Araştırma Makalesi
PDF Zotero Mendeley EndNote BibTex Kaynak Göster

Yıl 2021, Cilt 8, Sayı 3, 328 - 336, 05.09.2021
https://doi.org/10.30897/ijegeo.879835

Öz

Kaynakça

  • Balaji, P., Murugadas, A., Shanmugaapriya, S., & Akbarsha, M. A. (2019). Fabrication and characterization of egg white cryogel scaffold for three-dimensional (3D) cell culture. Biocatalysis and Agricultural Biotechnology, 17, 441-446.
  • Bayramoglu, G., Altintas, B., & Arica, M. Y. (2009). Adsorption kinetics and thermodynamic parameters of cationic dyes from aqueous solutions by using a new strong cation-exchange resin. Chemical Engineering Journal, 152(2-3), 339-346.
  • Bolto, B., & Gregory, J. (2007). Organic polyelectrolytes in water treatment. Water research, 41(11), 2301-2324.
  • Crini, G. (2006). Non-conventional low-cost adsorbents for dye removal: a review. Bioresource technology, 97(9), 1061-1085.
  • Crini, G., & Badot, P.-M. (2008). Application of chitosan, a natural aminopolysaccharide, for dye removal from aqueous solutions by adsorption processes using batch studies: A review of recent literature. Progress in Polymer Science, 33(4), 399-447.
  • Croguennec, T., Nau, F., Pezennec, S., & Brule, G. (2000). Simple rapid procedure for preparation of large quantities of ovalbumin. Journal of Agricultural and Food Chemistry, 48(10), 4883-4889.
  • Dalaran, M., Emik, S., Güçlü, G., İyim, T. B., & Özgümüş, S. (2011). Study on a novel polyampholyte nanocomposite superabsorbent hydrogels: Synthesis, characterization and investigation of removal of indigo carmine from aqueous solution. Desalination, 279(1), 170-182.
  • Dinu, M. V., Ozmen, M. M., Dragan, E. S., & Okay, O. (2007). Freezing as a path to build macroporous structures: superfast responsive polyacrylamide hydrogels. Polymer, 48(1), 195-204.
  • Dinu, M. V., Perju, M. M., & Drăgan, E. S. (2011). Porous Semi-Interpenetrating Hydrogel Networks Based on Dextran and Polyacrylamide With Superfast Responsiveness. Macromolecular Chemistry and Physics, 212(3), 240-251.
  • Doğan, M., Abak, H., & Alkan, M. (2009). Adsorption of methylene blue onto hazelnut shell: kinetics, mechanism and activation parameters. Journal of Hazardous Materials, 164(1), 172-181.
  • Dragan, E. S., & Loghin, D. F. A. (2013). Enhanced sorption of methylene blue from aqueous solutions by semi-IPN composite cryogels with anionically modified potato starch entrapped in PAAm matrix. Chemical Engineering Journal, 234, 211-222.
  • Erdem, A., Ngwabebhoh, F. A., & Yildiz, U. (2017). Novel macroporous cryogels with enhanced adsorption capability for the removal of Cu(II) ions from aqueous phase: Modelling, kinetics and recovery studies. Journal of Environmental Chemical Engineering, 5(1), 1269-1280.
  • Foo, K. Y., & Hameed, B. H. (2010). Insights into the modeling of adsorption isotherm systems. Chemical Engineering Journal, 156(1), 2-10.
  • Freundlich, H. (1907). Über die adsorption in lösungen. Zeitschrift für physikalische Chemie, 57(1), 385-470.
  • Garidel, P., & Schott, H. (2006). Fourier-Transform Midinfrared Spectroscopy for Analysis and Screening of Liquid Protein Formulations Part 2 : Detailed Analysis and Applications.
  • Gerente, C., Lee, V., Cloirec, P. L., & McKay, G. (2007). Application of chitosan for the removal of metals from wastewaters by adsorption—mechanisms and models review. Critical reviews in environmental science and technology, 37(1), 41-127.
  • Godiya, C. B., Sayed, S. M., Xiao, Y., & Lu, X. (2020). Highly porous egg white/polyethyleneimine hydrogel for rapid removal of heavy metal ions and catalysis in wastewater. Reactive and Functional Polymers, 149, 104509.
  • Hall, K. R., Eagleton, L. C., Acrivos, A., & Vermeulen, T. (1966). Pore-and solid-diffusion kinetics in fixed-bed adsorption under constant-pattern conditions. Industrial & Engineering Chemistry Fundamentals, 5(2), 212-223.
