Research Article
BibTex RIS Cite

Solar Energy Based Model for Decarbonization: A Case Study in Istanbul

Year 2026, Volume: 11 Issue: 1, 64 - 77
https://doi.org/10.26833/ijeg.1648588

Abstract

This study investigated the suitability of rooftops in Istanbul for solar panels using a GIS (Geographic Information Systems) based approach. The characteristics of the roofs of approximately 1.3 million buildings in Istanbul, such as slope, area and orientation, solar radiation, were calculated with ArcGIS by Esri software, and the electrical energy they would generate and the carbon footprint (CFP) they would prevent if solar panels were placed on the roof of each building were calculated. Various scenarios were created for the years 2030, 2040, and 2050, and the change in the amount of carbon footprint over the years was analyzed. Istanbul's solar energy potential is 258.59 TWh, and the electricity generation if monocrystalline silicon solar panels are used on rooftops is 29.72 TWh. Since the effect of roof obstructions on the efficiency of solar panels is not considered, PV power generation may be overestimated. Istanbul's total rooftop electricity production has the potential to meet 70% of the total electricity consumption for the year 2023. In addition, a solar building information system has been established to help citizens and policymakers in the future and to raise awareness, including various data such as the solar potential of buildings, the amount of electricity generation, and how much carbon emissions will be prevented, and will be available online soon. This study can contribute to Istanbul reaching its carbon neutrality goals and producing effective results on a global scale.

Ethical Statement

I declare that this study is original and that I have adhered to the principles and rules of scientific ethics at every stage. I confirm that I have cited all sources for data and information not obtained within the scope of this study and included them in the bibliography, and that I have made no alterations to the data used.

