Research Article
BibTex RIS Cite

Assessing Future Water Potentials in a Semi-Arid Basin: A SWAT-Based Climate Change Study in the Upper Kızılırmak

Year 2025, Volume: 12 Issue: 4, 452 - 470, 12.01.2026
https://doi.org/10.26650/ijegeo.1789228

Abstract

This study aims to determine the current water potential in the Upper Kızılırmak Basin and to examine the changes in basin water potential under climate change scenarios. For this purpose, the Soil and Water Assessment Tool (SWAT) was used in the study. Basin water potential was evaluated through the parameters of precipitation, blue water potential, green water storage, and green water flow potential. In the optimistic climate scenario (SSP2), a decrease in precipitation values in the basin is predicted to range from an 8.4% decrease to a 1.8% increase. In the pessimistic scenario (SSP5), a decrease of up to 12% is predicted. These changes are critical for the development of sustainable water resource management, agricultural productivity, and climate change adaptation strategies. The findings show remarkable spatial and temporal changes in blue and green water potential. The need for water management that is consistent with climate change predictions and unaffected by expected changes in water availability is emphasized. By performing hydrological modeling, the study provides a prediction of how the region's water resources may change under future climate change scenarios and provides fundamental scientific data for local administrators. The research advances the discussion on hydrological modeling, which aims to analyze the impacts of climate change.