  • Hasanpour, M., & Hatami, M. (2020). Photocatalytic performance of aerogels for organic dyes removal from wastewaters: Review study. Journal of Molecular Liquids, 113094.
  • He, X., Male, K. B., Nesterenko, P. N., Brabazon, D., Paull, B., & Luong, J. H. (2013). Adsorption and desorption of methylene blue on porous carbon monoliths and nanocrystalline cellulose. ACS Applied Materials & Interfaces, 5(17), 8796-8804.
  • Henderson, T. M. A., Ladewig, K., Haylock, D. N., McLean, K. M., & O'Connor, A. J. (2013). Cryogels for biomedical applications [10.1039/C3TB20280A]. Journal of Materials Chemistry B, 1(21), 2682-2695.
  • Ho, Y.-S. (2006). Review of second-order models for adsorption systems. Journal of Hazardous Materials, 136(3), 681-689.
  • Hu, T., Liu, Q., Gao, T., Dong, K., Wei, G., & Yao, J. (2018). Facile preparation of tannic acid–poly (vinyl alcohol)/sodium alginate hydrogel beads for methylene blue removal from simulated solution. ACS omega, 3(7), 7523-7531.
  • Huang, X.-Y., Mao, X.-Y., Bu, H.-T., Yu, X.-Y., Jiang, G.-B., & Zeng, M.-H. (2011). Chemical modification of chitosan by tetraethylenepentamine and adsorption study for anionic dye removal. Carbohydrate Research, 346(10), 1232-1240.
  • Kanaujiya, D. K., Paul, T., Sinharoy, A., & Pakshirajan, K. (2019). Biological Treatment Processes for the Removal of Organic Micropollutants from Wastewater: a Review. Current Pollution Reports, 5(3), 112-128.
  • Karabayir, E., Ozdemir, A., Senkal, B. F., & Taskin, O. S. (2019). A radioactively durable melamine-styrene based polymer: highly efficient removal of 90Sr. Applied Radiation and Isotopes, 149, 96-103.
  • Kuang, Y., Zhang, X., & Zhou, S. (2020). Adsorption of Methylene Blue in Water onto Activated Carbon by Surfactant Modification. Water, 12(2), 587.
  • Kumar, K. V., & Sivanesan, S. (2006). Equilibrium data, isotherm parameters and process design for partial and complete isotherm of methylene blue onto activated carbon. Journal of Hazardous Materials, 134(1-3), 237-244.
  • Lagergren, S. K. (1898). About the theory of so-called adsorption of soluble substances. Sven. Vetenskapsakad. Handingarl, 24, 1-39.
  • Langmuir, I. (1918). The adsorption of gases on plane surfaces of glass, mica and platinum. Journal of the American Chemical society, 40(9), 1361-1403.
  • Lozinsky, V. I., Plieva, F. M., Galaev, I. Y., & Mattiasson, B. (2001). The potential of polymeric cryogels in bioseparation. Bioseparation, 10(4), 163-188.
  • Oymak, T., & Bağda, E. (2018). Crosslinked egg white as eco‐friendly, reusable, and cost‐effective biosorbent for rapid removal of indigo carmine. CLEAN–Soil, Air, Water, 46(6), 1700186.
  • Pereira, M. M., Cruz, R. A., Almeida, M. R., Lima, Á. S., Coutinho, J. A., & Freire, M. G. (2016). Single-step purification of ovalbumin from egg white using aqueous biphasic systems. Process Biochemistry, 51(6), 781-791.
  • Rocher, V., Bee, A., Siaugue, J.-M., & Cabuil, V. (2010). Dye removal from aqueous solution by magnetic alginate beads crosslinked with epichlorohydrin. Journal of Hazardous Materials, 178(1), 434-439.
  • Salazar-Rabago, J. J., Leyva-Ramos, R., Rivera-Utrilla, J., Ocampo-Perez, R., & Cerino-Cordova, F. J. (2017). Biosorption mechanism of Methylene Blue from aqueous solution onto White Pine (Pinus durangensis) sawdust: effect of operating conditions. Sustainable Environment Research, 27(1), 32-40.
  • Uddin, M. T., Islam, M. A., Mahmud, S., & Rukanuzzaman, M. (2009). Adsorptive removal of methylene blue by tea waste. Journal of Hazardous Materials, 164(1), 53-60.
  • Weber, W. J., & Morris, J. C. (1963). Kinetics of adsorption on carbon from solution. Journal of the sanitary engineering division, 89(2), 31-60.

