Research Article
BibTex RIS Cite

Investigation of Longoz Forests with Remote Sensing Techniques on Google Earth Engine Platform: The Case of İğneada Longoz Forests (2000–2021)

Year 2026, Volume: 11 Issue: 1, 78 - 88, 01.10.2025
https://doi.org/10.26833/ijeg.1650786

Abstract

The study investigates changes in the İğneada Longoz forests in Kırklareli Province, Türkiye, between 2000 and 2021 using Landsat-7 and Landsat-8 satellite imagery. Classification was performed with the random forest (RF) machine learning algorithm and remote sensing (RS) techniques on the Google Earth Engine (GEE) platform. To better distinguish longoz forests and other forested areas from surrounding features, the normalized difference vegetation index (NDVI) and enhanced vegetation index (EVI) were integrated into the classification alongside standard spectral bands. In the first stage of the classification process, the study area was categorized into seven classes, identifying all forest areas. In the second stage, the area was further divided into nine classes, isolating longoz forests from other forest types. Additionally, NDVI and EVI time series analyses were conducted to evaluate forest phenology. According to the classification results, the initial stage achieved overall accuracy ranging from 79.97% to 90.63%, with an average of approximately 85.00%. The Kappa statistics varied between 0.721 and 0.877. In the second stage, the overall accuracy ranged from 75.92% to 90.04%, while the Kappa statistic was between 0.649 and 0.866.

