Research Article
BibTex RIS Cite

Anode Performance of Sustainable, Hemp-derived, Flexible, Binder-free, Carbon Fabrics in Lithium-Ion Batteries

Year 2021, Volume: 8 Issue: 1, 28 - 32, 07.03.2021
https://doi.org/10.30897/ijegeo.796743

Abstract

Fabrication of sustainable products are of significance from many aspects recently. Industrial hemp as one of the most sustainable, environment friendly plant can be used for many applications. In this study, various sustainable, hemp-derived, binder free, flexible anode materials were prepared by the two-step carbonization method. Plain woven hemp fabric was used as a starting material. Fabrication of hemp-derived anode materials were carried out in two steps known as stabilization and carbonization. While the stabilization step was performed at 220 °C for all samples, carbonization was carried out at 600, 700, 800 and 900 °C in order to optimize the carbonization process. Morphological, electrical and electrochemical characterization of the hemp-based anodes were carried out. Electrical resistance of the hemp-based anodes showed differences depending on the carbonization temperature. Electrochemical results showed that 800 °C is the optimum condition in terms of carbon yield and cell performance if the reversible capacity, cycling stability and rate capability values are considered.

Supporting Institution

N.A.N

Project Number

N.A.

References

  • Asenbauer, J., Eisenmann, T., Kuenzel, M., Kazzazi, A., Chen, Z., & Bresser, D. (2020). The success story of graphite as a lithium-ion anode material – fundamentals, remaining challenges, and recent developments including silicon (oxide) composites. Sustainable Energy & Fuels. https://doi.org/10.1039/D0SE00175A
  • Brosius, D. J. (2006). Natural fiber composites slowly take root. Composites Technology, 12(1), 32-37. Dumanlı, A. G., & Windle, A. H. J. (2012). Carbon fibres from cellulosic precursors: a review. Journal of Materials Science, 47(10), 4236-4250.
  • Guan, Z., Guan, Z., Li, Z., Liu, J., & Yu, K. (2019). Characterization and Preparation of Nano-porous Carbon Derived from Hemp Stems as Anode for Lithium-Ion Batteries. Nanoscale Research Letters, 14(1), 1-9.
  • Horne, M. R. (2020). Bast fibres: hemp cultivation and production. In Handbook of Natural Fibres (pp. 163-196): Elsevier.
  • Hossain, M. Z., Wu, W., Xu, W. Z., Chowdhury, M. B., Jhawar, A. K., Machin, D., & Charpentier, P. A. (2018). High-surface-area mesoporous activated carbon from hemp bast fiber using hydrothermal processing. Journal of Carbon Research, 4(3), 38.
  • Huang, X. (2009). Fabrication and properties of carbon fibers. Materials, 2(4), 2369-2403. Ishida, O., Kim, D.-Y., Kuga, S., Nishiyama, Y., & Brown, R. M. J. C. (2004). Microfibrillar carbon from native cellulose. Cellulose, 11(3-4), 475-480.
  • Kwon, J. H., Park, S. B., Ayrilmis, N., Oh, S. W., & Kim, N. H. (2013). Effect of carbonization temperature on electrical resistivity and physical properties of wood and wood-based composites. Composites Part B: Engineering, 46, 102-107.
  • Liu, S., Ge, L., Gao, S., Zhuang, L., Zhu, Z., & Wang, H. (2017). Activated carbon derived from bio-waste hemp hurd and retted hemp hurd for CO2 adsorption. Composites Communication, 5, 27-30.