Egg White Cryogel for Removal of Methylene Blue from Aqueous Solution

Yıl 2021, Cilt 8, Sayı 3, 328 - 336, 05.09.2021
https://doi.org/10.30897/ijegeo.879835

Öz

Macroporous egg white (EW) cryogel synthesized by cryogelation at sub-zero temperature (-18oC) with crosslinker glutaraldehyde (GA) was tested in the sorption of methylene blue (MB) as a model water pollutant from aqueous solution. The characterization of obtained cryogel was performed by Fourier-transform infrared spectroscopy and scanning electron microscopy. The pseudo-first order and pseudo-second order models were used to predict the adsorption kinetics. The adsorption followed the pseudo-second order model and experimental adsorption capacity was closer to the calculated one. Two isotherm models called Langmuir and Freundlich were fitted on the experimental data to predict the maximum capacity and process of the adsorption. It was found that Langmuir model isotherm provided the best fit with maximum adsorption capacity of 56.18 mg MB/g cryogel. The dyed EW cryogel was easily regenerated and used several times with no noticeable reduction of capacity. The electrostatic attraction was the main adsorption mechanism of MB on the cryogel, especially at slightly basic pH. Hence, easy preparation, cheapness and good adsorption property make the EW cryogel an economically promising adsorbent for environmental application.

