakar, M., & Dogan, Y. (2019). 3D Reconstruction of Residential Areas with SfM Photogrammetry. In Advances in Remote Sensing and Geo Informatics Applications: Proceedings of the 1st Springer Conference of the Arabian Journal of Geosciences (CAJG-1), Tunisia 2018 (pp. 73-75). Springer International Publishing. -45.
  • Unel, F. B., Kusak, L., & Yakar, M. (2023). GeoValueIndex map of public property assets generating via Analytic Hierarchy Process and Geographic Information System for Mass Appraisal: GeoValueIndex. Aestimum, 82, 51-69..
  • Topaloglu, R. H. (2022). Investigation of Land Use/Land Cover change in Mersin using geographical object-based image analysis (GEOBIA). Advanced Remote Sensing, 2(2), 40–46.
  • Hossain, M. B., & Rahman, M. (2025). Seismic microzonation and probability of ground failure assessment caused by liquefaction for Bogura District, Bangladesh, Journal of Rehabilitation in Civil Engineering,13(2),222-247. https://doi.org/10.22075/jrce.2024.34111.2086
  • Rahman, M. M., Hossain, M. B., & Roknuzzaman, M. (2023). Effect of peak ground acceleration (PGA) on liquefaction behavior of subsoil: A case study of Dinajpur Sadar Upazila, Bangladesh. In AIP Conference Proceedings, 2713(1),1-13. https://doi.org/10.1063/5.0129770
  • Hossain, M. B., Roknuzzaman, M., & Rahman, M. M. (2022). Liquefaction Potential Evaluation by Deterministic and Probabilistic Approaches. Civil Engineering Journal, 8(7), 1459-1481. https://doi.org/10.28991/CEJ-2022-08-07-010
  • Civelekler, E. (2023). Using GIS for the allowable soil bearing capacity estimation according to the Terzaghi (1943) equation in Eskişehir city center, Türkiye. International Journal of Engineering and Geosciences, 8(3),310-317. https://doi.org/10.26833/ijeg.1212584
  • Civelekler, E., & Pekkan, E. (2022). The application of GIS in visualization of geotechnical data (SPT-Soil Properties): a case study in Eskisehir-Tepebaşı, Turkey. International Journal of Engineering and Geosciences,7(3),302-313. https://doi.org/10.26833/ijeg.980611 28.İşcan, F., & Güler, E. (2021). Developing a mobile GIS application related to the collection of land data in soil mapping studies. International Journal of Engineering and Geosciences, 6(1), 27-39. https://doi.org/10.26833/ijeg.677958
  • Mohtashami, S., Hansson, L., & Eliasson, L. (2023). Estimating Soil Strength Using GIS-Based Maps - A case study in Sweden. European Journal of Forest Engineering,9(2),70-79. https://doi.org/10.33904/ejfe.1321075
  • Daniyal, M., Sohail, G. M., & Rashid, H. M. A. (2023). GIS-based mapping of geotechnical and geophysical properties of Lahore soils. Environmental Earth Sciences,82(22),540. https://doi.org/10.1007/s12665-023-11201-w
  • Ijaz, Z., Zhao, C., Ijaz, N., Rehman, Z. U., & Ijaz, A. (2021). Spatial mapping of geotechnical soil properties at multiple depths in Sialkot region, Pakistan. Environmental Earth Sciences, 80(24), 787. https://doi.org/10.1007/s12665-021-10084-z
  • FAO. (1995). Digital soil map of the world and derived soil properties. Food and Agriculture Organization.
  • Youd, T. L., & Idriss, I. M. (2001). Liquefaction resistance of soils: summary report from the 1996 NCEER and 1998 NCEER/NSF workshops on evaluation of liquefaction resistance of soils. Journal of geotechnical and geoenvironmental engineering, 127(4),297-313. https://doi.org/10.1061/(ASCE)1090-0241(2001) 127:4(297)
  • Skempton, A. W. (1986). Standard penetration test procedures and the effects in sands of overburden pressure, relative density, particle size, ageing and overconsolidation. Geotechnique, 36(3), 425-447. https://doi.org/10.1680/geot.1986.36.3.425
  • Bolton Seed, H., Tokimatsu, K., Harder, L. F., & Chung, R. M. (1985). Influence of SPT procedures in soil liquefaction resistance evaluations. Journal of geotechnical engineering, 111(12), 1425-1445. https://doi.org/10.1061/(ASCE)07339410(1985)111:12(1425)
  • Gibbs, H. (1957). Research on determining the density of sands by spoon penetration testing. 4th International Conference on SMFE, 35–39.
  • BNBC. (2015). Bangladesh National Building Code.
  • Bowles, J. (1998). Foundation Analysis and Design. McGraw-Hill: New York, NY, USA.
  • Terzaghi, K., Peck, R.B., Mesri, G. (1996). Soil Mechanics in Engineering Practice. Third edit. John Wiley & Sons, New York.
  • Fletcher, G. F. (1965). Standard penetration test: its uses and abuses. Journal of the Soil Mechanics and Foundations Division, 91(4), 67-75. https://doi.org/10.1061/JSFEAQ.0000776
  • Das, B.M. (2015). Principles of Foundation Engineering. Cengage Learning: Boston, MA, USA.
  • Bowles, J. E. (1987). Elastic foundation settlements on sand deposits. Journal of Geotechnical Engineering, 113(8),846-860. https://doi.org/10.1061/(ASCE)07339410(1987)113: 8(846)
  • Al-Mamoori, S. K., Al-Maliki, L. A., Al-Sulttani, A. H., El-Tawil, K., & Al-Ansari, N. (2021). Statistical analysis of the best GIS interpolation method for bearing capacity estimation in An-Najaf City, Iraq. Environmental Earth Sciences, 80(20), 683. https://doi.org/10.1007/s12665-021-09971-2