References

  • Abbaspour KC, Faramarzi M, Rouholahnejad E (2010) Hydrological Modeling of Alberta Using SWAT Model (A preliminary Report). Swiss Federal Institute of Aquatic Science and Technology.
  • Abbaspour, K.C., Rouholahnejad, E., Vaghefi, S., Srinivasan, R., Yang, H., Klove, B. (2015). A continental-scale hydrology and water quality model for Europe: Calibration and uncertainty of a high-resolution large-scale SWAT model. Journal of Hydrology, 524, 733-752
  • AL-Falahi, A. H., Saddique, N., Spank, U., Pluntke, T., Gebrechorkos, S. H., Mauder, M., Bernhofer, C. (2024). Hydrological investigation of climate change impact on water balance components in the agricultural terraced watersheds of Yemeni highland. Theoretical and Applied Climatology, 155, 4703–4720.
  • Arnold, J.G., Moriasi, D.N., Gassman, P.W., Abbaspour, K.C., White, M.J., Srinivasan, R., Santhi, C., Harmel, R.D., Van Griensven, A., Van Liew, M.W., Kannan, N., Jha, M.K. (2013). SWAT: Model Use, Calibration, and Validation. Transactions of the ASABE, 55(4), 1491-1508.
  • Arnold, J.G., Srinivasan, R., Muttiah, R.S., Williams, J.R. (1998). Large area hydrologicmodeling and assessment part I: model development. Journal of The American Water Resourources Association, 34(1), 73–89.
  • Asong, Z.E., Khaliq, M.N., Wheater, H.S. (2016). Multisite multivariate modeling of daily precipitation and temperature in the Canadian Prairie Provinces using generalized linear models. Climate Dynamics, 47(9), 2901-2921.
  • Baker, T.J., Miller, S.N. (2013). Using the Soil and Water Assessment Tool (SWAT) to assess land use impact on water resources in an East African watershed. Journal of Hydrology, 486, 100-111.
  • Basheer, A.K., Lu, H., Omer, A., Ali, A.B., Abdelgader, A.M.S. (2016). Impacts of climate change under CMIP5 RCP scenarios on the streamflow in the Dinder River and ecosystem habitats in Dinder National Park, Sudan. Hydrology and Earth System Sciences, 20(4), 1331-1353.
  • Bekele, D., Alamirew, T., Kebede, A., Zeleke, G., Melesse, A.M. (2019). Modeling climate change impact on the Hydrology of Keleta watershed in the Awash River basin, Ethiopia. Environmental Modeling and Assessment, 24, 95-107.
  • Betrie, G., Mohamed, Y., Van Griensven, A., Srinivasan, R. (2011). Sediment management modelling in the Blue Nile Basin using SWAT model. Hydrology and Earth System Sciences, 15, 807-818.
  • Cai, Y., Zhang, F., Gao, G., Jim, C.Y., Tan, M.L., Sh, J., Wang, W., Zhao, Q. (2024). Spatio-temporal variability and trend of blue-green water resources in the Kaidu River Basin, an arid region of China. Journal of Hydrology: Regional Studies, 51,101640.
  • Chen, Z., Su, B., Fohrer, N., Ayalew, A.D., Huang, J., Zhao, M., Wen, S. & Jiang, T. (2025). Impacts of Climate and Land Use Changes on Projected Discharge Patterns in the Upper Yellow River Basin. International Journal of Climatology, e70040.
  • Çiçek, I., Ataol, M. (2009). A new approach in the determination of Turkey's water potential (in Turkish). Turkish Journal of Geographical Sciences, 7(1), 51-65.
  • Circi Selcuk, B., Irmak, M.A. (2022). A study on the adequacy and requirement of urban active green areas in Sivas. Fresenius Environmental Bulletin, 31(2), 2209-2220.
  • Cuceloglu, G., Abbaspour, K.C., Ozturk, I. (2017). Assessing the water-resources potential of Istanbul by using a soil and water assessment tool (SWAT) hydrological model. Water, 9(10), 1-18.
  • Cüceloğlu, G., Seker, D. Z., Tanık, A., Öztürk, İ. (2021). Analyzing effects of two different land use datasets on hydrological simulations by using SWAT model. International Journal of Environment and Geoinformatics, 8(2), 172-185.
  • Dash, S.S., Sahoo, B., Raghuwanshi, N.S. (2023). SWAT model calibration approaches in an integrated paddy-dominated catchment-command. Agricultural Water Management, 278, 108138.