References

  • Li, H., Jia, M., Zhang, R., Ren, Y., & Wen, X. (2019). Incorporating the plant phenological trajectory into mangrove species mapping with dense time series Sentinel-2 imagery and the Google Earth Engine platform. Remote Sensing, 11(21). https://doi.org/10.3390/rs11212479
  • Diniz, C., Cortinhas, L., Nerino, G., Rodrigues, J., Sadeck, L., Adami, M., & Souza-Filho, P. W. M. (2019). Brazilian mangrove status: Three decades of satellite data analysis. Remote Sensing, 11(7), 808. https://doi.org/10.3390/rs11070808
  • Parida, B. R., & Kumar, P. (2020). Mapping and dynamic analysis of mangrove forest during 2009–2019 using landsat–5 and sentinel–2 satellite data along Odisha Coast. Tropical Ecology, 61(4), 538–549. https://doi.org/10.1007/s42965-020-00112-7
  • Twilley, R. R., Rovai, A. S., & Riul, P. (2018). Coastal morphology explains global blue carbon distributions. Frontiers in Ecology and the Environment, 16(9), 503–508.
  • Cipta, I. M., Sobarman, F. A., Sanjaya, H., & Darminto, M. R. (2021). Analysis of Mangrove Forest Change from Multioral Landsat Imagery Using Google Earth Engine Application: (Case Study: Belitung Archipelago 1990 - 2020). 2021 IEEE Asia-Pacific Conference on Geoscience, Electronics and Remote Sensing Technology, AGERS 2021-Proceeding, 90–95. https://doi.org/10.1109/AGERS53903.2021.9617354
  • Wan, L., Zhang, H., Lin, G., & Lin, H. (2019). A small-patched convolutional neural network for mangrove mapping at species level using high-resolution remote-sensing image. Annals of GIS, 25(1), 45–55. https://doi.org/10.1080/19475683.2018.1564791
  • Topaloglu, R. H. (2022). Investigation of Land Use/Land Cover change in Mersin using geographical object-based image analysis (GEOBIA). Advanced Remote Sensing, 2(2), 40–46. https://publish.mersin.edu.tr/index.php/arsej/article/view/247
  • Gull, A., & Mahmood, S. (2022). Spatio-temporal analysis and trend prediction of land cover changes using markov chain model in Islamabad, Pakistan. Advanced GIS, 2(2), 52–61. https://publish.mersin.edu.tr/index.php/agis/article/view/679
  • Nsiah, R. A., Mantey, S., & Ziggah, Y. Y. (2024). Assessing the contribution of RGB VIs in improving building extraction from RGB-UAV images. Mersin Photogrammetry Journal, 6(1), 9–21. https://doi.org/10.53093/mephoj.1399083
  • Jin, Y., Liu, X., Chen, Y., & Liang, X. (2018). Land-cover mapping using Random Forest classification and incorporating NDVI time-series and texture: A case study of central Shandong. International Journal of Remote Sensing, 39(23), 8703–8723. https://doi.org/10.1080/01431161.2018.1490976
  • Cheret, V., & Denux, J.-P. (2011). Analysis of MODIS NDVI time series to calculate indicators of Mediterranean forest fire susceptibility. GIScience & Remote Sensing, 48(2), 171–194.
  • Chao Rodríguez, Y., El Anjoumi, A., Domínguez Gómez, J. A., Rodríguez Pérez, D., & Rico, E. (2014). Using Landsat image time series to study a small water body in Northern Spain. Environmental Monitoring and Assessment, 186(6), 3511–3522. https://doi.org/10.1007/s10661-014-3634-8
  • Chen, B., Xiao, X., Li, X., Pan, L., Doughty, R., Ma, J., Dong, J., Qin, Y., Zhao, B., Wu, Z., Sun, R., Lan, G., Xie, G., Clinton, N., & Giri, C. (2017). A mangrove forest map of China in 2015: Analysis of time series Landsat 7/8 and Sentinel-1A imagery in Google Earth Engine cloud computing platform. ISPRS Journal of Photogrammetry and Remote Sensing, 131, 104–120. https://doi.org/10.1016/j.isprsjprs.2017.07.011
  • Johansen, K., Phinn, S., & Taylor, M. (2015). Mapping woody vegetation clearing in Queensland, Australia from Landsat imagery using the Google Earth Engine. Remote Sensing Applications: Society and Environment, 1, 36–49. https://doi.org/10.1016/j.rsase.2015.06.002
  • Unel, F. B., Kusak, L., & Yakar, M. (2023). GeoValueIndex map of public property assets generating via Analytic Hierarchy Process and Geographic Information System for Mass Appraisal: GeoValueIndex. Aestimum, 82, 51-69.
  • Huete, A., Didan, K., Miura, T., Rodriguez, E. P., Gao, X., & Ferreira, L. G. (2002). Overview of the radiometric and biophysical performance of the MODIS vegetation indices. Remote Sensing of Environment, 83(1–2). https://doi.org/10.1016/S0034-4257(02)00096-2
  • Xu, H. (2006). Modification of normalised difference water index (NDWI) to enhance open water features in remotely sensed imagery. International Journal of Remote Sensing, 27(14), 3025–3033. https://doi.org/10.1080/01431160600589179
  • Hawick, K. A., Coddington, P. D., & James, H. A. (2003). Distributed frameworks and parallel algorithms for processing large-scale geographic data. Parallel Computing, 29(10), 1297–1333.
  • Başara, A. C., Tabar, M. E., Gülsün, S., & Şişman, Y. (2022). Monitoring Urban Sprawl in Atakum District Using CORINE Data. Advanced Geomatics, 2(2), 49–56. https://publish.mersin.edu.tr/index.php/geomatics/article/view/481
  • Ünel, F. B., Kuşak, L., Yakar, M., & Doğan, H. (2023). Coğrafi bilgi sistemleri ve analitik hiyerarşi prosesi kullanarak Mersin ilinde otomatik meteoroloji gözlem istasyonu yer seçimi. Geomatik, 8(2), 107-123.
  • Binuyo, O., & Bello, V. A. (2024). Spatial association in students’ residential apartment property characteristics around a university. Advanced GIS, 4(2), 82–99. https://publish.mersin.edu.tr/index.php/agis/article/view/1558
  • Türk, T., & Demirel, Y. (2024). Automatic detection of active fires and burnt areas in forest areas using optical satellite imagery and deep learning methods. Mersin Photogrammetry Journal, 6(2), 66–78. https://doi.org/10.53093/mephoj.1575877
  • Mahdavifard, M., Ahangar, S. K., Feizizadeh, B., Kamran, K. V., & Karimzadeh, S. (2023). Spatio-Temporal monitoring of Qeshm mangrove forests through machine learning classification of SAR and optical images on Google Earth Engine. International Journal of Engineering and Geosciences, 8(3), 239–250. https://doi.org/10.26833/IJEG.1118542