GIS based allowable bearing capacity thematic maps of shallow foundation for Bogura District, Bangladesh

Year 2025, Volume: 10 Issue: 3, 329 - 338
https://doi.org/10.26833/ijeg.1589939

Abstract

This investigation aims to create thematic maps of the allowable load-bearing capacity (BC) of shallow footings based on the findings of standard penetration tests (SPTs) carried out in Bogura District. Structural engineers utilize the allowable soil BC to calculate the required dimensions of the shallow footing for the buildings they want to build. 255 boreholes (BHs) were drilled in the research region, which were dispersed randomly. Four SPTs were conducted in each borehole at depths of 1.5, 3, 6, and 9 m, measured from the current ground level (EGL). To assess the accurate SPT-N values, a variety of criteria were taken into consideration, including the unit weight, the groundwater table (GWT), and other correction factors. The allowed soil BC at 1.5, 3, 6, and 9 meters was then estimated using the adjusted SPT-N values. The final product is a set of themed GIS maps of the city, each hue representing a different number for the permissible soil holding capacity. Since clay is present at shallow depths, the allowable BC in 86.5% of the region at 1.5 m depth was less than 73.13 kN/m2, and in 82.4% of the area at 3 m depth, it was between 64.38 and 96.31 kN/m2. For the whole area, the predicted permissible BC for depths of 6 and 9 meters was greater than 100 kN/m2. Various local authorities can use these maps to determine the appropriate type of foundation and forecast the soil carrying capacity. It may also be used to evaluate the likelihood of failure and collapse as well as the foundations of both existing and poorly designed buildings.