  • Dey, A., Remesan, R., Kumar, R. (2023). Blue and green water re-distribution dependency on precipitation datasets for a tropical Indian River basin. Journal of Hydrology: Regional Studies, 46, 101361.
  • Ding, B., Zhang, J., Zheng, P., Li, Z., Wang, Y., Jia, G., Yu, X. (2024). Water security assessment for effective water resource management based on multi-temporal blue and green water footprints. Journal of Hydrology, 632, 130761.
  • Dosio, A., Paruolo, P. (2011). Bias correction of the ENSEMBLES high-resolution climate change projections for use by impact models: evaluation on the present climate. Journal of Geophysical Research Atmospheres, 116(22), 1-22.
  • Ercan, B., Yüce, M.İ. (2017). Trend Analysis of Hydro-Meteorological Variables of Kızılırmak Basin. Nevşehir Journal of Science and Technology, 6(ICOCEE 2017 Special Issue), 333-340.
  • Falkenmark, M. (1995). Coping with water scarcity under rapid population growth. Conference of SADC Ministers, Pretoria, South Africa, p 23-24.
  • Ghosh, S., Mujumdar, P.P. (2008). Statistical downscaling of GCM simulations to streamflow using relevance vector machine. Advances in Water Resources, 31,132–146
  • Hagemann, S., Chen, C., Haerter, J.O., Heinke, J., Gerten, D., Piani, C. (2011). Impact of a statistical bias correction on the projected hydrological changes obtained from three GCMs and two hydrology models. Journal of Hydrometeorolgy, 12(4),556-578.
  • Hargreaves, G.H., Samani, Z.A. (1985). Reference Crop Evapotranspiration from Temperature. Applied Engineering In Agriculture, 1, 96-99.
  • Houshmand Kouchi, D., Esmaili, K., Faridhosseini, A., Sanaeinejad, S.H., Khalili, D., Abbaspour, K.C. (2017). Sensitivity of calibrated parameters and water resource estimates on different objective functions and optimization algorithms. Water, 9(6), 384.
  • IPCC (2021). The Physical Science Basis. In: Masson-Delmotte V, Zhai P, Pirani A, Connors SL, Péan C, Berger S, Caud N, et al. (Eds.), UK: Cambridge University Press.
  • Jiao, Y., Liu, C., Gao, X., Xu, Q., Ding, Y., Liu, Z. (2019). Impacts of moisture sources on the isotopic inverse altitude effect and amount of precipitation in the Hani Rice Terraces region of the Ailao Mountains. Science of Total Environment, 687, 470-478.
  • John, J.G., Blanton, C., McHugh, C., Radhakrishnan, A., Rand, K., Vahlenkamp, H., Wilson, C., …, Zeng, Y. (2018). NOAA-GFDL GFDL-ESM4 model output prepared for CMIP6. Earth System Grid Federation.
  • Kaçaroğlu, F., Değirmenci, M., Cerit, O. (1997). Karstification in Miocene gypsum: an example from Sivas, Turkey. Environmental Geology, 30(1–2):88–97
  • Lazaro, B.H.M., Hagai, M.M., Mato, R.R.A.M. (2023). Empirical modelling of green water: a case of wami ruvu Basin, Tanzania. International Journal of Development Research, 13(6), 62952-62957
  • Liang, Y., Cai, Y., Wang, X., Li, C., Liu, Q. (2021). Water security assessment with the improvement of modifying the boundary consistency between footprint and provision. Science of Total Environment, 801, 149639.
  • Ma, D., Qian, B., Gu, H., Sun, Z., Xu, Y.P. (2021). Assessing climate change impacts on streamflow and sediment load in the upstream of the Mekong River basin. International Journal of Climatology, 41(5), 3391-3410.
  • Monteith, J.L. (1965). Evaporation and environment. Symposia of the Society for Experimental Biology, 19, 205-234.
  • Moriasi, D.N., Arnold, J.G., Van Liew, M.W., Bingner, R.L., Harmel, R.D., Veith, T.L. (2007). Model Evaluation Guidelines for Systematic Quantification of Accuracy in Watershed Simulations. Transactions of the ASABE, 50(3), 885-900.
  • Neitsch, S.L., Arnold, J.G., Kiniry, J.R., Williams, J.R. (2011). Soil and Water Assessment Tool Theoretical Documentation Version 2009. USA: Texas Water Resources Institute.
  • Priestley, C.H.B., Taylor, R.J. (1972). On the Assessment of Surface Heat Flux and Evaporation Using Large-Scale Parameters. Monthly weather review, 100(2), 81-92.
