Research Article
BibTex RIS Cite

Development of GIS-based Box Model Tool for Air Quality Mapping with Python and ArcGIS Pro in Kirkuk City, Iraq

Year 2026, Volume: 11 Issue: 1, 212 - 225, 01.10.2025
https://doi.org/10.26833/ijeg.1710723

Abstract

Urban environmental health depends heavily on air quality because it directly affects ecosystem sustainability, together with resident health outcomes. The rapid urbanization of Kirkuk in Iraq produces important air pollution problems, which stem from growing vehicle pollution combined with industrial sources and insufficient urban planning. The present paper aims to develop a Geographic Information Systems (GIS)-based model. It’s a novel concept to develop advanced pollutant dispersion models by integrating air pollutants with meteorology and ArcGIS Pro analysis. The importance of this study is that it proposes the GIS-based Box Model to precisely forecast air pollution in fast-growing urban centers such as Kirkuk. It is used to support the concept of sustainable urban planning and can easily connect the air quality data to health scopes, and provides good validation accuracies based on the ground data that it uses. The evaluation based on health effects linked to poor air quality will be performed. The research utilized a spatial distribution map algorithm in ArcGIS Pro with Python programming syntax to process elevation data and weather elements and create predictions about pollution concentrations in affected territories. The study showed that the model produced sufficient results throughout the (80-90%) measurement range. The validation process used ground truth data that achieved measurements with a (90-93%) success. Two pollutants, PM2.5 and PM10, were used in model testing validation analysis; the estimated values by the model were compared with ground truth data. Measurements provided an excellent validation of model-calculated air quality measurements with their corresponding ground truth points, thus showing high potential for accurate air quality monitoring and prediction.