References

  • Lowe, J., & Zaccheo, P. F. (1991). Subsurface explorations and sampling. Foundation engineering handbook, 1-71. https://doi.org/10.1007/978-1-4757-5271-7_1
  • Hassan, W., Raza, M. F., Alshameri, B., Shahzad, A., Khalid, M. H., & Nawaz, M. N. (2023). Statistical interpolation and spatial mapping of geotechnical soil parameters of District Sargodha, Pakistan. Bulletin of Engineering Geology and the Environment, 82(1),37. https://doi.org/10.1007/s10064-022-03059-2
  • Rahman, M. M. (2019). Foundation design using standard penetration test (spt) n-value. Researchgate,5,1-39. https://doi.org/10.13140/RG.2.2.23159.73123
  • ASTM. (1999). ASTM D1586-99 standard test method for penetration test and split-barrel sampling on soils. Annual Book of ASTM Standards, American Society of Testing and Material: West Conshohocken,PA,USA. https://doi.org/10.1520/D1586-11
  • AASHTO. (2009). AASHTO T-206 method of test for penetration test and split-barrel sampling of soils.
  • Rocha, B. P., & Giacheti, H. L. (2018). Site characterization of a tropical soil by in situ tests. Dyna,85(206),211-219. https://doi.org/10.15446/dyna.v 85n206. 67891
  • Decourt, L. (1990). The Standard Penetration Test, State of the Art Report.(pp. 1-12). Oslo, Norway: Norwegian Geotechnical Institute Publication.
  • Page, M., Bradshaw, A. S., & Mike Sherrill, P. E. (2005). Guidelines for Geotechnical Site Investigations in Rhode Island Final Report. University of Rhode Island: Narragansett, RI, USA.
  • Ghafghazi, M., DeJong, J. T., Sturm, A. P., & Temple, C. E. (2017). Instrumented Becker penetration test. II: iBPT-SPT correlation for characterization and liquefaction assessment of gravelly soils. Journal of Geotechnical and Geoenvironmental Engineering, 143(9),04017063. https://doi.org/10.1061/ (ASCE)GT.1943-5606.0001718
  • Bahmani, S. M., & Briaud, J. L. (2020). Modulus to SPT blow count correlation for settlement of footings on sand. In Geo-Congress 2020 (pp. 343-349). Reston, VA: American Society of Civil Engineers. https://doi.org/10.1061/9780784482780.033
  • Peck, R. B., Hanson, W. E., & Thornburn, T. H. (1991). Foundation engineering. John Wiley & Sons.
  • Craig, R.F. (2004). Soil Mechanics. Spon, Taylor & Francis Group: New York, NY, USA.
  • Matsumoto, T., Phan, L. T., Oshima, A., & Shimono, S. (2015). Measurements of driving energy in SPT and various dynamic cone penetration tests. Soils and Foundations,55(1),201-212. https://doi.org/10.1016/j.sandf.2014.12.016
  • Habib, W., Mahmood, S., Noor, S., Saleem, A., Siraj, M., & Ahmad, H. (2023). A post earthquake damage assessment using GIS in district Mirpur, Pakistan. Advanced GIS, 3(2), 53-58.
  • Onyıl, H. I. (2022). Geospatial intelligence (GeoINT) risk maps producing with geographic information systems (GIS) and creation of the 2D simulation model. Advanced GIS, 2(1), 01-07.
  • Cabalar, A. F., Karabas, B., Mahmutluoglu, B., & Yildiz, O. (2021). An IDW-based GIS application for assessment of geotechnical characterization in Erzincan, Turkey. Arabian Journal of Geosciences, 14(20), 2129. https://doi.org/10.1007/s12517-021-08481-6
  • Al-Maliki, L. A. J., Al-Mamoori, S. K., El-Tawel, K., Hussain, H. M., Al-Ansari, N., & Al Ali, M. J. (2018). Bearing capacity map for An-Najaf and Kufa cities using GIS. Engineering, 10(05), 262. https://doi.org/10.4236/eng.2018.105018
  • Yakar, M., Yilmaz, H. M. & Mutluoglu, O. (2010). Close range photogrammetry and robotic total station in volume calculation. International Journal of the Physical Sciences. 5(2), 086-096
  • Adesina, E., Ajayi, O., Odumosu, J., & Illah, A. (2024). Assessing the risk of soil loss using geographical information system (GIS) and the revised universal soil loss equation (RUSLE). Advanced GIS, 4(2), 42-53.
  • Yakar, M., & Dogan, Y. (2019). 3D Reconstruction of Residential Areas with SfM Photogrammetry. In Advances in Remote Sensing and Geo Informatics Applications: Proceedings of the 1st Springer Conference of the Arabian Journal of Geosciences (CAJG-1), Tunisia 2018 (pp. 73-75). Springer International Publishing. -45.
  • Unel, F. B., Kusak, L., & Yakar, M. (2023). GeoValueIndex map of public property assets generating via Analytic Hierarchy Process and Geographic Information System for Mass Appraisal: GeoValueIndex. Aestimum, 82, 51-69..
  • Topaloglu, R. H. (2022). Investigation of Land Use/Land Cover change in Mersin using geographical object-based image analysis (GEOBIA). Advanced Remote Sensing, 2(2), 40–46.