  • Putranto, D.D.A., Hadinata, F. (2024). The Effect of Land Use Changes on Availability of Water Resources in The Rupit Watershed. International Journal of Religion, 5(7), 127-138.
  • Qin, P., Xu, H., Xia, Z., Liu, L., Lu, B., Wang, Q., Xiao, C., Xu, Z. (2024). Hydrologic responses to climate change and implications for reservoirs in the source region of the yangtze river. International Journal of Climatology, 44(14), 5280-5296.
  • Rashedi, S., Hisseini, S.A., Nazif, S., Cheshmeh, B.G. (2025). Modeling the effects of climate change and land use on flow rate and sedimentation by SWAT model in Anzali Wetland in the north of Iran. Theoretical and Applied Climatology, 156(1), 69.
  • Sajikumar, N., Remya, R.S. (2015). Impact of land cover and land use change on runoff characteristics. Journal of Environmental Management, 161, 460-468.
  • Schuol, J., Abbaspour, K.C., Yang, H., Srinivasan, R., Zehnder, A.J.B. (2008). Modeling blue and green water availability in Africa. Water Resources Research, 44(7), W07406.
  • Selçuk, S.F. & Sarioglu Cebeci, M. (2025) Hydrological impacts of land use and land cover changes in the Upper Kızılırmak Basin, Türkiye. Hydrological Sciences Journal, 1-17.
  • Selçuk, S.F., Cebeci, M.S., Cerit, O., Selçuk, B.Ç., Karagözoğlu, M.B. (2022) Climate change projections of Sivas province (in Turkish). Nigde Omer Halisdemir University Journal of Engineering Sciences, 11(3), 522-533.
  • Selçuk, S.F., Çirci Selçuk, B., Sarıoğlu Cebeci, M. (2024). Projections of meteorological drought events in the upper Kızılırmak basin under climate change scenarios. Theoretical and Applied Climatology, 155, 5629–5646.
  • Sen, B., Topcu, S., Türkeș, M., Sen, B., Warner, J.F. (2012). Projecting climate change, drought conditions and crop productivity in Turkey. Climate Research, 52, 175-191.
  • Sharma, A., Patel, P. L., Sharma, P. J. (2023). Blue and green water accounting for climate change adaptation in a water scarce river basin. Journal of Clean Production, 426, 139206.
  • Shirazi, S.M., Adham, I., Othman, F., Zardari, N.H., Ismail, Z. (2016). Runoff trend and potentiality in Melaka Tengah catchment of Malaysia using SCS-CN and statistical technique. Journal of Environmental Engineering and Landscape Management, 24(4), 245-257.
  • TUBITAK MAM Environment Institute (2013). Preparation of basin protection action plans - Kizilirmak Basin (Project Final Report) (In Turkish), Turkey: TÜBİTAK.
  • Türkeş, M. (2014). Analysis of 2013-2014 Drought in Turkey and Its Climatological and Meteorological Reasons (in Turkish). Konya Soil Water, 2, 20-34.
  • Vaghefi, A.S., Abbaspour, N., Kamali, B., Abbaspour, K.C. (2017). A toolkit for climate change analysis and pattern recognition for extreme weather conditions – Case study: California-Baja California Peninsula. Environmental modelling and software, 96, 181-198.
  • Volodin, E., Mortikov, E., Gritsun, A., Lykossov, V., Galin, V., Diansky, N., Gusev, A., Kostrykin, S., Iakovlev, N., Shestakova, A., Emelina, S. (2019). INM INM-CM5-0 model output prepared for CMIP6. Earth System Grid Federation.
  • Wang, Y., Li, Z., Feng, Q., Si, L., Gui, J., Cui, Q., ..., Xu, C. (2024). Global evapotranspiration from high-elevation mountains has decreased significantly at a rate of 3.923%/a over the last 22 years. Science of Total Environmental, 931, 172804.
  • Xin, X., Wu, T., Shi, X., Zhang, F., Li, J., Chu, M., Liu, Q., Yan, J., Ma, Q., Wei, M. (2019). BCC BCC-CSM2MR model output prepared for CMIP6. Earth System Grid Federation.
  • Yukimoto, S., Koshiro, T., Kawai, H., Oshima, N., Yoshida, K., Urakawa, S., ..., Adachi, Y. (2019). MRI MRI-ESM2.0 model output prepared for CMIP6. Earth System Grid Federation.
  • Zhang, H., Wang, B., Li, Liu, D., Zhang, M., Leslie, L.M., Yu, Q. (2020). Using an improved SWAT model to simulate hydrological responses to land use change: A case study of a catchment in tropical Australia. Journal of Hydrology, 585, 124822.