References

  • Hakovirta, M. (2024). Socioeconomic aspects of climate change in cities and municipalities. In Carbon Neutrality: Follow the Money (pp. 143-156). Cham: Springer Nature Switzerland.
  • World Bank. (2025). Cutting Global Carbon Emissions: Where Do Cities Stand?, https://blogs.worldbank.org/en/sustainablecities/cutting-global-carbon-emissions-where-do-cities-stand
  • 3. United Nations Environment Programme. (2025). Cities and Climate Change, https://www.unep.org/explore-topics/resource-efficiency/what-we-do/cities-and-climate-change
  • Fila, D., Fünfgeld, H., & Dahlmann, H. (2024). Climate change adaptation with limited resources: adaptive capacity and action in small-and medium-sized municipalities. Environment, Development and Sustainability, 26(3), 5607-5627.
  • dos Santos, A. P. S., & de Oliveira, J. A. P. (2024). What factors drive municipal climate adaptation policy? The role of risk management capacity and transnational municipal networks. Urban Climate, 53, 101809.
  • Riach, N., & Glaser, R. (2024). Local climate services. Can municipal climate profiles help improve climate literacy?. Climate Services, 34, 100449.
  • Acar, A., & Kaygusuz, A. (2022). Effect of energy storage on power system stability. Engineering Applications, 1(1), 91-98.
  • International Energy Agency. (2022). World Energy Outlook 2022, IEA, Paris https://www.iea.org/reports/world-energy-outlook-2022, Licence: CC BY 4.0 (report); CC BY NC SA 4.0 (Annex A)
  • Koster, G., van Sark, W., & Ricker, B. (2024). Solar potential for social benefit: Maps to sustainably address energy poverty utilizing open spatial data in data poor settings. Energy for Sustainable Development, 80, 101453.
  • Horváth, M., Kassai-Szoó, D., & Csoknyai, T. (2016). Solar energy potential of roofs on urban level based on building typology. Energy and Buildings, 111, 278-289.
  • Buildings. In Climate Change 2022 - Mitigation of Climate Change; Intergovernmental Panel On Climate Change (Ipcc), Ed.; Cambridge University Press, 2023; pp. 953–1048 ISBN 978-1-009-15792-6.
  • Quan, S. J., Li, Q., Augenbroe, G., Brown, J., & Yang, P. P. J. (2015). A GIS-based energy balance modeling system for urban solar buildings. Energy Procedia, 75, 2946-2952.
  • Incekara, C. (2024). Energy piles design parameters optimization by using Fuzzy Logic. Engineering Applications, 3(2), 147-156.
  • Qafleshi, M., & Kryeziu, D. R. (2025). Solar energy generation from residential buildings, transition of the energy sector from fossils to carbon-free energy and meeting UN SDG. International Journal of Energy Sector Management, 19(1), 181-200.
  • Enerji ve Tabi Kaynaklar Bakanlığı. (2022). Türkiye Ulusal Enerji Planı. https://enerji.gov.tr/duyuru-detay?id=20317
  • Gabbar, H. A., & Ramadan, A. (2025). Integrated renewable energy systems for buildings: an assessment of the environmental and socio-economic sustainability. Sustainability, 17(2), 656.
  • United Nations. (2025). Sustainable Development Goals: 17 Goals to Transform Our World. https://www.un.org/en/exhibits/page/sdgs-17-goals-transform-world
  • Jelle, B. P. (2015). Building integrated photovoltaics: A concise description of the current state of the art and possible research pathways. Energies, 9(1), 21.
  • Xu, Y., & Zhao, F. (2023). Impact of energy depletion, human development, and income distribution on natural resource sustainability. Resources Policy, 83, 103531.
  • Liu, H. Y., Skandalos, N., Braslina, L., Kapsalis, V., & Karamanis, D. (2023, July). Integrating solar energy and nature-based solutions for climate-neutral urban environments. In Solar (Vol. 3, No. 3, pp. 382-415).
  • Önder, M., Güntel, A., & Kaya, Ö. Y. (2022). A geographical information systems (GIS) perspective on European green deal and sustainability. Advanced GIS, 2(1), 33-37.
  • Bieda, A., Cienciała, A. (2021). Towards a renewable energy source cadastre—a review of examples from around the world. Energies, 14(23), 8095.
  • Camargo, L. R., Zink, R., Dorner, W., & Stoeglehner, G. (2015). Spatio-temporal modeling of roof-top photovoltaic panels for improved technical potential assessment and electricity peak load offsetting at the municipal scale. Computers, Environment and Urban Systems, 52, 58-69.
