Araştırma Makalesi
BibTex RIS Kaynak Göster
Yıl 2024, , 10 - 15, 30.03.2024
https://doi.org/10.30897/ijegeo.1441082

Öz

Kaynakça

  • Akgul, V., Gurbuz, G., Kutoglu S.H., Jin.S., (2020). Effects of the High-Order Ionospheric Delay onGPS-Based Tropospheric Parameter Estimations in Türkiye. Remote Sensing, 12, 3569, doi: 10.3390/rs12213569.
  • Akılan, A., Padhy, S., Dimri, V.P., Schuh, H., Azeez, K.K.A. (2021). Co-seismic and Post-seismic Changes in ZTD and TEC of the 2015 Nepal Earthquake, Pure and Applied Geophysics, 178, 3339-3354, doi: 10.1007/s00024-021-02830-y.
  • Astudillo, J., M., Lau, L., Tang, Y.T., Moore, T. (2018). Analysing the Zenith Tropospheric Delay Estimatesin On-line Precise Point Positioning (PPP) Servicesand PPP Software Packages. Sensors, 18, 580, doi: 10.3390/s18020580.
  • Emre, Ö, Duman, T.Y., Özalp, S., Elmacı, H., Olgun, S. Şaroğlu, F. (2013). Active Fault Map of Türkiye with an Explanatory Text 1:1,250,000 Scale. Special Publication Series. 30. General Directorate of Mineral Research and Exploration.
  • Gazioğlu, C., Gökaşan, E., Algan, O. Yücel, Z. Y., Tok, B., Doğan, E. (2002). Morphologic features of the Marmara Sea from multi-beam data, Mar. Geol., 190(1– 2): 397–420
  • Gürbüz, G., Koçyiğit, K. (2020). Deprem ve Troposfer İlişkisi: Şili Örneği, Afyon Kocatepe Üniversitesi, Fen ve Mühendislik Bilimleri Dergisi, 20, 065501, 1014-1023, doi: 10.35414/akufemubid.823640.
  • Güvercin, S. E. (2024) 2023 Earthquake Doublet in Türkiye Reveals the Complexities of the East Anatolian Fault Zone: Insights from Aftershock Patterns and Moment Tensor Solutions.
  • Hajj, G. A., Kursinski, E. R., Romans, L. J., Bertiger, W. I. Leroy, S. S. (2002). A technical description of atmospheric sounding by GPS occultation. Journal of Atmospheric and Solar-Terrestrial Physics 64(4), 451–469.
  • Herring, T. A. (1992). Modeling atmospheric delays in the analysis of space geodetic data. J. Proceedings of Refraction of Transatmospheric signals in Geodesy, eds De Munck, J. C. Spoelstra, T. A. Netherlands Geodetic Commission Publications on Geodesy, 36, 157–164.
  • Hopfield, H. S. (1969). Two‐quartic tropospheric refractivity profile for correcting satellite data. J. Journal of Geophysical research 74(18), 4487–4499.
  • Karabulut, H., Güvercin, S. E., Hollingsworth, J., Konca, A. Ö. (2023). Long silence on the East Anatolian Fault Zone (Southern Türkiye) ends with devastating double earthquakes (6 February 2023) over a seismic gap: implications for the seismic potential in the Eastern Mediterranean region. Journal of the Geological Society, 180(3).
  • Lu, C., Li, X., Cheng, J., Dick, G., Ge, M., Wickert, J., Schuh, H., (2018), Real-Time Tropospheric Delay Retrieval from Multi-GNSS PPP Ambiguity Resolution: Validation with Final Troposphere Products and a Numerical Weather Model. Remote Sensing, 10, 481, doi: 10.3390/rs10030481.
  • Marini, J. W. (1975). Correction of laser range tracking data for atmospheric refraction at elevations above 10 degrees. Laser Infrared 55(4), 220–220.
  • McClusky, S., Balassanian, S., Barka, A., Demir C., Ergintav, S., Georgiev, I., Gurkan, O., Hamburger, M., Hurst, K., Kahle, K., Kastens, K., Kekelidze, G., King, R., Kotzev, V., Lenk, O., Mahmoud, S., Mishin, M., Nadariya, M., Ouzounis, A., Paradissis, D., Peter, Y., Prilepin, M., Reilinger, R., Sanli, I., Seeger, H., Tealeb, A., Toksöz, M.N. ve Veis, G. (2000). Global Positioning System Constrains on Plate Kinematics and Dynamics in the Eastern Mediterranean and Caucasus, J. Geophys. Res., v. 105, no. B3, 5695-5719.
  • Melgar, D., T. Taymaz, A. Ganas, B. W. Crowell, T. Öcalan, M. Kahraman, V. Tsironi, S. Yolsal-Çevikbil, S. Valkaniotis, T. S. Irmak, et al. (2023). Sub- and super-shear ruptures during the 2023 Mw 7.8 and Mw 7.6 earthquake doublet in SE Türkiye, Seismica, 2(3), doi: 10.26443/seismica.v2i3.387.