  • Mijailović, D. M., Vukčević, M. M., Stević, Z. M., Kalijadis, A. M., Stojanović, D. B., Panić, V. V., & Uskoković, P. S. (2017). Supercapacitive performances of activated highly microporous natural carbon macrofibers. Journal of The Electrochemical Society, 164(6), A1061.
  • Rosas, J. M., Bedia, J., Rodríguez-Mirasol, J., Cordero, T. (2008). Preparation of hemp-derived activated carbon monoliths. Adsorption of water vapor. Ind. Eng. Chem. Res., 47(4), 1288-1296.
  • Shi, Z., Yue, L., Wang, X., Lei, X., Sun, T., Li, Q. (2019). 3D mesoporous hemp-activated carbon/Ni3S2 in preparation of a binder-free Ni foam for a high performance all-solid-state asymmetric supercapacitor. Journal of Alloys and Compounds, 791, 665-673.
  • Striebel, K. A., Sierra, A., Shim, J., Wang, C. W., & Sastry, A. M. (2004). The effect of compression on natural graphite anode performance and matrix conductivity. Journal of Power Sources, 134(2), 241-251.
  • Sun, W., Lipka, S. M., Swartz, C., Williams, D., & Yang, F. (2016). Hemp-derived activated carbons for supercapacitors. Carbon, 103, 181-192.
  • Tan, Y., Yang, C., Qian, W., Teng, C. J. (2020). Flower-like MnO2 on layered carbon derived from sisal hemp for asymmetric supercapacitor with enhanced energy density. Journal of Alloys and Compounds, 826, 154133.
  • Um, J. H., Ahn, C.-Y., Kim, J., Jeong, M., Sung, Y.-E., Cho, Y.-H., Yoon, W.-S. (2018). From grass to battery anode: agricultural biomass hemp-derived carbon for lithium storage. RSC advances, 8(56), 32231-32240.
  • Vukcevic, M., Kalijadis, A., Radisic, M., Pejic, B., Kostic, M., Lausevic, Z., & Lausevic, M. (2012). Application of carbonized hemp fibers as a new solid-phase extraction sorbent for analysis of pesticides in water samples. Chemical Engineering Journal, 211, 224-232.
  • Wang, H., Xu, Z., Kohandehghan, A., Li, Z., Cui, K., Tan, X., Olsen, B. C. (2013). Interconnected carbon nanosheets derived from hemp for ultrafast supercapacitors with high energy. ACS nano, 7(6), 5131-5141.
  • Wang, S., Matsumura, Y., & Maeda, T. (1995). A model of the interactions between disordered carbon and lithium. Synthetic Metals, 71(1), 1759-1760.
  • Watt, W. (1970). Production and properties of high modulus carbon fibres. Proc. Roy. Soc. Lond. A, 319(1536), 5-15.
  • Xiong, W., Hu, X., Wu, X., Zeng, Y., Wang, B., He, G., & Zhu, Z. (2015). A flexible fiber-shaped supercapacitor utilizing hierarchical NiCo2O4@ polypyrrole core–shell nanowires on hemp-derived carbon. Journal of Materials Chemistry A, 3(33), 17209-17216.
  • Yang, M., Kim, D. S., Hong, S. B., Sim, J.-W., Kim, J., Kim, S.-S., & Choi, B. G. (2017). MnO2 nanowire/biomass-derived carbon from hemp stem for high-performance supercapacitors. Langmuir, 33(21), 5140-5147.
  • Yang, R., Wang, Y., Li, M., Hong, Y. (2014). A new carbon/ferrous sulfide/iron composite prepared by an in situ carbonization reduction method from hemp (Cannabis sativa L.) stems and its Cr (VI) removal ability. ACS Sustainable Chem. Eng., 2(5), 1270-1279.
Year 2021, Volume: 8 Issue: 1, 28 - 32, 07.03.2021
https://doi.org/10.30897/ijegeo.796743