  • Hossain, M. B., & Rahman, M. (2025). Seismic microzonation and probability of ground failure assessment caused by liquefaction for Bogura District, Bangladesh, Journal of Rehabilitation in Civil Engineering,13(2),222-247. https://doi.org/10.22075/jrce.2024.34111.2086
  • Rahman, M. M., Hossain, M. B., & Roknuzzaman, M. (2023). Effect of peak ground acceleration (PGA) on liquefaction behavior of subsoil: A case study of Dinajpur Sadar Upazila, Bangladesh. In AIP Conference Proceedings, 2713(1),1-13. https://doi.org/10.1063/5.0129770
  • Hossain, M. B., Roknuzzaman, M., & Rahman, M. M. (2022). Liquefaction Potential Evaluation by Deterministic and Probabilistic Approaches. Civil Engineering Journal, 8(7), 1459-1481. https://doi.org/10.28991/CEJ-2022-08-07-010
  • Civelekler, E. (2023). Using GIS for the allowable soil bearing capacity estimation according to the Terzaghi (1943) equation in Eskişehir city center, Türkiye. International Journal of Engineering and Geosciences, 8(3),310-317. https://doi.org/10.26833/ijeg.1212584
  • Civelekler, E., & Pekkan, E. (2022). The application of GIS in visualization of geotechnical data (SPT-Soil Properties): a case study in Eskisehir-Tepebaşı, Turkey. International Journal of Engineering and Geosciences,7(3),302-313. https://doi.org/10.26833/ijeg.980611 28.İşcan, F., & Güler, E. (2021). Developing a mobile GIS application related to the collection of land data in soil mapping studies. International Journal of Engineering and Geosciences, 6(1), 27-39. https://doi.org/10.26833/ijeg.677958
  • Mohtashami, S., Hansson, L., & Eliasson, L. (2023). Estimating Soil Strength Using GIS-Based Maps - A case study in Sweden. European Journal of Forest Engineering,9(2),70-79. https://doi.org/10.33904/ejfe.1321075
  • Daniyal, M., Sohail, G. M., & Rashid, H. M. A. (2023). GIS-based mapping of geotechnical and geophysical properties of Lahore soils. Environmental Earth Sciences,82(22),540. https://doi.org/10.1007/s12665-023-11201-w
  • Ijaz, Z., Zhao, C., Ijaz, N., Rehman, Z. U., & Ijaz, A. (2021). Spatial mapping of geotechnical soil properties at multiple depths in Sialkot region, Pakistan. Environmental Earth Sciences, 80(24), 787. https://doi.org/10.1007/s12665-021-10084-z
  • FAO. (1995). Digital soil map of the world and derived soil properties. Food and Agriculture Organization.
  • Youd, T. L., & Idriss, I. M. (2001). Liquefaction resistance of soils: summary report from the 1996 NCEER and 1998 NCEER/NSF workshops on evaluation of liquefaction resistance of soils. Journal of geotechnical and geoenvironmental engineering, 127(4),297-313. https://doi.org/10.1061/(ASCE)1090-0241(2001) 127:4(297)
  • Skempton, A. W. (1986). Standard penetration test procedures and the effects in sands of overburden pressure, relative density, particle size, ageing and overconsolidation. Geotechnique, 36(3), 425-447. https://doi.org/10.1680/geot.1986.36.3.425
  • Bolton Seed, H., Tokimatsu, K., Harder, L. F., & Chung, R. M. (1985). Influence of SPT procedures in soil liquefaction resistance evaluations. Journal of geotechnical engineering, 111(12), 1425-1445. https://doi.org/10.1061/(ASCE)07339410(1985)111:12(1425)
  • Gibbs, H. (1957). Research on determining the density of sands by spoon penetration testing. 4th International Conference on SMFE, 35–39.
  • BNBC. (2015). Bangladesh National Building Code.
  • Bowles, J. (1998). Foundation Analysis and Design. McGraw-Hill: New York, NY, USA.
  • Terzaghi, K., Peck, R.B., Mesri, G. (1996). Soil Mechanics in Engineering Practice. Third edit. John Wiley & Sons, New York.
  • Fletcher, G. F. (1965). Standard penetration test: its uses and abuses. Journal of the Soil Mechanics and Foundations Division, 91(4), 67-75. https://doi.org/10.1061/JSFEAQ.0000776
  • Das, B.M. (2015). Principles of Foundation Engineering. Cengage Learning: Boston, MA, USA.
  • Bowles, J. E. (1987). Elastic foundation settlements on sand deposits. Journal of Geotechnical Engineering, 113(8),846-860. https://doi.org/10.1061/(ASCE)07339410(1987)113: 8(846)
  • Al-Mamoori, S. K., Al-Maliki, L. A., Al-Sulttani, A. H., El-Tawil, K., & Al-Ansari, N. (2021). Statistical analysis of the best GIS interpolation method for bearing capacity estimation in An-Najaf City, Iraq. Environmental Earth Sciences, 80(20), 683. https://doi.org/10.1007/s12665-021-09971-2
There are 42 citations in total.