Kaynakça

  • Balaji, P., Murugadas, A., Shanmugaapriya, S., & Akbarsha, M. A. (2019). Fabrication and characterization of egg white cryogel scaffold for three-dimensional (3D) cell culture. Biocatalysis and Agricultural Biotechnology, 17, 441-446.
  • Bayramoglu, G., Altintas, B., & Arica, M. Y. (2009). Adsorption kinetics and thermodynamic parameters of cationic dyes from aqueous solutions by using a new strong cation-exchange resin. Chemical Engineering Journal, 152(2-3), 339-346.
  • Bolto, B., & Gregory, J. (2007). Organic polyelectrolytes in water treatment. Water research, 41(11), 2301-2324.
  • Crini, G. (2006). Non-conventional low-cost adsorbents for dye removal: a review. Bioresource technology, 97(9), 1061-1085.
  • Crini, G., & Badot, P.-M. (2008). Application of chitosan, a natural aminopolysaccharide, for dye removal from aqueous solutions by adsorption processes using batch studies: A review of recent literature. Progress in Polymer Science, 33(4), 399-447.
  • Croguennec, T., Nau, F., Pezennec, S., & Brule, G. (2000). Simple rapid procedure for preparation of large quantities of ovalbumin. Journal of Agricultural and Food Chemistry, 48(10), 4883-4889.
  • Dalaran, M., Emik, S., Güçlü, G., İyim, T. B., & Özgümüş, S. (2011). Study on a novel polyampholyte nanocomposite superabsorbent hydrogels: Synthesis, characterization and investigation of removal of indigo carmine from aqueous solution. Desalination, 279(1), 170-182.
  • Dinu, M. V., Ozmen, M. M., Dragan, E. S., & Okay, O. (2007). Freezing as a path to build macroporous structures: superfast responsive polyacrylamide hydrogels. Polymer, 48(1), 195-204.
  • Dinu, M. V., Perju, M. M., & Drăgan, E. S. (2011). Porous Semi-Interpenetrating Hydrogel Networks Based on Dextran and Polyacrylamide With Superfast Responsiveness. Macromolecular Chemistry and Physics, 212(3), 240-251.
  • Doğan, M., Abak, H., & Alkan, M. (2009). Adsorption of methylene blue onto hazelnut shell: kinetics, mechanism and activation parameters. Journal of Hazardous Materials, 164(1), 172-181.
  • Dragan, E. S., & Loghin, D. F. A. (2013). Enhanced sorption of methylene blue from aqueous solutions by semi-IPN composite cryogels with anionically modified potato starch entrapped in PAAm matrix. Chemical Engineering Journal, 234, 211-222.
  • Erdem, A., Ngwabebhoh, F. A., & Yildiz, U. (2017). Novel macroporous cryogels with enhanced adsorption capability for the removal of Cu(II) ions from aqueous phase: Modelling, kinetics and recovery studies. Journal of Environmental Chemical Engineering, 5(1), 1269-1280.
  • Foo, K. Y., & Hameed, B. H. (2010). Insights into the modeling of adsorption isotherm systems. Chemical Engineering Journal, 156(1), 2-10.
  • Freundlich, H. (1907). Über die adsorption in lösungen. Zeitschrift für physikalische Chemie, 57(1), 385-470.
  • Garidel, P., & Schott, H. (2006). Fourier-Transform Midinfrared Spectroscopy for Analysis and Screening of Liquid Protein Formulations Part 2 : Detailed Analysis and Applications.
  • Gerente, C., Lee, V., Cloirec, P. L., & McKay, G. (2007). Application of chitosan for the removal of metals from wastewaters by adsorption—mechanisms and models review. Critical reviews in environmental science and technology, 37(1), 41-127.
  • Godiya, C. B., Sayed, S. M., Xiao, Y., & Lu, X. (2020). Highly porous egg white/polyethyleneimine hydrogel for rapid removal of heavy metal ions and catalysis in wastewater. Reactive and Functional Polymers, 149, 104509.
  • Hall, K. R., Eagleton, L. C., Acrivos, A., & Vermeulen, T. (1966). Pore-and solid-diffusion kinetics in fixed-bed adsorption under constant-pattern conditions. Industrial & Engineering Chemistry Fundamentals, 5(2), 212-223.
  • Hasanpour, M., & Hatami, M. (2020). Photocatalytic performance of aerogels for organic dyes removal from wastewaters: Review study. Journal of Molecular Liquids, 113094.
  • He, X., Male, K. B., Nesterenko, P. N., Brabazon, D., Paull, B., & Luong, J. H. (2013). Adsorption and desorption of methylene blue on porous carbon monoliths and nanocrystalline cellulose. ACS Applied Materials & Interfaces, 5(17), 8796-8804.
  • Henderson, T. M. A., Ladewig, K., Haylock, D. N., McLean, K. M., & O'Connor, A. J. (2013). Cryogels for biomedical applications [10.1039/C3TB20280A]. Journal of Materials Chemistry B, 1(21), 2682-2695.
  • Ho, Y.-S. (2006). Review of second-order models for adsorption systems. Journal of Hazardous Materials, 136(3), 681-689.
  • Hu, T., Liu, Q., Gao, T., Dong, K., Wei, G., & Yao, J. (2018). Facile preparation of tannic acid–poly (vinyl alcohol)/sodium alginate hydrogel beads for methylene blue removal from simulated solution. ACS omega, 3(7), 7523-7531.
  • Huang, X.-Y., Mao, X.-Y., Bu, H.-T., Yu, X.-Y., Jiang, G.-B., & Zeng, M.-H. (2011). Chemical modification of chitosan by tetraethylenepentamine and adsorption study for anionic dye removal. Carbohydrate Research, 346(10), 1232-1240.
  • Kanaujiya, D. K., Paul, T., Sinharoy, A., & Pakshirajan, K. (2019). Biological Treatment Processes for the Removal of Organic Micropollutants from Wastewater: a Review. Current Pollution Reports, 5(3), 112-128.
  • Karabayir, E., Ozdemir, A., Senkal, B. F., & Taskin, O. S. (2019). A radioactively durable melamine-styrene based polymer: highly efficient removal of 90Sr. Applied Radiation and Isotopes, 149, 96-103.
  • Kuang, Y., Zhang, X., & Zhou, S. (2020). Adsorption of Methylene Blue in Water onto Activated Carbon by Surfactant Modification. Water, 12(2), 587.
  • Kumar, K. V., & Sivanesan, S. (2006). Equilibrium data, isotherm parameters and process design for partial and complete isotherm of methylene blue onto activated carbon. Journal of Hazardous Materials, 134(1-3), 237-244.
  • Lagergren, S. K. (1898). About the theory of so-called adsorption of soluble substances. Sven. Vetenskapsakad. Handingarl, 24, 1-39.
  • Langmuir, I. (1918). The adsorption of gases on plane surfaces of glass, mica and platinum. Journal of the American Chemical society, 40(9), 1361-1403.
  • Lozinsky, V. I., Plieva, F. M., Galaev, I. Y., & Mattiasson, B. (2001). The potential of polymeric cryogels in bioseparation. Bioseparation, 10(4), 163-188.
  • Oymak, T., & Bağda, E. (2018). Crosslinked egg white as eco‐friendly, reusable, and cost‐effective biosorbent for rapid removal of indigo carmine. CLEAN–Soil, Air, Water, 46(6), 1700186.
  • Pereira, M. M., Cruz, R. A., Almeida, M. R., Lima, Á. S., Coutinho, J. A., & Freire, M. G. (2016). Single-step purification of ovalbumin from egg white using aqueous biphasic systems. Process Biochemistry, 51(6), 781-791.
  • Rocher, V., Bee, A., Siaugue, J.-M., & Cabuil, V. (2010). Dye removal from aqueous solution by magnetic alginate beads crosslinked with epichlorohydrin. Journal of Hazardous Materials, 178(1), 434-439.
  • Salazar-Rabago, J. J., Leyva-Ramos, R., Rivera-Utrilla, J., Ocampo-Perez, R., & Cerino-Cordova, F. J. (2017). Biosorption mechanism of Methylene Blue from aqueous solution onto White Pine (Pinus durangensis) sawdust: effect of operating conditions. Sustainable Environment Research, 27(1), 32-40.
  • Uddin, M. T., Islam, M. A., Mahmud, S., & Rukanuzzaman, M. (2009). Adsorptive removal of methylene blue by tea waste. Journal of Hazardous Materials, 164(1), 53-60.
  • Weber, W. J., & Morris, J. C. (1963). Kinetics of adsorption on carbon from solution. Journal of the sanitary engineering division, 89(2), 31-60.