Year 2025, Volume: 12 Issue: 4, 452 - 470, 12.01.2026
https://doi.org/10.26650/ijegeo.1789228

Abstract

References

  • Abbaspour KC, Faramarzi M, Rouholahnejad E (2010) Hydrological Modeling of Alberta Using SWAT Model (A preliminary Report). Swiss Federal Institute of Aquatic Science and Technology.
  • Abbaspour, K.C., Rouholahnejad, E., Vaghefi, S., Srinivasan, R., Yang, H., Klove, B. (2015). A continental-scale hydrology and water quality model for Europe: Calibration and uncertainty of a high-resolution large-scale SWAT model. Journal of Hydrology, 524, 733-752
  • AL-Falahi, A. H., Saddique, N., Spank, U., Pluntke, T., Gebrechorkos, S. H., Mauder, M., Bernhofer, C. (2024). Hydrological investigation of climate change impact on water balance components in the agricultural terraced watersheds of Yemeni highland. Theoretical and Applied Climatology, 155, 4703–4720.
  • Arnold, J.G., Moriasi, D.N., Gassman, P.W., Abbaspour, K.C., White, M.J., Srinivasan, R., Santhi, C., Harmel, R.D., Van Griensven, A., Van Liew, M.W., Kannan, N., Jha, M.K. (2013). SWAT: Model Use, Calibration, and Validation. Transactions of the ASABE, 55(4), 1491-1508.
  • Arnold, J.G., Srinivasan, R., Muttiah, R.S., Williams, J.R. (1998). Large area hydrologicmodeling and assessment part I: model development. Journal of The American Water Resourources Association, 34(1), 73–89.
  • Asong, Z.E., Khaliq, M.N., Wheater, H.S. (2016). Multisite multivariate modeling of daily precipitation and temperature in the Canadian Prairie Provinces using generalized linear models. Climate Dynamics, 47(9), 2901-2921.
  • Baker, T.J., Miller, S.N. (2013). Using the Soil and Water Assessment Tool (SWAT) to assess land use impact on water resources in an East African watershed. Journal of Hydrology, 486, 100-111.
  • Basheer, A.K., Lu, H., Omer, A., Ali, A.B., Abdelgader, A.M.S. (2016). Impacts of climate change under CMIP5 RCP scenarios on the streamflow in the Dinder River and ecosystem habitats in Dinder National Park, Sudan. Hydrology and Earth System Sciences, 20(4), 1331-1353.
  • Bekele, D., Alamirew, T., Kebede, A., Zeleke, G., Melesse, A.M. (2019). Modeling climate change impact on the Hydrology of Keleta watershed in the Awash River basin, Ethiopia. Environmental Modeling and Assessment, 24, 95-107.
  • Betrie, G., Mohamed, Y., Van Griensven, A., Srinivasan, R. (2011). Sediment management modelling in the Blue Nile Basin using SWAT model. Hydrology and Earth System Sciences, 15, 807-818.
  • Cai, Y., Zhang, F., Gao, G., Jim, C.Y., Tan, M.L., Sh, J., Wang, W., Zhao, Q. (2024). Spatio-temporal variability and trend of blue-green water resources in the Kaidu River Basin, an arid region of China. Journal of Hydrology: Regional Studies, 51,101640.
  • Chen, Z., Su, B., Fohrer, N., Ayalew, A.D., Huang, J., Zhao, M., Wen, S. & Jiang, T. (2025). Impacts of Climate and Land Use Changes on Projected Discharge Patterns in the Upper Yellow River Basin. International Journal of Climatology, e70040.
  • Çiçek, I., Ataol, M. (2009). A new approach in the determination of Turkey's water potential (in Turkish). Turkish Journal of Geographical Sciences, 7(1), 51-65.
  • Circi Selcuk, B., Irmak, M.A. (2022). A study on the adequacy and requirement of urban active green areas in Sivas. Fresenius Environmental Bulletin, 31(2), 2209-2220.
  • Cuceloglu, G., Abbaspour, K.C., Ozturk, I. (2017). Assessing the water-resources potential of Istanbul by using a soil and water assessment tool (SWAT) hydrological model. Water, 9(10), 1-18.
  • Cüceloğlu, G., Seker, D. Z., Tanık, A., Öztürk, İ. (2021). Analyzing effects of two different land use datasets on hydrological simulations by using SWAT model. International Journal of Environment and Geoinformatics, 8(2), 172-185.
  • Dash, S.S., Sahoo, B., Raghuwanshi, N.S. (2023). SWAT model calibration approaches in an integrated paddy-dominated catchment-command. Agricultural Water Management, 278, 108138.
  • Dey, A., Remesan, R., Kumar, R. (2023). Blue and green water re-distribution dependency on precipitation datasets for a tropical Indian River basin. Journal of Hydrology: Regional Studies, 46, 101361.