References

  • Mahmood, S., Ali, A., & Jumaah, H. J. (2024). Geo-visualizing the hotspots of smog-induced health effects in district Gujranwala, Pakistan: a community perspective. Environmental Monitoring and Assessment, 196(5), 457.
  • Jamal Jumaah, H., Ghassan Abdo, H., Habeeb Hamed, H., Mohammed Obaid, H., Almohamad, H., Abdullah Al Dughairi, A., & Saleh Alzaaq, M. (2023). Assessment of corona virus (COVID-19) infection spread pattern in Iraq using GIS and RS techniques. Cogent Social Sciences, 9(2), 2282706.
  • Manisalidis, I., Stavropoulou, E., Stavropoulos, A., & Bezirtzoglou, E. (2020). Environmental and health impacts of air pollution: a review. Frontiers in public health, 8, 14.
  • Jumaah, H. J., Ameen, M. H., Kalantar, B., Rizeei, H. M., & Jumaah, S. J. (2019). Air quality index prediction using IDW geostatistical technique and OLS-based GIS technique in Kuala Lumpur, Malaysia. Geomatics, Natural Hazards and Risk, 10(1), 2185-2199.
  • Jumaah, H. J., Ameen, M. H., Mahmood, S., & Jumaah, S. J. (2023). Study of air contamination in Iraq using remotely sensed Data and GIS. Geocarto International, 38(1), 2178518.
  • Siddika, S., & Sresto, M. A. (2025). Assessing urban resilience of Khulna City in response to environmental and socioeconomic challenges. DYSONA-Applied Science, 6(1), 134-144.
  • khalil Ibrahim, A., & Khidhir, A. M. (2023). Ozone and Nitrogen Dioxide Pollutants Detection System Based on IoT. NTU Journal of Engineering and Technology, 2(1).
  • Hamed, H. H., Jumaah, H. J., Kalantar, B., Ueda, N., Saeidi, V., Mansor, S., & Khalaf, Z. A. (2021). Predicting PM2. 5 levels over the north of Iraq using regression analysis and geographical information system (GIS) techniques. Geomatics, Natural Hazards and Risk, 12(1), 1778-1796.
  • Ameen, M. H., Jumaah, H. J., Kalantar, B., Ueda, N., Halin, A. A., Tais, A. S., & Jumaah, S. J. (2021). Evaluation of PM2. 5 particulate matter and noise pollution in Tikrit University based on GIS and statistical modeling. Sustainability, 13(17), 9571.
  • Ajaj, Q. M., Awad, N. A., Jumaah, H. J., & Rizeei, H. M. (2025). Air quality regression analysis over Iraq during severe dust periods using GIS and remotely sensed PM2. 5. DYSONA-Applied Science, 6(2), 300-308.
  • Mahmood, M. R., Abrahem, B. I., Jumaah, H. J., Alalwan, H. A., & Mohammed, M. M. (2025). Drought monitoring of large lakes in Iraq using remote sensing images and normalized difference water index (NDWI). Results in Engineering, 25, 103854.
  • Safarov, R., Shomanova, Z., Nossenko, Y., Kopishev, E., Bexeitova, Z., & Kamatov, R. (2024). Spatial Analysis of Air Pollutants in an Industrial City Using GIS-Based Techniques: A Case Study of Pavlodar, Kazakhstan. Sustainability, 16(17), 7834.
  • Mahmood, M. R., & Jumaah, H. J. (2023). NBR index-based fire detection using sentinel-2 images and GIS: A case study in mosul park, Iraq. International Journal of Geoinformatics, 19(3), 67-74.
  • Coşkun, M., & Toprak, F. (2023). Coğrafi bilgi sistemleri (CBS) tabanlı orman yangını risk analizi: Bartın İli örneği. Geomatik, 8(3), 250-263.
  • Seinfeld, J. H., & Pandis, S. N. (2016). Atmospheric chemistry and physics: from air pollution to climate change. John Wiley & Sons.
  • Wang, J. W., Han, S. C., Mun, D. S., Yang, M., Choi, S. H., Kang, E., & Kim, J. J. (2021). A study on the characteristics of the atmospheric environment in Suwon based on GIS data and measured meteorological data and fine particle concentrations. Korean Journal of Remote Sensing, 37(6_2), 1849-1858.
  • Holmes, N. S., & Morawska, L. (2006). A review of dispersion modelling and its application to the dispersion of particles: An overview of different dispersion models available. Atmospheric environment, 40(30), 5902-5928.
  • Partigöç, N. S., & Dinçer, C. (2024). Coğrafi bilgi sistemleri (CBS) tabanlı afet risk analizi: Denizli ili örneği. Geomatik, 9(1), 27-44.
  • Juda-Rezler, K. (2010). New challenges in air quality and climate modeling. Archives of Environmental Protection, 3-28.