Ayrıntılar

Birincil Dil İngilizce
Konular Kimya, Ortak Disiplinler
Bölüm Research Articles
Yazarlar

Umit GULYUZ (Sorumlu Yazar)
KIRKLARELİ ÜNİVERSİTESİ
0000-0001-7507-0909
Türkiye

Teşekkür The author is grateful to Sevgi GULYUZ from TUBITAK MAM for FTIR and SEM measurements.
Yayımlanma Tarihi 5 Eylül 2021
Yayınlandığı Sayı Yıl 2021, Cilt 8, Sayı 3

Kaynak Göster

Bibtex @araştırma makalesi { ijegeo879835, journal = {International Journal of Environment and Geoinformatics}, issn = {}, eissn = {2148-9173}, address = {}, publisher = {Cem GAZİOĞLU}, year = {2021}, volume = {8}, pages = {328 - 336}, doi = {10.30897/ijegeo.879835}, title = {Egg White Cryogel for Removal of Methylene Blue from Aqueous Solution}, key = {cite}, author = {Gulyuz, Umit} }
APA Gulyuz, U. (2021). Egg White Cryogel for Removal of Methylene Blue from Aqueous Solution . International Journal of Environment and Geoinformatics , 8 (3) , 328-336 . DOI: 10.30897/ijegeo.879835
MLA Gulyuz, U. "Egg White Cryogel for Removal of Methylene Blue from Aqueous Solution" . International Journal of Environment and Geoinformatics 8 (2021 ): 328-336 <https://dergipark.org.tr/tr/pub/ijegeo/issue/61200/879835>
Chicago Gulyuz, U. "Egg White Cryogel for Removal of Methylene Blue from Aqueous Solution". International Journal of Environment and Geoinformatics 8 (2021 ): 328-336
RIS TY - JOUR T1 - Egg White Cryogel for Removal of Methylene Blue from Aqueous Solution AU - Umit Gulyuz Y1 - 2021 PY - 2021 N1 - doi: 10.30897/ijegeo.879835 DO - 10.30897/ijegeo.879835 T2 - International Journal of Environment and Geoinformatics JF - Journal JO - JOR SP - 328 EP - 336 VL - 8 IS - 3 SN - -2148-9173 M3 - doi: 10.30897/ijegeo.879835 UR - https://doi.org/10.30897/ijegeo.879835 Y2 - 2021 ER -
EndNote %0 International Journal of Environment and Geoinformatics Egg White Cryogel for Removal of Methylene Blue from Aqueous Solution %A Umit Gulyuz %T Egg White Cryogel for Removal of Methylene Blue from Aqueous Solution %D 2021 %J International Journal of Environment and Geoinformatics %P -2148-9173 %V 8 %N 3 %R doi: 10.30897/ijegeo.879835 %U 10.30897/ijegeo.879835
ISNAD Gulyuz, Umit . "Egg White Cryogel for Removal of Methylene Blue from Aqueous Solution". International Journal of Environment and Geoinformatics 8 / 3 (Eylül 2021): 328-336 . https://doi.org/10.30897/ijegeo.879835
AMA Gulyuz U. Egg White Cryogel for Removal of Methylene Blue from Aqueous Solution. International Journal of Environment and Geoinformatics. 2021; 8(3): 328-336.
Vancouver Gulyuz U. Egg White Cryogel for Removal of Methylene Blue from Aqueous Solution. International Journal of Environment and Geoinformatics. 2021; 8(3): 328-336.
IEEE U. Gulyuz , "Egg White Cryogel for Removal of Methylene Blue from Aqueous Solution", International Journal of Environment and Geoinformatics, c. 8, sayı. 3, ss. 328-336, Eyl. 2021, doi:10.30897/ijegeo.879835