Abstract

Project Number

N.A.

References

  • Asenbauer, J., Eisenmann, T., Kuenzel, M., Kazzazi, A., Chen, Z., & Bresser, D. (2020). The success story of graphite as a lithium-ion anode material – fundamentals, remaining challenges, and recent developments including silicon (oxide) composites. Sustainable Energy & Fuels. https://doi.org/10.1039/D0SE00175A
  • Brosius, D. J. (2006). Natural fiber composites slowly take root. Composites Technology, 12(1), 32-37. Dumanlı, A. G., & Windle, A. H. J. (2012). Carbon fibres from cellulosic precursors: a review. Journal of Materials Science, 47(10), 4236-4250.
  • Guan, Z., Guan, Z., Li, Z., Liu, J., & Yu, K. (2019). Characterization and Preparation of Nano-porous Carbon Derived from Hemp Stems as Anode for Lithium-Ion Batteries. Nanoscale Research Letters, 14(1), 1-9.
  • Horne, M. R. (2020). Bast fibres: hemp cultivation and production. In Handbook of Natural Fibres (pp. 163-196): Elsevier.
  • Hossain, M. Z., Wu, W., Xu, W. Z., Chowdhury, M. B., Jhawar, A. K., Machin, D., & Charpentier, P. A. (2018). High-surface-area mesoporous activated carbon from hemp bast fiber using hydrothermal processing. Journal of Carbon Research, 4(3), 38.
  • Huang, X. (2009). Fabrication and properties of carbon fibers. Materials, 2(4), 2369-2403. Ishida, O., Kim, D.-Y., Kuga, S., Nishiyama, Y., & Brown, R. M. J. C. (2004). Microfibrillar carbon from native cellulose. Cellulose, 11(3-4), 475-480.
  • Kwon, J. H., Park, S. B., Ayrilmis, N., Oh, S. W., & Kim, N. H. (2013). Effect of carbonization temperature on electrical resistivity and physical properties of wood and wood-based composites. Composites Part B: Engineering, 46, 102-107.
  • Liu, S., Ge, L., Gao, S., Zhuang, L., Zhu, Z., & Wang, H. (2017). Activated carbon derived from bio-waste hemp hurd and retted hemp hurd for CO2 adsorption. Composites Communication, 5, 27-30.
  • Mijailović, D. M., Vukčević, M. M., Stević, Z. M., Kalijadis, A. M., Stojanović, D. B., Panić, V. V., & Uskoković, P. S. (2017). Supercapacitive performances of activated highly microporous natural carbon macrofibers. Journal of The Electrochemical Society, 164(6), A1061.
  • Rosas, J. M., Bedia, J., Rodríguez-Mirasol, J., Cordero, T. (2008). Preparation of hemp-derived activated carbon monoliths. Adsorption of water vapor. Ind. Eng. Chem. Res., 47(4), 1288-1296.
  • Shi, Z., Yue, L., Wang, X., Lei, X., Sun, T., Li, Q. (2019). 3D mesoporous hemp-activated carbon/Ni3S2 in preparation of a binder-free Ni foam for a high performance all-solid-state asymmetric supercapacitor. Journal of Alloys and Compounds, 791, 665-673.
  • Striebel, K. A., Sierra, A., Shim, J., Wang, C. W., & Sastry, A. M. (2004). The effect of compression on natural graphite anode performance and matrix conductivity. Journal of Power Sources, 134(2), 241-251.
  • Sun, W., Lipka, S. M., Swartz, C., Williams, D., & Yang, F. (2016). Hemp-derived activated carbons for supercapacitors. Carbon, 103, 181-192.
  • Tan, Y., Yang, C., Qian, W., Teng, C. J. (2020). Flower-like MnO2 on layered carbon derived from sisal hemp for asymmetric supercapacitor with enhanced energy density. Journal of Alloys and Compounds, 826, 154133.
  • Um, J. H., Ahn, C.-Y., Kim, J., Jeong, M., Sung, Y.-E., Cho, Y.-H., Yoon, W.-S. (2018). From grass to battery anode: agricultural biomass hemp-derived carbon for lithium storage. RSC advances, 8(56), 32231-32240.
  • Vukcevic, M., Kalijadis, A., Radisic, M., Pejic, B., Kostic, M., Lausevic, Z., & Lausevic, M. (2012). Application of carbonized hemp fibers as a new solid-phase extraction sorbent for analysis of pesticides in water samples. Chemical Engineering Journal, 211, 224-232.
  • Wang, H., Xu, Z., Kohandehghan, A., Li, Z., Cui, K., Tan, X., Olsen, B. C. (2013). Interconnected carbon nanosheets derived from hemp for ultrafast supercapacitors with high energy. ACS nano, 7(6), 5131-5141.
  • Wang, S., Matsumura, Y., & Maeda, T. (1995). A model of the interactions between disordered carbon and lithium. Synthetic Metals, 71(1), 1759-1760.
  • Watt, W. (1970). Production and properties of high modulus carbon fibres. Proc. Roy. Soc. Lond. A, 319(1536), 5-15.
  • Xiong, W., Hu, X., Wu, X., Zeng, Y., Wang, B., He, G., & Zhu, Z. (2015). A flexible fiber-shaped supercapacitor utilizing hierarchical NiCo2O4@ polypyrrole core–shell nanowires on hemp-derived carbon. Journal of Materials Chemistry A, 3(33), 17209-17216.
  • Yang, M., Kim, D. S., Hong, S. B., Sim, J.-W., Kim, J., Kim, S.-S., & Choi, B. G. (2017). MnO2 nanowire/biomass-derived carbon from hemp stem for high-performance supercapacitors. Langmuir, 33(21), 5140-5147.
  • Yang, R., Wang, Y., Li, M., Hong, Y. (2014). A new carbon/ferrous sulfide/iron composite prepared by an in situ carbonization reduction method from hemp (Cannabis sativa L.) stems and its Cr (VI) removal ability. ACS Sustainable Chem. Eng., 2(5), 1270-1279.
There are 22 citations in total.

Details

Primary Language English
Subjects Environmental Engineering
Journal Section Research Articles
Authors

Ozan Toprakçı 0000-0001-7944-4269

Hatice Aylin Karahan Toprakci 0000-0001-7078-9690

Project Number N.A.
Publication Date March 7, 2021
Published in Issue Year 2021 Volume: 8 Issue: 1

Cite

APA Toprakçı, O., & Karahan Toprakci, H. A. (2021). Anode Performance of Sustainable, Hemp-derived, Flexible, Binder-free, Carbon Fabrics in Lithium-Ion Batteries. International Journal of Environment and Geoinformatics, 8(1), 28-32. https://doi.org/10.30897/ijegeo.796743