  • Okuwaki, R., Y. Yagi, T. Taymaz, S. P. Hicks (2023). Multi-scale rupture growth with alternating directions in a complex fault network during the 2023 south-eastern Türkiye and Syria earthquake doublet, preprint, doi: 10.31223/X5RD4W
  • Özarpacı, S., Özdemir, A., Ayruk, E. T., Farımaz, İ., Turğut, M., Yüksel, Y., …, Çakır, Z. (2023). February 6, 2023, Mw 7.8 and 7.6 Kahramanmaraş (Turkiye) Earthquake Sequence: Insights from Co-seismic and Post-seismic Surface Deformation (No. EGU23-17624). Copernicus Meetings.
  • Özkan, A., Solak, H. İ., Tiryakioğlu, İ., Şentürk, M. D., Aktuğ, B., Gezgin, C., Poyraz, F., Duman, H., Masson, F., Uslular, G., Yiğit, C. Ö., Yavaşoğlu, H. H. (2023). Characterization of the co-seismic pattern and slip distribution of the February 06, 2023, Kahramanmaraş (Türkiye) earthquakes (Mw 7.7 and Mw 7.6) with a dense GNSS network. Tectonophysics, 866, 230041.
  • Petersen, G. M., P. Büyükakpinar, F. O. Vera Sanhueza, M. Metz, S. Cesca, K. Akbayram, J. Saul, and T. Dahm (2023). The 2023 Southeast Türkiye Seismic Sequence: Rupture of a Complex Fault Network, The Seismic Rec. 3(2), 134–143, doi: 10.1785/ 0320230008.
  • Reilinger, R., McClusky, S., Vernant, P., Lawrence, S., Ergintav, S., Çakmak, R., Özener, H., Kadirov, F., Guliev, I., Stepanyan, R., Nadariya, M., Hahubia, H., Mahmoud, S., Sakr, K., ArRajehi, A., Paradissis, D., Al-Aydrus, A., Prilepin, M., Guseva, T., Evren, E., Dmitrotsa, A., Filikov, S. V., Gomez, F., Al-Ghazzi, R., Karam, G. (2006). GPS Constraints on Continental Deformation in the Africa-Arabia-Eurasia Continental Collision Zone and Implications for the Dynamics of Plate Interactions, Journal of GeophysicalResearch-Solid Earth 111 (B5), doi:10.1029/2005JB004051.
  • Reitman N.G., Briggs, R., Barnhart, W. D., Jobe, J.A., Duross, C.B., Hatem, A. E., Gold, R.D., Akçiz, S., Koehler, R., Mejstrik, J.D., Collett, C.M., (2023). Preliminary fault rupture mapping of the 2023 M7. 8 and M7. 5 Türkiye Earthquakes. USGS: Reston, VA, USA.
  • Saastamoinen, J. (1972). Atmospheric correction for the troposphere and stratosphere in radio ranging satellites. J. The use of artificial satellites for geodesy 15, 247–251.
  • Selbesoglu., M.O., (2019). Spatial Interpolation of GNSS Troposphere Wet Delay by a Newly Designed Artificial Neural Network Model, Applies Science, 9, 4688, doi: 10.3390/app9214688.
  • Sevgi Birincioğlu, E., Aydın, M. C., Büyüksaraç, A., Işık, E. (2024). Earthquake Risk Assessment Using GIS-Based Analytical Hierarchy Process (AHP): The Case of Bitlis Province (Türkiye). International Journal of Environment and Geoinformatics, 11(1), 1-9. https://doi.org/10.30897/ijegeo.1306580
  • Solheim, F. S., Vivekanandan, J., Ware, R. H., Rocken, C. (1999). Propagation delays induced in GPS signals by dry air, water vapor, hydrometeors, and other particulates. Journal of Geophysical Research: Atmospheres (1984–2012) 104(D8), 9663–9670.
  • Sylvain, B., Heng, L., Teng, W., Yariv, H., Oksana, P., Tahir, M., ..., Gokhan, G. (2023). Slip distribution of the February 6, 2023 Mw 7.8 and Mw 7.6, Kahramanmaraş, Türkiye earthquake sequence in the East Anatolian fault zone. Seismica, 3(2).
  • Yao, Y.B., Lei, X.X., Liu, Q., He, C.Y., Zhang, B., Zhang, L. (2014). Anomalies of zenith tropospheric delay following the Mw 7.8 Haida Gwaii earthquake. Natural Hazards and Earth System Sciences, 2, 3533-3559, doi: 10.5194/nhessd-2-3533-2014.
  • Zhao, L., Cui, M., Song, J. (2023). An Improved Strategy for Real-Time Troposphere Estimation and Its Application in the Severe Weather Event Monitoring. Atmosphere, 14,46, doi: 10.3390/atmos14010046.