  • Ding, B., Zhang, J., Zheng, P., Li, Z., Wang, Y., Jia, G., Yu, X. (2024). Water security assessment for effective water resource management based on multi-temporal blue and green water footprints. Journal of Hydrology, 632, 130761.
  • Dosio, A., Paruolo, P. (2011). Bias correction of the ENSEMBLES high-resolution climate change projections for use by impact models: evaluation on the present climate. Journal of Geophysical Research Atmospheres, 116(22), 1-22.
  • Ercan, B., Yüce, M.İ. (2017). Trend Analysis of Hydro-Meteorological Variables of Kızılırmak Basin. Nevşehir Journal of Science and Technology, 6(ICOCEE 2017 Special Issue), 333-340.
  • Falkenmark, M. (1995). Coping with water scarcity under rapid population growth. Conference of SADC Ministers, Pretoria, South Africa, p 23-24.
  • Ghosh, S., Mujumdar, P.P. (2008). Statistical downscaling of GCM simulations to streamflow using relevance vector machine. Advances in Water Resources, 31,132–146
  • Hagemann, S., Chen, C., Haerter, J.O., Heinke, J., Gerten, D., Piani, C. (2011). Impact of a statistical bias correction on the projected hydrological changes obtained from three GCMs and two hydrology models. Journal of Hydrometeorolgy, 12(4),556-578.
  • Hargreaves, G.H., Samani, Z.A. (1985). Reference Crop Evapotranspiration from Temperature. Applied Engineering In Agriculture, 1, 96-99.
  • Houshmand Kouchi, D., Esmaili, K., Faridhosseini, A., Sanaeinejad, S.H., Khalili, D., Abbaspour, K.C. (2017). Sensitivity of calibrated parameters and water resource estimates on different objective functions and optimization algorithms. Water, 9(6), 384.
  • IPCC (2021). The Physical Science Basis. In: Masson-Delmotte V, Zhai P, Pirani A, Connors SL, Péan C, Berger S, Caud N, et al. (Eds.), UK: Cambridge University Press.
  • Jiao, Y., Liu, C., Gao, X., Xu, Q., Ding, Y., Liu, Z. (2019). Impacts of moisture sources on the isotopic inverse altitude effect and amount of precipitation in the Hani Rice Terraces region of the Ailao Mountains. Science of Total Environment, 687, 470-478.
  • John, J.G., Blanton, C., McHugh, C., Radhakrishnan, A., Rand, K., Vahlenkamp, H., Wilson, C., …, Zeng, Y. (2018). NOAA-GFDL GFDL-ESM4 model output prepared for CMIP6. Earth System Grid Federation.
  • Kaçaroğlu, F., Değirmenci, M., Cerit, O. (1997). Karstification in Miocene gypsum: an example from Sivas, Turkey. Environmental Geology, 30(1–2):88–97
  • Lazaro, B.H.M., Hagai, M.M., Mato, R.R.A.M. (2023). Empirical modelling of green water: a case of wami ruvu Basin, Tanzania. International Journal of Development Research, 13(6), 62952-62957
  • Liang, Y., Cai, Y., Wang, X., Li, C., Liu, Q. (2021). Water security assessment with the improvement of modifying the boundary consistency between footprint and provision. Science of Total Environment, 801, 149639.
  • Ma, D., Qian, B., Gu, H., Sun, Z., Xu, Y.P. (2021). Assessing climate change impacts on streamflow and sediment load in the upstream of the Mekong River basin. International Journal of Climatology, 41(5), 3391-3410.
  • Monteith, J.L. (1965). Evaporation and environment. Symposia of the Society for Experimental Biology, 19, 205-234.
  • Moriasi, D.N., Arnold, J.G., Van Liew, M.W., Bingner, R.L., Harmel, R.D., Veith, T.L. (2007). Model Evaluation Guidelines for Systematic Quantification of Accuracy in Watershed Simulations. Transactions of the ASABE, 50(3), 885-900.
  • Neitsch, S.L., Arnold, J.G., Kiniry, J.R., Williams, J.R. (2011). Soil and Water Assessment Tool Theoretical Documentation Version 2009. USA: Texas Water Resources Institute.
  • Priestley, C.H.B., Taylor, R.J. (1972). On the Assessment of Surface Heat Flux and Evaporation Using Large-Scale Parameters. Monthly weather review, 100(2), 81-92.
  • Putranto, D.D.A., Hadinata, F. (2024). The Effect of Land Use Changes on Availability of Water Resources in The Rupit Watershed. International Journal of Religion, 5(7), 127-138.
  • Qin, P., Xu, H., Xia, Z., Liu, L., Lu, B., Wang, Q., Xiao, C., Xu, Z. (2024). Hydrologic responses to climate change and implications for reservoirs in the source region of the yangtze river. International Journal of Climatology, 44(14), 5280-5296.