  • Melius, J., Margolis, R., & Ong, S. (2013). Estimating rooftop suitability for PV: a review of methods, patents, and validation techniques.
  • Stack, V., & Narine, L. L. (2022). Sustainability at Auburn University: assessing rooftop solar energy potential for electricity generation with remote sensing and GIS in a Southern US Campus. Sustainability, 14(2), 626.
  • Adjiski, V., Kaplan, G., & Mijalkovski, S. (2023). Assessment of the solar energy potential of rooftops using LiDAR datasets and GIS based approach. International Journal of Engineering and Geosciences, 8(2), 188-199.
  • Domínguez, J., Bellini, C., Martín, A. M., & Zarzalejo, L. F. (2024). Optimizing solar potential analysis in Cuba: a methodology for high-resolution regional mapping. Sustainability, 16(18), 7899.
  • Martín, A. M., Domínguez, J., & Amador, J. (2015). Applying LIDAR datasets and GIS based model to evaluate solar potential over roofs: a review. Aims Energy, 3(3).
  • Muhammed, E., Morsy, S., & El-Shazly, A. (2021). Building rooftops extraction for solar PV potential estimation using gis-based methods. The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, 44, 119-125.
  • Dodig, A., & Djapic, V. (2023, March). Digital solution to estimate solar power potential of rooftops in City of Belgrade. In Conference on Information Technology and its Applications (pp. 362-374). Cham: Springer Nature Switzerland.
  • Idrovo-Macancela, A., Velecela-Zhindón, M., Barragán-Escandón, A., Zalamea-León, E., & Mejía-Coronel, D. (2025). GIS-based assessment of photovoltaic solar potential on building rooftops in equatorial urban areas. Heliyon,11(1).
  • Mondal, S., Muralidharan, R., Seshadri, S., & Tambe, N. S. (2024). Mapping solar rooftop potential in Chennai using GIS.
  • Crippa, M., Guizzardi, D., Banja, M., Solazzo, E., Muntean, M., Schaaf, E., … & Vignati, E. (2022). CO2 emissions of all world countries. JRC Science for Policy Report, European Commission, EUR, 31182.
  • Crippa, M., Guizzardi, D., Pagani, F., Banja, M., Muntean, M., Schaaf, E., ... & Vignati, E. (2023). GHG emissions of all world countries. Publications Office of the European Union, Luxembourg, 10, 953322.
  • United Nations Framework Convention on Climate Change. (2025). Republic of Türkiye Updated First Nationally Determined Contribution Republic of Türkiye, https://unfccc.int/sites/default/files/NDC/2023-04/T%C3%9CRK%C4%B0YE_UPDATED%201st%20NDC_EN.pdf
  • Türkiye Elektrik İletim A.Ş. (2023). Türkiye Elektrik Üretim-İletim İstatistikleri. https://www.teias.gov.tr/turkiye-elektrik-uretim-iletim-istatistikleri
  • EMBER. (2024). Türkiye Available online: https://ember-energy.org/countries-and-regions/turkiye/
  • Türkiye İstatistik Kurumu (2023). Adrese Dayalı Nüfus Kayıt Sistemi 2023 Sonuçları.
  • Enerji Piyasası Düzenleme Kurulu. (2023). Elektrik Piyasası Yıllık Sektör Raporu Listesi, https://www.epdk.gov.tr/Detay/Icerik/3-0-24/elektrikyillik-sektor-raporu
  • İstanbul Büyükşehir Belediyesi. (2023). İstanbul Sürdürülebilir Enerji ve İklim Eylem Planı. https://cevre.ibb.istanbul/wp-content/uploads/2024/03/SECAP-TR-1.pdf
  • ESRI. (2024). How Solar Radiation Is Calculated. https://doc.arcgis.com/en/allsource/1.1/analysis/geoprocessing-tools/spatial-analyst/how-solar-radiation-is-calculated.htm
  • ESRI. (2024), Design and Implementation of the Solar Analyst: An ArcView Extension for Modeling Solar Radiation at Landscape Scales. https://proceedings.esri.com/library/userconf/proc99/proceed/papers/pap867/p867.htm
  • ESRI. (2025) Understanding Solar Radiation Analysis. https://pro.arcgis.com/en/pro-app/latest/tool-reference/spatial-analyst/understanding-solar-radiation-analysis.htm
  • ESRI. (2025). Area Solar Radiation (Spatial Analyst). https://desktop.arcgis.com/en/arcmap/latest/tools/spatial-analyst-toolbox/area-solar-radiation.htm
  • Fu, P., & Rich, P. M. (2002). A geometric solar radiation model with applications in agriculture and forestry. Computers and Electronics in Agriculture, 37(1-3), 25-35.