  • Jumaah, H. J., Mansor, S., Pradhan, B., & Adam, S. N. (2018). UAV-Based PM2. 5 Monitoring for Small-Scale Urban Areas. International Journal of Geoinformatics, 14(4).
  • Tiwary, A., & Williams, I. (2018). Air pollution: measurement, modelling and mitigation. Crc Press.
  • Salih, A. S., & Hassan, N. D. (2023). The Impact of Urban Trees on Air Pollution in Kirkuk City: A Gaussian Dispersion Model Approach. NTU Journal of Engineering and Technology, 2(4).
  • Giovannini, L., Ferrero, E., Karl, T., Rotach, M. W., Staquet, C., Trini Castelli, S., & Zardi, D. (2020). Atmospheric pollutant dispersion over complex terrain: Challenges and needs for improving air quality measurements and modeling. Atmosphere, 11(6), 646.
  • Ajaj, Q. M., Shafri, H. Z. M., Wayayok, A., & Ramli, M. F. (2023). Assessing the Impact of Kirkuk Cement Plant Emissions on Land cover by Modelling Gaussian Plume with Python and QGIS. The Egyptian Journal of Remote Sensing and Space Science, 26(1), 1-16.
  • Jumaah, H. J., & Kamran, K. V. AQI-based box model using GIS and remote sensing over Kirkuk city, Iraq. Advanced Engineering Days 9 144-146.‏
  • Oliveri Conti, G., Heibati, B., Kloog, I., Fiore, M., & Ferrante, M. (2017). A review of AirQ Models and their applications for forecasting the air pollution health outcomes. Environmental Science and Pollution Research, 24, 6426-6445.
  • Hood, C., Stocker, J., Seaton, M., Johnson, K., O’Neill, J., Thorne, L., & Carruthers, D. (2021). Comprehensive evaluation of an advanced street canyon air pollution model. Journal of the Air & Waste Management Association, 71(2), 247-267.
  • Pantusheva, M., Mitkov, R., Hristov, P. O., & Petrova-Antonova, D. (2022). Air pollution dispersion modelling in urban environment using CFD: a systematic review. Atmosphere, 13(10), 1640.
  • Yakar, M., & Dogan, Y. (2018,). 3D Reconstruction of residential areas with SfM photogrammetry. In Conference of the Arabian Journal of Geosciences (pp. 73-75). Cham: Springer International Publishing.
  • Ünel, F. B., Kuşak, L., Yakar, M., & Doğan, H. (2023). Coğrafi bilgi sistemleri ve analitik hiyerarşi prosesi kullanarak Mersin ilinde otomatik meteoroloji gözlem istasyonu yer seçimi. Geomatik, 8(2), 107-123.
  • Yakar, M. (2011). Using close range photogrammetry to measure the position of inaccessible geological features. Experimental Techniques, 35(1), 54-59.orhan
  • Crawford, J. H., Ahn, J. Y., Al-Saadi, J., Chang, L., Emmons, L. K., Kim, J., ... & Kim, Y. P. (2021). The Korea–United States air quality (KORUS-AQ) field study. Elem Sci Anth, 9(1), 00163.
  • Saleh, S. H. (2024). Assessment of Air Pollutants for Baba Industrial Area at Kirkuk Oil Field, Iraq. The Iraqi Geological Journal, 125-137.
  • Hamad, J., & Jasim, S. N. (2024). Role of green belt in reducing city pollutants. Journal of Kirkuk University for Agricultural Sciences, 15(3).
  • Noori, A. M., Kamal, A. A. K., Mohamed, G. H., & Najemalden, M. A. (2020). Monitoring and assessment the covariance of suspended particulates concentration levels over Kirkuk Governorate, Iraq. Ecology Environment and Conservation, 26 (2), 935-942.
  • Jumaah, H. J., Jasim, A., Rashid, A., & Ajaj, Q. (2023). Air pollution risk assessment using gis and remotely sensed data in kirkuk city iraq. Journal of Atmospheric Science Research, 6.
  • Mahmood, Y. H., Najemalden, M. A., & Ahmed, R. T. (2021). Air quality in Kirkuk regarding PM10 concentrations. Review of International Geographical Education Online, 11(5).
  • Aldughairi, A. A. (2025). Climate change assessment in middle and northern Saudi Arabia: Alarming trends. DYSONA-Applied Science, 6(1), 60-69.
  • Mohammadi, M., Mohammadi, M., & Moezzi, S. M. M. (2025). Air pollution meteorology and dispersion. In Air Pollution, Air Quality, and Climate Change (pp. 51-82). Elsevier.
  • Kaiser, S. (2024). Detecting Land Surface Changes and Threats to Infrastructure in Alaskan Permafrost Regions. Humboldt Universitaet zu Berlin (Germany).31357945.
  • Ruangkawsakun, J., & Thepanondh, S. (2014). Air assimilative capacity for sulfur dioxide and nitrogen dioxide: case study the Eastern Region of Thailand. International Journal of Environmental Science and Development, 5(2), 187.