  • Rashedi, S., Hisseini, S.A., Nazif, S., Cheshmeh, B.G. (2025). Modeling the effects of climate change and land use on flow rate and sedimentation by SWAT model in Anzali Wetland in the north of Iran. Theoretical and Applied Climatology, 156(1), 69.
  • Sajikumar, N., Remya, R.S. (2015). Impact of land cover and land use change on runoff characteristics. Journal of Environmental Management, 161, 460-468.
  • Schuol, J., Abbaspour, K.C., Yang, H., Srinivasan, R., Zehnder, A.J.B. (2008). Modeling blue and green water availability in Africa. Water Resources Research, 44(7), W07406.
  • Selçuk, S.F. & Sarioglu Cebeci, M. (2025) Hydrological impacts of land use and land cover changes in the Upper Kızılırmak Basin, Türkiye. Hydrological Sciences Journal, 1-17.
  • Selçuk, S.F., Cebeci, M.S., Cerit, O., Selçuk, B.Ç., Karagözoğlu, M.B. (2022) Climate change projections of Sivas province (in Turkish). Nigde Omer Halisdemir University Journal of Engineering Sciences, 11(3), 522-533.
  • Selçuk, S.F., Çirci Selçuk, B., Sarıoğlu Cebeci, M. (2024). Projections of meteorological drought events in the upper Kızılırmak basin under climate change scenarios. Theoretical and Applied Climatology, 155, 5629–5646.
  • Sen, B., Topcu, S., Türkeș, M., Sen, B., Warner, J.F. (2012). Projecting climate change, drought conditions and crop productivity in Turkey. Climate Research, 52, 175-191.
  • Sharma, A., Patel, P. L., Sharma, P. J. (2023). Blue and green water accounting for climate change adaptation in a water scarce river basin. Journal of Clean Production, 426, 139206.
  • Shirazi, S.M., Adham, I., Othman, F., Zardari, N.H., Ismail, Z. (2016). Runoff trend and potentiality in Melaka Tengah catchment of Malaysia using SCS-CN and statistical technique. Journal of Environmental Engineering and Landscape Management, 24(4), 245-257.
  • TUBITAK MAM Environment Institute (2013). Preparation of basin protection action plans - Kizilirmak Basin (Project Final Report) (In Turkish), Turkey: TÜBİTAK.
  • Türkeş, M. (2014). Analysis of 2013-2014 Drought in Turkey and Its Climatological and Meteorological Reasons (in Turkish). Konya Soil Water, 2, 20-34.
  • Vaghefi, A.S., Abbaspour, N., Kamali, B., Abbaspour, K.C. (2017). A toolkit for climate change analysis and pattern recognition for extreme weather conditions – Case study: California-Baja California Peninsula. Environmental modelling and software, 96, 181-198.
  • Volodin, E., Mortikov, E., Gritsun, A., Lykossov, V., Galin, V., Diansky, N., Gusev, A., Kostrykin, S., Iakovlev, N., Shestakova, A., Emelina, S. (2019). INM INM-CM5-0 model output prepared for CMIP6. Earth System Grid Federation.
  • Wang, Y., Li, Z., Feng, Q., Si, L., Gui, J., Cui, Q., ..., Xu, C. (2024). Global evapotranspiration from high-elevation mountains has decreased significantly at a rate of 3.923%/a over the last 22 years. Science of Total Environmental, 931, 172804.
  • Xin, X., Wu, T., Shi, X., Zhang, F., Li, J., Chu, M., Liu, Q., Yan, J., Ma, Q., Wei, M. (2019). BCC BCC-CSM2MR model output prepared for CMIP6. Earth System Grid Federation.
  • Yukimoto, S., Koshiro, T., Kawai, H., Oshima, N., Yoshida, K., Urakawa, S., ..., Adachi, Y. (2019). MRI MRI-ESM2.0 model output prepared for CMIP6. Earth System Grid Federation.
  • Zhang, H., Wang, B., Li, Liu, D., Zhang, M., Leslie, L.M., Yu, Q. (2020). Using an improved SWAT model to simulate hydrological responses to land use change: A case study of a catchment in tropical Australia. Journal of Hydrology, 585, 124822.
There are 56 citations in total.

Details

Primary Language English
Subjects Water Resources and Water Structures
Journal Section Research Article
Authors

Sefa Furkan Selçuk 0000-0002-3700-4377

Meltem Cebeci 0000-0002-3636-0388

Submission Date September 22, 2025
Acceptance Date December 11, 2025
Publication Date January 12, 2026
Published in Issue Year 2025 Volume: 12 Issue: 4

Cite

APA Selçuk, S. F., & Cebeci, M. (2026). Assessing Future Water Potentials in a Semi-Arid Basin: A SWAT-Based Climate Change Study in the Upper Kızılırmak. International Journal of Environment and Geoinformatics, 12(4), 452-470. https://doi.org/10.26650/ijegeo.1789228