  • Atik, S. O., & Ipbuker, C. (2022). Building extraction in VHR remote sensing imagery through deep learning. Fresenius Environ. Bull, 31, 8468-8473.
  • Isiler, M., Yanalak, M., Atik, M. E., Atik, S. O., & Duran, Z. (2023). A semi-automated two-step building stock monitoring methodology for supporting immediate solutions in urban ıssues. Sustainability, 15(11), 8979.
  • Özaydın, E., Amirgan, B., Taşkın, G., & Musaoğlu, N. (2024). Derin öğrenme uygulamalarında kullanılan uzaktan algılama verilerinden oluşturulmuş açık kaynaklı bina veri setleri: Karşılaştırmalı değerlendirme. Geomatik, 9(1), 1-11.
  • ESRI (2025). Locating Sites for Photovoltaic Solar https://www.esri.com/news/arcuser/1010/solarsiting.html
  • Polat, N., & Memduhoğlu, A. (2024). An unmanned aerial vehicle based investigation of roof patch suitability for solar panel installation. International Journal of Engineering and Geosciences, 9(2), 281-291.
  • ESRI. (2025). How Aspect Works. https://pro.arcgis.com/en/pro-app/latest/tool-reference/spatial-analyst/how-aspect-works.htm
  • ESRI. (2025). Estimate Solar Power Potential. https://learn.arcgis.com/en/projects/estimate-solar-power-potential/.
  • Gagnon, P., Margolis, R., Melius, J., Phillips, C., & Elmore, R. (2016). Rooftop Solar Photovoltaic Technical Potential in the United States: A Detailed Assessment. National Renewable Energy Laboratory. In Technical report: NREL/TP-6A20–65298.
  • United States Environmental Protection Agency. (2021). Green Power Equivalency Calculator Calculations and References, https://19january2021snapshot.epa.gov/greenpower/green-power-equivalency-calculator-calculations-and-references
  • Gazbour, N., Razongles, G., Monnier, E., Joanny, M., Charbuillet, C., Burgun, F., & Schaeffer, C. (2018). A path to reduce variability of the environmental footprint results of photovoltaic systems. Journal of cleaner production, 197, 1607-1618. 56. Şahin, M. A., & Yakar, M. (2021). WebGIS technology and architectures. Advanced GIS, 1(1), 22-26.
  • İstanbul Büyükşehir Belediyesi. (2021). İstanbul İklim Değişikliği Eylem Planı. https://cevre.ibb.istanbul/wp-content/uploads/2022/01/ist_iklim_degisikligi_eylem_plani.pdf
  • IPCC. (2006). Chapter 1: Introduction to the 2006 Guidelines. https://www.ipcc-nggip.iges.or.jp/public/2006gl/pdf/1_Volume1/V1_1_Ch1_Introduction.pdf
  • IPCC. (2019). Glossary. https://www.ipcc.ch/site/assets/uploads/2019/06/19R_V0_02_Glossary_advance.pdf
  • Enerji ve Tabi Kaynaklar Bakanlığı. (2024). Türkiye Ulusal Elektrik Şebekesi Emisyon Faktörü, https://enerji.gov.tr/evced-cevre-ve-iklim-turkiye-ulusal-elektrik-sebekesi-emisyon-faktoru
  • Dhass, A. D., Beemkumar, N., Harikrishnan, S., & Ali, H. M. (2022). A review on factors influencing the mismatch losses in solar photovoltaic system. International Journal of Photoenergy, 2022(1), 2986004.
  • Atia, D. M., Hassan, A. A., El-Madany, H. T., Eliwa, A. Y., & Zahran, M. B. (2023). Degradation and energy performance evaluation of mono-crystalline photovoltaic modules in Egypt. Scientific Reports, 13(1), 13066.
  • Yildirim, D., Büyüksalih, G., & Şahin, A. D. (2021). Rooftop photovoltaic potential in Istanbul: Calculations based on LiDAR data, measurements and verifications. Applied Energy, 304, 117743.
  • İşiler, M., Yanalak, M., & Selbesoğlu, M. O. (2022). Arazi yönetimi paradigması çerçevesinde Türkiye’de binalar için enerji kimlik belgesi uygulamasının değerlendirilmesi. Niğde Ömer Halisdemir Üniversitesi Mühendislik Bilimleri Dergisi, 11(3), 689-705.
  • Tro-Cabrera, A., Lago-Aurrekoetxea, R., Martínez-de-Alegría, I., Villamor, E., & Campos-Celador, A. (2025). A methodology for assessing rooftop solar photovoltaic potential using GIS open-source software and the EROI constraint. Energy and Buildings, 115401.
  • Kılıç, U., & Kekezoğlu, B. (2022). A review of solar photovoltaic incentives and Policy: Selected countries and Turkey. Ain Shams Engineering Journal, 13(5), 101669.
  • European Union. (2020). Final Report Cost of Energy (LCOE). https://energy.ec.europa.eu/system/files/2020-10/final_report_levelised_costs_0.pdf