Details

Primary Language English
Subjects Geographical Information Systems (GIS) in Planning
Journal Section Research Article
Authors

Md Mahabub Rahman 0000-0003-1580-483X

Early Pub Date February 19, 2025
Publication Date
Submission Date November 22, 2024
Acceptance Date February 7, 2025
Published in Issue Year 2025 Volume: 10 Issue: 3

Cite

APA Rahman, M. M. (2025). GIS based allowable bearing capacity thematic maps of shallow foundation for Bogura District, Bangladesh. International Journal of Engineering and Geosciences, 10(3), 329-338. https://doi.org/10.26833/ijeg.1589939
AMA Rahman MM. GIS based allowable bearing capacity thematic maps of shallow foundation for Bogura District, Bangladesh. IJEG. February 2025;10(3):329-338. doi:10.26833/ijeg.1589939
Chicago Rahman, Md Mahabub. “GIS Based Allowable Bearing Capacity Thematic Maps of Shallow Foundation for Bogura District, Bangladesh”. International Journal of Engineering and Geosciences 10, no. 3 (February 2025): 329-38. https://doi.org/10.26833/ijeg.1589939.
EndNote Rahman MM (February 1, 2025) GIS based allowable bearing capacity thematic maps of shallow foundation for Bogura District, Bangladesh. International Journal of Engineering and Geosciences 10 3 329–338.
IEEE M. M. Rahman, “GIS based allowable bearing capacity thematic maps of shallow foundation for Bogura District, Bangladesh”, IJEG, vol. 10, no. 3, pp. 329–338, 2025, doi: 10.26833/ijeg.1589939.
ISNAD Rahman, Md Mahabub. “GIS Based Allowable Bearing Capacity Thematic Maps of Shallow Foundation for Bogura District, Bangladesh”. International Journal of Engineering and Geosciences 10/3 (February 2025), 329-338. https://doi.org/10.26833/ijeg.1589939.
JAMA Rahman MM. GIS based allowable bearing capacity thematic maps of shallow foundation for Bogura District, Bangladesh. IJEG. 2025;10:329–338.
MLA Rahman, Md Mahabub. “GIS Based Allowable Bearing Capacity Thematic Maps of Shallow Foundation for Bogura District, Bangladesh”. International Journal of Engineering and Geosciences, vol. 10, no. 3, 2025, pp. 329-38, doi:10.26833/ijeg.1589939.
Vancouver Rahman MM. GIS based allowable bearing capacity thematic maps of shallow foundation for Bogura District, Bangladesh. IJEG. 2025;10(3):329-38.