  • Yılmaz, O. S., Gülgen, F., Güngör, R., & Kadi, F. (2018). Coğrafi Bilgi Sistemleri ve Uzaktan Algılama Teknikleri İle Arazi Kullanım Değişiminin İncelenmesi, Köprübaşı İlçesi Örneği. Geomatik. https://doi.org/10.29128/geomatik.410987
  • Güngör, R., Uzar, M., Atak, B., Yılmaz, O. S., & Gümüş, E. (2022). Orthophoto production and accuracy analysis with UAV photogrammetry. Mersin Photogrammetry Journal, 4(1), 1–6. https://doi.org/10.53093/mephoj.1122615
  • Yakar, M., Yıldız, F., Uray, F., & Metin, A. (2010, June). Photogrammetric Measurement of The Meke Lake and Its Environment with Kite Photographs to Monitoring of Water Level to Climate Change. In ISPRS Commission V Mid-Term Symposium (pp. 613-616).
  • Yılmaz, O. S. (2023). Frekans oranı yöntemiyle coğrafi bilgi sistemi ortamında heyelan duyarlılık haritasının üretilmesi: Manisa, Demirci, Tekeler Köyü örneği. Geomatic, 8(1), 42–54. https://doi.org/10.29128/geomatik.1108735
  • Kadı, F., & Yılmaz, O. S. (2024a). Determination of alternative forest road routes using produced landslide susceptibility maps: A case study of Tonya (Trabzon), Türkiye. International Journal of Engineering and Geosciences, 9(2), 147–164. https://doi.org/10.26833/ijeg.1355615
  • Kadı, F., & Yılmaz, O. S. (2024b). Orman içi açıklıklara ait zamansal değişimlerin uzaktan algılama teknikleri ile Google Earth Engine platformunda tespit edilmesi: Trabzon-Düzköy İlçesi örneği. Geomatik, 9(2), 141–155. https://doi.org/10.29128/geomatik.1363873
  • Avci, C., Budak, M., Yagmur, N., & Balcik, F. B. (2023). Comparison between random forest and support vector machine algorithms for LULC classification. International Journal of Engineering and Geosciences, 8(1), 1–10. https://doi.org/10.26833/IJEG.987605
  • Yılmaz, O. S., Gülgen, F., & Ateş, A. M. (2023). Determination of the appropriate zone on dam surface for floating photovoltaic system installation using RS and GISc technologies. International Journal of Engineering and Geosciences, 8(1), 63–75. https://doi.org/10.26833/IJEG.1052556
  • Yılmaz, O. S., Özkan, G., & Gülgen, F. (2021). Determining highway slope ratio using a method based on slope angle calculation. International Journal of Engineering and Geosciences, 6(2), 98–103. https://doi.org/10.26833/IJEG.704317
  • Amani, M., Ghorbanian, A., Ahmadi, S. A., Kakooei, M., Moghimi, A., Mirmazloumi, S. M., Moghaddam, S. H. A., Mahdavi, S., Ghahremanloo, M., Parsian, S., Wu, Q., & Brisco, B. (2020). Google Earth Engine Cloud Computing Platform for Remote Sensing Big Data Applications: A Comprehensive Review. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 13, 5326–5350. https://doi.org/10.1109/JSTARS.2020.3021052
  • Friess, D. A., Rogers, K., Lovelock, C. E., Krauss, K. W., Hamilton, S. E., Lee, S. Y., Lucas, R., Primavera, J., Rajkaran, A., & Shi, S. (2019). The State of the World’s Mangrove Forests: Past, Present, and Future. Annual Review of Environment and Resources, 44(April 2021), 89–115. https://doi.org/10.1146/annurev-environ-101718-033302
  • Vatandaslar, C., Bolat, F., Abdikan, S., Pamukcu-Albers, P., & Satiral, C. (2020). i Forest. IForest - Biogeosciences and Forestry, 17, 277–285. https://doi.org/10.3832/ifor4527-017
  • Reddy, C. S., Jha, C. S., Diwakar, P. G., & Dadhwal, V. K. (2015). Nationwide classification of forest types of India using remote sensing and GIS. Environmental Monitoring and Assessment, 187(12), 1–30. https://doi.org/10.1007/s10661-015-4990-8
  • Ghosh, S. M., Behera, M. D., & Paramanik, S. (2020). Canopy height estimation using sentinel series images through machine learning models in a Mangrove Forest. Remote Sensing, 12(9), 1519. https://doi.org/10.3390/RS12091519
  • Rouse, J. W., Haas, R. H., Schell, J. A., & Deering, D. W. (1974). Monitoring Vegetation Systems in the Great Plains with Erts. NASA Spec, 351, 309.
  • Eidenshink, J. C. (1992). The 1990 conterminous US AVHRR data set. Photogrammetric Engineering & Remote Sensing, 58(6), 809–813.
  • Yilmaz, H. M., Yakar, M., Mutluoglu, O., Kavurmaci, M. M., & Yurt, K. (2012). Monitoring of soil erosion in Cappadocia region (Selime-Aksaray-Turkey). Environmental Earth Sciences, 66(1), 75-81.
  • Yakar, M., Yilmaz, H. M., & Yurt, K. (2010). The effect of grid resolution in defining terrain surface. Experimental Techniques, 34(6), 23-29.
  • Lambin, E. F., Geist, H. J., & Lepers, E. (2003). Dynamics of land-use and land-cover change in tropical regions. Annual Review of Environment and Resources, 28, 205–241. https://doi.org/10.1146/annurev.energy.28.050302.105459
  • Breiman, L. (2001). Random Forests (Vol. 45).
  • Gislason, P. O., Benediktsson, J. A., & Sveinsson, J. R. (2006). Random Forests for land cover classification. Pattern Recognition Letters, 27(4), 294–300. https://doi.org/10.1016/J.PATREC.2005.08.011
  • Bozkaya, A. G. (2013). İğneada Koruma Alanının Uzaktan Algılama ve Coğrafi Bilgi Sistemleri ile Zamansal Değerlendirilmesi ve Geleceğe Yönelik Modellenmesi. İstanbul Teknik Üniversitesi.
  • Toker, M. (2018). Landsat ve Sentinel Uydu Görüntüleri Kullanılarak Zamansal Değişim Tespiti Analizi: Bir Vaka Çalışması- İğneada Taşkın Ormanı Milli Parkı. İstanbul Teknik Üniversitesi.
  • Gencal, B., Taş, İ., & Akay, A. E. (2018). Spatiotemporal Change Detection of the Linden Forests in Bursa, Turkey. European Journal of Forest Engineering, 4(2), 50–55. https://doi.org/10.33904/ejfe.495088
  • Arekhi, M., Goksel, C., Balik Sanli, F., & Senel, G. (2019). Comparative Evaluation of the Spectral and Spatial Consistency of Sentinel-2 and Landsat-8 OLI Data for Igneada Longos Forest. ISPRS International Journal of Geo-Information, 8(2), 56. https://doi.org/10.3390/ijgi8020056
There are 48 citations in total.