The Investigation of Tropospheric Changes with GNSS: A study on 6 February 2023 Kahramanmaraş Earthquake Sequence

Yıl 2024, , 10 - 15, 30.03.2024
https://doi.org/10.30897/ijegeo.1441082

Öz

The earthquakes that occurred in Kahramanmaraş on February 6, 2023, are among the significant seismic events in Turkey. Recorded at moment magnitudes of 7.8 and 7.6 in ten hours on East Anatolian Fault Zone (EAFZ), these earthquakes resulted in extensive destruction and loss of lives in the region. The effects of these earthquakes have been actively studied following the events, utilizing geodetic measurement techniques, particularly GNSS measurements, which are commonly employed in earthquake studies for determining tectonic movements and crustal deformations. As known, GNSS signals pass through significant atmospheric layers, namely the ionosphere and troposphere, before reaching the Earth's surface, and the influence of these atmospheric layers is evident in the results due to various error sources within these layers. One of the main limiting factors in studies such as determining crustal movements is the influence of the troposphere, as surface velocities are on the order of a few mm/yr and require high accuracy (at the mm level). In this study, changes in the troposphere during the earthquakes on February 6, 2023, were investigated using tropospheric zenith delays (Zenith Total Delay - ZTD) computed from GNSS observations. The results indicate the presence of zenith tropospheric delay anomalies at stations close to the fault rupture during and after the main shock, while no such anomalies were observed at distant stations from the fault rupture zone. This finding indicates a relationship between earthquakes and changes occurring in the troposphere.

