Abstract
Fabrication of sustainable products are of significance from many aspects recently. Industrial hemp as one of the most sustainable, environment friendly plant can be used for many applications. In this study, various sustainable, hemp-derived, binder free, flexible anode materials were prepared by the two-step carbonization method. Plain woven hemp fabric was used as a starting material. Fabrication of hemp-derived anode materials were carried out in two steps known as stabilization and carbonization. While the stabilization step was performed at 220 °C for all samples, carbonization was carried out at 600, 700, 800 and 900 °C in order to optimize the carbonization process. Morphological, electrical and electrochemical characterization of the hemp-based anodes were carried out. Electrical resistance of the hemp-based anodes showed differences depending on the carbonization temperature. Electrochemical results showed that 800 °C is the optimum condition in terms of carbon yield and cell performance if the reversible capacity, cycling stability and rate capability values are considered.