  • Zhang, H., Chen, X., Li, W., Peng, R., Ji, J., Su, X., & Luo, C. (2025). Energy, economic, emissions analysis of semi-flexible crystalline silicon photovoltaic system integrated with factory building roofs based on actual electricity load and cost conditions. Energy and Buildings, 115358.
  • Minazhova, S., Kurrat, M., Ongar, B., & Georgiev, A. (2025). Deploying a rooftop PV panels in the southern regions of Kazakhstan. Energy, 320, 135205.
  • Enerji Piyasası Düzenleme Kurulu. (2025). Elektrik Faturalarına Esas Tarife Tabloları, https://www.epdk.gov.tr/Detay/Icerik/3-1327/elektrik-faturalarina-esas-tarife-tablolari
  • Bhatta, G., Lohani, S. P., Bhandari, R., Palit, D., & Anderson, T. (2025). Harnessing solar PV potential for decarbonization in Nepal: A GIS based assessment of ground-mounted, rooftop, and agrivoltaic solar systems for Nepal. Energy for Sustainable Development, 85, 101618.
  • International Renewable Energy Agency. (2019). Global Energy Transformation: A Roadmap to 2050 (2019 Edition). https://www.irena.org/publications/2019/Apr/Global-energy-transformation-A-roadmap-to-2050-2019Edition
  • Mainzer, K., Fath, K., McKenna, R., Stengel, J., Fichtner, W., & Schultmann, F. (2014). A high-resolution determination of the technical potential for residential-roof-mounted photovoltaic systems in Germany. Solar Energy, 105, 715-731.
  • Ni, H., Wang, D., Zhao, W., Jiang, W., Mingze, E., Huang, C., & Yao, J. (2024). Enhancing rooftop solar energy potential evaluation in high-density cities: A Deep Learning and GIS based approach. Energy and Buildings, 309, 113743.
  • European Union. (2021). Renovation and Decarbonisation of Buildings https://ec.europa.eu/commission/presscorner/detail/en/ip_21_6683
  • Shimoda, Y. (2025). The role of building performance simulations in citywide and national global warming mitigation policy. Journal of Building Performance Simulation, 18(1), 93-98.
  • İnce, H., & Erdem, N. (2019). Positioning buildings on a zoning island to provide maximum shading: a case study. International Journal of Engineering and Geosciences, 4(3), 129-140.
  • Sun, Y.; Hof, A.; Wang, R.; Liu, J.; Lin, Y.; Yang, D. GIS-Based Approach for Potential Analysis of Solar PV Generation at the Regional Scale: A Case Study of Fujian Province. Energy Policy 2013, 58, 248–259, doi:10.1016/j.enpol.2013.03.002.
  • Ramafikeng, M.; Ajayi, O.; Adeleke, A. A Web-Based Decision Support Tool for Multifarious Renewable Energy Systems. Renewable Energy Focus 2025, 54, 100702 doi:10.1016/j.ref.2025.100702.
  • Kumaş, E., & Aslan, D. (2025). A case study: Making decisions for sustainable university campus planning using GeoAI. International Journal of Engineering and Geosciences, 10(1), 22-35.
  • Taktak, F.; Ilı, M. 6306 sayılı Kanun Kapsamında Konumsal Yapı Değişiminin Yıllara Göre Elektrik Tüketim Boyutuyla İncelenmesi: Uşak İli Örneği. Geomatik 2020, 5, 72–80.
  • Waqas, H., Jiang, Y., Shang, J., Munir, I., & Khan, F. U. (2023). An integrated approach for 3D solar potential assessment at the city scale. Remote Sensing, 15(23), 5616.
  • Bovkır, R. (2024). İstanbul'da kentsel yeşil altyapı için çatı tarımı potansiyelinin CBS tabanlı karar analizi ile değerlendirilmesi. Geomatik, 10(1), 45-58.
  • Kumler, A.; Kravitz, B.; Draxl, C.; Vimmerstedt, L.; Benton, B.; Lundquist, J.K.; Martin, M.; Buck, H.J.; Wang, H.; Lennard, C.; et al. Potential Effects of Climate Change and Solar Radiation Modification on Renewable Energy Resources. Renewable and Sustainable Energy Reviews 2025, 207, 114934, doi:10.1016/j.rser.2024.114934.
  • Kocabaldır, C.; Yücel, M.A. GIS-Based Multicriteria Decision Analysis for Spatial Planning of Solar Photovoltaic Power Plants in Çanakkale Province, Turkey. Renewable Energy 2023, 212, 455–467, doi:10.1016/j.renene.2023.05.075.
  • Falklev, E. H. (2017). Mapping of solar energy potential on Tromsøya using solar analyst in ArcGIS (Master's thesis, UiT The Arctic University of Norway).
  • Nunes, P., Figueiredo, R., & Brito, M. C. (2016). The use of parking lots to solar-charge electric vehicles. Renewable and Sustainable Energy Reviews, 66, 679-693.
There are 86 citations in total.