  • Zaidan, M. A., Xie, Y., Motlagh, N. H., Wang, B., Nie, W., Nurmi, P., ... & Kulmala, M. (2022). Dense air quality sensor networks: Validation, analysis, and benefits. IEEE Sensors Journal, 22(23), 23507-23520.
  • Van Calster, B., Steyerberg, E. W., Wynants, L., & Van Smeden, M. (2023). There is no such thing as a validated prediction model. BMC medicine, 21(1), 70.
  • Ma, Z., Dey, S., Christopher, S., Liu, R., Bi, J., Balyan, P., & Liu, Y. (2022). A review of statistical methods used for developing large-scale and long-term PM2. 5 models from satellite data. Remote Sensing of Environment, 269, 112827.
  • Kotan, B., & Erener, A. (2023). PM10, SO2 hava kirleticilerinin çoklu doğrusal regresyon ve yapay sinir ağları ile sezonsal tahmini. Geomatik, 8(2), 163-179.
  • Zhang, Y., Fu, Q., Wang, T., Huo, J., Cui, H., Mu, J., ... & Xue, L. (2024). A quantitative analysis of causes for increasing ozone pollution in Shanghai during the 2022 lockdown and implications for control policy. Atmospheric Environment, 326, 120469.
  • Jumaah, H. J., Dawood, M. A., & Mahmood, S. (2024). Estimating Chemical Concentrations of Dust PM2. 5 in Iraq: A Climatic Perspective Using Polynomial Model and Remote Sensing Technology. Journal of Atmospheric Science Research, 7(03).
  • Kumar, K., & Pande, B. P. (2023). Air pollution prediction with machine learning: a case study of Indian cities. International Journal of Environmental Science and Technology, 20(5), 5333-5348.
  • Najim, A. O., Meteab, M. A., Jasim, A. T., Ajaj, Q. M., Jumaah, H. J., & Sulyman, M. H. A. (2023). Spatial analysis of particulate matter (PM10) using MODIS aerosol optical thickness observations and GIS over East Malaysia. The Egyptian Journal of Remote Sensing and Space Science, 26(2), 265-271.
  • Khorshiddoust, A. M., Valizadeh Kamran, K., & Ghasemi Bghtash, A. (2017). Analysis of temporal-spatial distribution of dangerous contaminants in Tabriz with emphasis on PM10. Physical Geography Research, 49(4), 585-602.
  • Kaplan, G., & Avdan, Z. Y. (2020). Space-borne air pollution observation from sentinel-5p tropomi: Relationship between pollutants, geographical and demographic data. International Journal of Engineering and Geosciences, 5(3), 130-137.
  • Kotan, B., & Erener, A. (2022). Seasonal analysis and mapping of air pollution (PM10 and SO2) during Covid-19 lockdown in Kocaeli (Türkiye). International Journal of Engineering and Geosciences, 8(2), 173-187.
  • Mohamed, H., Hassan, A., & Elhag, A. (2025). A five-year Study Using Sentinel-5P Data Observing Seasonal Dynamics and Long-term Trends of Atmospheric Pollutants. International Journal of Engineering and Geosciences, 10(2), 262-271.
  • Ablahd, A. Z., Aloraibi, A. Q., & Abd Dawwod, S. (2024). Driver Drowsiness Detection. Scalable Computing: Practice and Experience, 25(5), 4301-4311.
  • Li, D., & Gao, W. (2021). A Virtual Experiment Design Approach For Big Data Based On Containers And Python Language. Ijaedu-International E-Journal of Advances in Education, 7(21), 212-215.
  • Magdacy Jerjes, A. Z. A., Dawod, A. Y., & Abdulqader, M. F. (2023). Detect malicious web pages using naive bayesian algorithm to detect cyber threats. Wireless Personal Communications, 1-13.
  • Sonu, S. B., & Suyampulingam, A. (2021, August). Linear regression based air quality data analysis and prediction using python. In 2021 IEEE Madras Section Conference (MASCON) (pp. 1-7). IEEE.
  • Simu, S., Turkar, V., Martires, R., Asolkar, V., Monteiro, S., Fernandes, V., & Salgaoncary, V. (2020, December). Air pollution prediction using machine learning. In 2020 IEEE Bombay Section Signature Conference (IBSSC) (pp. 231-236). IEEE.
  • Ameen, M. H., Azmi, M. & Jumaah H. J. (2025). Evaluating Exposure to Road Traffic Air and Noise Pollution: A Comprehensive Review of Assessment Methods. Tikrit Journal of Engineering Sciences, 32(2), 2020. https://doi.org/10.25130/tjes.32.2.9
There are 59 citations in total.