Kaynakça

  • Akgul, V., Gurbuz, G., Kutoglu S.H., Jin.S., (2020). Effects of the High-Order Ionospheric Delay onGPS-Based Tropospheric Parameter Estimations in Türkiye. Remote Sensing, 12, 3569, doi: 10.3390/rs12213569.
  • Akılan, A., Padhy, S., Dimri, V.P., Schuh, H., Azeez, K.K.A. (2021). Co-seismic and Post-seismic Changes in ZTD and TEC of the 2015 Nepal Earthquake, Pure and Applied Geophysics, 178, 3339-3354, doi: 10.1007/s00024-021-02830-y.
  • Astudillo, J., M., Lau, L., Tang, Y.T., Moore, T. (2018). Analysing the Zenith Tropospheric Delay Estimatesin On-line Precise Point Positioning (PPP) Servicesand PPP Software Packages. Sensors, 18, 580, doi: 10.3390/s18020580.
  • Emre, Ö, Duman, T.Y., Özalp, S., Elmacı, H., Olgun, S. Şaroğlu, F. (2013). Active Fault Map of Türkiye with an Explanatory Text 1:1,250,000 Scale. Special Publication Series. 30. General Directorate of Mineral Research and Exploration.
  • Gazioğlu, C., Gökaşan, E., Algan, O. Yücel, Z. Y., Tok, B., Doğan, E. (2002). Morphologic features of the Marmara Sea from multi-beam data, Mar. Geol., 190(1– 2): 397–420
  • Gürbüz, G., Koçyiğit, K. (2020). Deprem ve Troposfer İlişkisi: Şili Örneği, Afyon Kocatepe Üniversitesi, Fen ve Mühendislik Bilimleri Dergisi, 20, 065501, 1014-1023, doi: 10.35414/akufemubid.823640.
  • Güvercin, S. E. (2024) 2023 Earthquake Doublet in Türkiye Reveals the Complexities of the East Anatolian Fault Zone: Insights from Aftershock Patterns and Moment Tensor Solutions.
  • Hajj, G. A., Kursinski, E. R., Romans, L. J., Bertiger, W. I. Leroy, S. S. (2002). A technical description of atmospheric sounding by GPS occultation. Journal of Atmospheric and Solar-Terrestrial Physics 64(4), 451–469.
  • Herring, T. A. (1992). Modeling atmospheric delays in the analysis of space geodetic data. J. Proceedings of Refraction of Transatmospheric signals in Geodesy, eds De Munck, J. C. Spoelstra, T. A. Netherlands Geodetic Commission Publications on Geodesy, 36, 157–164.
  • Hopfield, H. S. (1969). Two‐quartic tropospheric refractivity profile for correcting satellite data. J. Journal of Geophysical research 74(18), 4487–4499.
  • Karabulut, H., Güvercin, S. E., Hollingsworth, J., Konca, A. Ö. (2023). Long silence on the East Anatolian Fault Zone (Southern Türkiye) ends with devastating double earthquakes (6 February 2023) over a seismic gap: implications for the seismic potential in the Eastern Mediterranean region. Journal of the Geological Society, 180(3).
  • Lu, C., Li, X., Cheng, J., Dick, G., Ge, M., Wickert, J., Schuh, H., (2018), Real-Time Tropospheric Delay Retrieval from Multi-GNSS PPP Ambiguity Resolution: Validation with Final Troposphere Products and a Numerical Weather Model. Remote Sensing, 10, 481, doi: 10.3390/rs10030481.
  • Marini, J. W. (1975). Correction of laser range tracking data for atmospheric refraction at elevations above 10 degrees. Laser Infrared 55(4), 220–220.
  • McClusky, S., Balassanian, S., Barka, A., Demir C., Ergintav, S., Georgiev, I., Gurkan, O., Hamburger, M., Hurst, K., Kahle, K., Kastens, K., Kekelidze, G., King, R., Kotzev, V., Lenk, O., Mahmoud, S., Mishin, M., Nadariya, M., Ouzounis, A., Paradissis, D., Peter, Y., Prilepin, M., Reilinger, R., Sanli, I., Seeger, H., Tealeb, A., Toksöz, M.N. ve Veis, G. (2000). Global Positioning System Constrains on Plate Kinematics and Dynamics in the Eastern Mediterranean and Caucasus, J. Geophys. Res., v. 105, no. B3, 5695-5719.
  • Melgar, D., T. Taymaz, A. Ganas, B. W. Crowell, T. Öcalan, M. Kahraman, V. Tsironi, S. Yolsal-Çevikbil, S. Valkaniotis, T. S. Irmak, et al. (2023). Sub- and super-shear ruptures during the 2023 Mw 7.8 and Mw 7.6 earthquake doublet in SE Türkiye, Seismica, 2(3), doi: 10.26443/seismica.v2i3.387.
  • Okuwaki, R., Y. Yagi, T. Taymaz, S. P. Hicks (2023). Multi-scale rupture growth with alternating directions in a complex fault network during the 2023 south-eastern Türkiye and Syria earthquake doublet, preprint, doi: 10.31223/X5RD4W