Details

Primary Language English
Subjects Photogrammetry and Remote Sensing
Journal Section Research Article
Authors

Başak Kafes Demirci 0000-0003-0966-4260

Osman Salih Yılmaz 0000-0003-4632-9349

Füsun Balık Şanlı 0000-0003-1243-8299

Early Pub Date August 25, 2025
Publication Date October 1, 2025
Submission Date March 4, 2025
Acceptance Date July 14, 2025
Published in Issue Year 2026 Volume: 11 Issue: 1

Cite

APA Kafes Demirci, B., Yılmaz, O. S., & Balık Şanlı, F. (2025). Investigation of Longoz Forests with Remote Sensing Techniques on Google Earth Engine Platform: The Case of İğneada Longoz Forests (2000–2021). International Journal of Engineering and Geosciences, 11(1), 78-88. https://doi.org/10.26833/ijeg.1650786
AMA Kafes Demirci B, Yılmaz OS, Balık Şanlı F. Investigation of Longoz Forests with Remote Sensing Techniques on Google Earth Engine Platform: The Case of İğneada Longoz Forests (2000–2021). IJEG. October 2025;11(1):78-88. doi:10.26833/ijeg.1650786
Chicago Kafes Demirci, Başak, Osman Salih Yılmaz, and Füsun Balık Şanlı. “Investigation of Longoz Forests With Remote Sensing Techniques on Google Earth Engine Platform: The Case of İğneada Longoz Forests (2000–2021)”. International Journal of Engineering and Geosciences 11, no. 1 (October 2025): 78-88. https://doi.org/10.26833/ijeg.1650786.
EndNote Kafes Demirci B, Yılmaz OS, Balık Şanlı F (October 1, 2025) Investigation of Longoz Forests with Remote Sensing Techniques on Google Earth Engine Platform: The Case of İğneada Longoz Forests (2000–2021). International Journal of Engineering and Geosciences 11 1 78–88.
IEEE B. Kafes Demirci, O. S. Yılmaz, and F. Balık Şanlı, “Investigation of Longoz Forests with Remote Sensing Techniques on Google Earth Engine Platform: The Case of İğneada Longoz Forests (2000–2021)”, IJEG, vol. 11, no. 1, pp. 78–88, 2025, doi: 10.26833/ijeg.1650786.
ISNAD Kafes Demirci, Başak et al. “Investigation of Longoz Forests With Remote Sensing Techniques on Google Earth Engine Platform: The Case of İğneada Longoz Forests (2000–2021)”. International Journal of Engineering and Geosciences 11/1 (October2025), 78-88. https://doi.org/10.26833/ijeg.1650786.
JAMA Kafes Demirci B, Yılmaz OS, Balık Şanlı F. Investigation of Longoz Forests with Remote Sensing Techniques on Google Earth Engine Platform: The Case of İğneada Longoz Forests (2000–2021). IJEG. 2025;11:78–88.
MLA Kafes Demirci, Başak et al. “Investigation of Longoz Forests With Remote Sensing Techniques on Google Earth Engine Platform: The Case of İğneada Longoz Forests (2000–2021)”. International Journal of Engineering and Geosciences, vol. 11, no. 1, 2025, pp. 78-88, doi:10.26833/ijeg.1650786.
Vancouver Kafes Demirci B, Yılmaz OS, Balık Şanlı F. Investigation of Longoz Forests with Remote Sensing Techniques on Google Earth Engine Platform: The Case of İğneada Longoz Forests (2000–2021). IJEG. 2025;11(1):78-8.