Details

Primary Language English
Subjects Geospatial Information Systems and Geospatial Data Modelling, Photogrammetry and Remote Sensing, Geographical Information Systems (GIS) in Planning
Journal Section Research Article
Authors

Huda Jumaah 0000-0002-3438-3033

Khalil Valizadeh Kamran 0000-0003-4648-842X

Abolfazl Ghanbari 0000-0002-0145-0279

Mehrdad Jeihouni 0000-0002-8710-6793

Early Pub Date August 25, 2025
Publication Date October 1, 2025
Submission Date May 31, 2025
Acceptance Date July 5, 2025
Published in Issue Year 2026 Volume: 11 Issue: 1

Cite

APA Jumaah, H., Valizadeh Kamran, K., Ghanbari, A., Jeihouni, M. (2025). Development of GIS-based Box Model Tool for Air Quality Mapping with Python and ArcGIS Pro in Kirkuk City, Iraq. International Journal of Engineering and Geosciences, 11(1), 212-225. https://doi.org/10.26833/ijeg.1710723
AMA Jumaah H, Valizadeh Kamran K, Ghanbari A, Jeihouni M. Development of GIS-based Box Model Tool for Air Quality Mapping with Python and ArcGIS Pro in Kirkuk City, Iraq. IJEG. October 2025;11(1):212-225. doi:10.26833/ijeg.1710723
Chicago Jumaah, Huda, Khalil Valizadeh Kamran, Abolfazl Ghanbari, and Mehrdad Jeihouni. “Development of GIS-Based Box Model Tool for Air Quality Mapping With Python and ArcGIS Pro in Kirkuk City, Iraq”. International Journal of Engineering and Geosciences 11, no. 1 (October 2025): 212-25. https://doi.org/10.26833/ijeg.1710723.
EndNote Jumaah H, Valizadeh Kamran K, Ghanbari A, Jeihouni M (October 1, 2025) Development of GIS-based Box Model Tool for Air Quality Mapping with Python and ArcGIS Pro in Kirkuk City, Iraq. International Journal of Engineering and Geosciences 11 1 212–225.
IEEE H. Jumaah, K. Valizadeh Kamran, A. Ghanbari, and M. Jeihouni, “Development of GIS-based Box Model Tool for Air Quality Mapping with Python and ArcGIS Pro in Kirkuk City, Iraq”, IJEG, vol. 11, no. 1, pp. 212–225, 2025, doi: 10.26833/ijeg.1710723.
ISNAD Jumaah, Huda et al. “Development of GIS-Based Box Model Tool for Air Quality Mapping With Python and ArcGIS Pro in Kirkuk City, Iraq”. International Journal of Engineering and Geosciences 11/1 (October2025), 212-225. https://doi.org/10.26833/ijeg.1710723.
JAMA Jumaah H, Valizadeh Kamran K, Ghanbari A, Jeihouni M. Development of GIS-based Box Model Tool for Air Quality Mapping with Python and ArcGIS Pro in Kirkuk City, Iraq. IJEG. 2025;11:212–225.
MLA Jumaah, Huda et al. “Development of GIS-Based Box Model Tool for Air Quality Mapping With Python and ArcGIS Pro in Kirkuk City, Iraq”. International Journal of Engineering and Geosciences, vol. 11, no. 1, 2025, pp. 212-25, doi:10.26833/ijeg.1710723.
Vancouver Jumaah H, Valizadeh Kamran K, Ghanbari A, Jeihouni M. Development of GIS-based Box Model Tool for Air Quality Mapping with Python and ArcGIS Pro in Kirkuk City, Iraq. IJEG. 2025;11(1):212-25.