  • Özarpacı, S., Özdemir, A., Ayruk, E. T., Farımaz, İ., Turğut, M., Yüksel, Y., …, Çakır, Z. (2023). February 6, 2023, Mw 7.8 and 7.6 Kahramanmaraş (Turkiye) Earthquake Sequence: Insights from Co-seismic and Post-seismic Surface Deformation (No. EGU23-17624). Copernicus Meetings.
  • Özkan, A., Solak, H. İ., Tiryakioğlu, İ., Şentürk, M. D., Aktuğ, B., Gezgin, C., Poyraz, F., Duman, H., Masson, F., Uslular, G., Yiğit, C. Ö., Yavaşoğlu, H. H. (2023). Characterization of the co-seismic pattern and slip distribution of the February 06, 2023, Kahramanmaraş (Türkiye) earthquakes (Mw 7.7 and Mw 7.6) with a dense GNSS network. Tectonophysics, 866, 230041.
  • Petersen, G. M., P. Büyükakpinar, F. O. Vera Sanhueza, M. Metz, S. Cesca, K. Akbayram, J. Saul, and T. Dahm (2023). The 2023 Southeast Türkiye Seismic Sequence: Rupture of a Complex Fault Network, The Seismic Rec. 3(2), 134–143, doi: 10.1785/ 0320230008.
  • Reilinger, R., McClusky, S., Vernant, P., Lawrence, S., Ergintav, S., Çakmak, R., Özener, H., Kadirov, F., Guliev, I., Stepanyan, R., Nadariya, M., Hahubia, H., Mahmoud, S., Sakr, K., ArRajehi, A., Paradissis, D., Al-Aydrus, A., Prilepin, M., Guseva, T., Evren, E., Dmitrotsa, A., Filikov, S. V., Gomez, F., Al-Ghazzi, R., Karam, G. (2006). GPS Constraints on Continental Deformation in the Africa-Arabia-Eurasia Continental Collision Zone and Implications for the Dynamics of Plate Interactions, Journal of GeophysicalResearch-Solid Earth 111 (B5), doi:10.1029/2005JB004051.
  • Reitman N.G., Briggs, R., Barnhart, W. D., Jobe, J.A., Duross, C.B., Hatem, A. E., Gold, R.D., Akçiz, S., Koehler, R., Mejstrik, J.D., Collett, C.M., (2023). Preliminary fault rupture mapping of the 2023 M7. 8 and M7. 5 Türkiye Earthquakes. USGS: Reston, VA, USA.
  • Saastamoinen, J. (1972). Atmospheric correction for the troposphere and stratosphere in radio ranging satellites. J. The use of artificial satellites for geodesy 15, 247–251.
  • Selbesoglu., M.O., (2019). Spatial Interpolation of GNSS Troposphere Wet Delay by a Newly Designed Artificial Neural Network Model, Applies Science, 9, 4688, doi: 10.3390/app9214688.
  • Sevgi Birincioğlu, E., Aydın, M. C., Büyüksaraç, A., Işık, E. (2024). Earthquake Risk Assessment Using GIS-Based Analytical Hierarchy Process (AHP): The Case of Bitlis Province (Türkiye). International Journal of Environment and Geoinformatics, 11(1), 1-9. https://doi.org/10.30897/ijegeo.1306580
  • Solheim, F. S., Vivekanandan, J., Ware, R. H., Rocken, C. (1999). Propagation delays induced in GPS signals by dry air, water vapor, hydrometeors, and other particulates. Journal of Geophysical Research: Atmospheres (1984–2012) 104(D8), 9663–9670.
  • Sylvain, B., Heng, L., Teng, W., Yariv, H., Oksana, P., Tahir, M., ..., Gokhan, G. (2023). Slip distribution of the February 6, 2023 Mw 7.8 and Mw 7.6, Kahramanmaraş, Türkiye earthquake sequence in the East Anatolian fault zone. Seismica, 3(2).
  • Yao, Y.B., Lei, X.X., Liu, Q., He, C.Y., Zhang, B., Zhang, L. (2014). Anomalies of zenith tropospheric delay following the Mw 7.8 Haida Gwaii earthquake. Natural Hazards and Earth System Sciences, 2, 3533-3559, doi: 10.5194/nhessd-2-3533-2014.
  • Zhao, L., Cui, M., Song, J. (2023). An Improved Strategy for Real-Time Troposphere Estimation and Its Application in the Severe Weather Event Monitoring. Atmosphere, 14,46, doi: 10.3390/atmos14010046.
Toplam 28 adet kaynakça vardır.

Ayrıntılar

Birincil Dil İngilizce
Konular Jeomatik Mühendisliği (Diğer)
Bölüm Research Articles
Yazarlar

Seda Özarpacı 0000-0002-1900-3725

Erken Görünüm Tarihi 17 Mart 2024
Yayımlanma Tarihi 30 Mart 2024
Gönderilme Tarihi 21 Şubat 2024
Kabul Tarihi 6 Mart 2024
Yayımlandığı Sayı Yıl 2024

Kaynak Göster

APA Özarpacı, S. (2024). The Investigation of Tropospheric Changes with GNSS: A study on 6 February 2023 Kahramanmaraş Earthquake Sequence. International Journal of Environment and Geoinformatics, 11(1), 10-15. https://doi.org/10.30897/ijegeo.1441082