Details

Primary Language English
Subjects Geospatial Information Systems and Geospatial Data Modelling
Journal Section Research Article
Authors

Büşra Kartal 0000-0003-1217-7527

Reha Metin Alkan 0000-0002-1981-9783

Early Pub Date August 25, 2025
Publication Date September 28, 2025
Submission Date February 28, 2025
Acceptance Date May 5, 2025
Published in Issue Year 2026 Volume: 11 Issue: 1

Cite

APA Kartal, B., & Alkan, R. M. (n.d.). Solar Energy Based Model for Decarbonization: A Case Study in Istanbul. International Journal of Engineering and Geosciences, 11(1), 64-77. https://doi.org/10.26833/ijeg.1648588
AMA Kartal B, Alkan RM. Solar Energy Based Model for Decarbonization: A Case Study in Istanbul. IJEG. 11(1):64-77. doi:10.26833/ijeg.1648588
Chicago Kartal, Büşra, and Reha Metin Alkan. “Solar Energy Based Model for Decarbonization: A Case Study in Istanbul”. International Journal of Engineering and Geosciences 11, no. 1 n.d.: 64-77. https://doi.org/10.26833/ijeg.1648588.
EndNote Kartal B, Alkan RM Solar Energy Based Model for Decarbonization: A Case Study in Istanbul. International Journal of Engineering and Geosciences 11 1 64–77.
IEEE B. Kartal and R. M. Alkan, “Solar Energy Based Model for Decarbonization: A Case Study in Istanbul”, IJEG, vol. 11, no. 1, pp. 64–77, doi: 10.26833/ijeg.1648588.
ISNAD Kartal, Büşra - Alkan, Reha Metin. “Solar Energy Based Model for Decarbonization: A Case Study in Istanbul”. International Journal of Engineering and Geosciences 11/1 (n.d.), 64-77. https://doi.org/10.26833/ijeg.1648588.
JAMA Kartal B, Alkan RM. Solar Energy Based Model for Decarbonization: A Case Study in Istanbul. IJEG.;11:64–77.
MLA Kartal, Büşra and Reha Metin Alkan. “Solar Energy Based Model for Decarbonization: A Case Study in Istanbul”. International Journal of Engineering and Geosciences, vol. 11, no. 1, pp. 64-77, doi:10.26833/ijeg.1648588.
Vancouver Kartal B, Alkan RM. Solar Energy Based Model for Decarbonization: A Case Study in Istanbul. IJEG. 11(1):64-77.