Araştırma Makalesi
BibTex RIS Kaynak Göster
Yıl 2021, Cilt: 8 Sayı: 4, 460 - 466, 15.12.2021
https://doi.org/10.30897/ijegeo.855633

Öz

Kaynakça

  • Blum, A.(2005). Drought resistance, water-use efficiency, and yield potential – are they compatible, dissonant, or mutually exclusive? Australian Journal of Agricultural Research, 56: 1159-1168.
  • Carrer, D., Pique, G., Ferlicoq, M., Ceamanos, X. and Ceschia, E.(2018). What is the potential of cropland albedo management in the fight against global warming? A case study based on the use of cover crops, Environmental Research Letters, 13, 044030, DOI: 10.1088/1748-9326/aab650
  • Chopping, M. J.(2000). Testing a LiSK BRDF model with in situ bidirectional reflectance factor measurements over semiarid grasslands, Remote Sensing of Environment, 74, 287−312.
  • Eck, T.F. and Deering, D.W.(1998). Estimation of total albedo from spectral hemispheric reflectance for steppe grassland, Remote Sensing Reviews, 17:1-4, 133-148.
  • Febrero, A., Santiago Fernandez, S., Molina-Cano, J.L. and Araus, J.L.(1998). Yield, carbon isotope discrimination, canopy reflectance and cuticular conductance of barley isolines of differing glaucousness. Journal of Experimental Botany, 49 (326): 1575-1581.
  • Grover, K. D., Steven, M. D. and Rondeaux, G.(2000). Estimating albedo from limited spectral and angular data. International Journal of Remote Sensing, 21(1):155-165.
  • Hatfield, J.L. and Carlson, R.E.(1979). Light quality distributions and spectral albedo of three maize canopies. Agricultural Meteorology, 20 (3): 215-226.
  • Iqbal, M.(1983). An introduction to solar radiation. Academic press, Toronto.
  • Irons, J.R., Ranson, K. J. and Daughtry, C. S. T.(1988). Estimating Big Bluestem Albedo from Directional Reflectance Measurements. Remote Sensing of Environment, 25:185-199.
  • Jacob, F., Olioso, A., Weiss, M., Baret, F. and Hautecoeur, O.(2002). Mapping short-wave albedo of agricultural surfaces using airborne PolDER data. Remote Sensing of Environment, 80: 36– 46.
  • Jin, Y., Schaaf, C.B., Woodcock, C.E., Gao, F., Li, X., Strahler, A.H., Lucht, W., and Liang, S.(2003). Consistency of MODIS surface bidirectional reflectance distribution function and albedo retrievals: 2. Validation. J. Geophys. Res.,108, doi:10.1029/2002JD002804.
  • Kimes, D.S., and Sellers, P.J.(1985). Inferring hemispherical reflectance of the earth’s surface for global energy budgets from remotely sensed nadir of directional radiance values. Remote Sensing of Environment, 18:205-223.
  • Lucht, W., and Roujean, J.L.(2000). Considerations in the parametric modeling of BRDF and albedo from multiangular satellite sensor observations, Remote Sensing Reviews, 18, 343–379.
  • Lucht, W., Schaaf, C.B., and Strahler, A.H.(2000). An algorithm for the retrieval of albedo from space using semiempirical BRDF models. IEEE Transactions on Geoscience and Remote Sensing, 38(2), 977-998.
  • Lunagaria, M. M., and Patel, H. R.(2017). Changes in reflectance anisotropy of wheat crop during different phenophases. International Agrophysics, 31, 203-218. doi: 10.1515/intag-2016-0045.
  • Lunagaria, M. M., Patel, H. R., and Pandey, V.(2015). Evaluation and calibration of noninvasive leaf chlorophyll meters for wheat. Journal of Agrometeorology, 17(1), 51-54.
  • Peltoniemi, J. I., Manninen, T., Suomalainen, J., Hakala, T., Puttonen, E. and Riihelä, A.(2010). Land Surface Albedos Computed from BRF Measurements with a Study of Conversion Formulae, Remote Sensing, 2:1918-1940.
  • Pinty, B., and Verstraete, M.(1992). On the design and validation of surface bidirectional reflectance and albedo model. Remote Sensing of Environment, 41:155– 167.
  • Pinty, B., Verstraete, M.M., Gobron, N., Roveda, F., Govaerts, Y., Martonchik, J.V., Diner, D.J., Kahn, R.A.(2001). Exploitation of surface albedo derived from the Meteosat data to characterize land surface changes. Proceedings of the Geoscience and Remote Sensing Symposium, 2001, IGARSS’01, IEEE 2001, International Sydney, NSW, 5: 2250-2252.
  • Ranson, K. J., Irons, J. R. and Daughtry, C. S. T.(1991). Surface albedo from bidirectional reflectance. Remote Sensing of Environment, 35: 201-211.
  • Reda, I. and Andreas, A.(2003). Solar position algorithm for solar radiation application. National Renewable Energy Laboratory (NREL) Technical report NREL/TP-560-34302.
  • Ricchiazzi, P., S. R. Yang, C. Gautier, and Sowle, D. (1998). SBDART: A research and teaching software tool for plane-parallel radiative transfer in the Earth’s atmosphere. Bulletin of American Meteorological Society, 79:2101 – 2114.
  • Ridgwell, A., Singarayer, J.S., Hetherington, A.M., and Valdes, P.J.(2009). Tackling regional climate change by leaf albedo bio-geoengineering. Current Biology, 19: 1-5.
  • Sandmeier, S. R., and Itten, K. I.(1999). A Field Goniometer System (FIGOS) for acquisition of hyperspectral BRDF data. IEEE Transactions on Geoscience and Remote Sensing, 37(2):978-986.
  • Schaaf, C. B., F. Gao, A. H. Strahler, W. Lucht, X. Li, T. Tsang, N. C. Strugnell, X. Zhang, Y. Jin, J.-P. Muller, P. Lewis, M. Barnsley, P. Hobson, M. Disney, G. Roberts, M. Dunderdale, C. Doll, R. d'Entremont, B. Hu, S. Liang, and Privette, J. L. (2002). First Operational BRDF, Albedo and Nadir Reflectance Products from MODIS, Remote Sensing of Environment, 83: 135-148.
  • Schaepman-Strub G., Schaepman M.E., Painter T.H., Dangel S., Martonchik J.V.(2006). Reflectance quantities in optical remote sensing - Definitions and case studies Remote Sensing of Environment, 103: 27-42
  • Sellers, P. J.(1993). Remote sensing of the land surface for studies of global change, NASA/GSFC Int. Satell. Land Surface Climatol. Proj. Rep., Columbia, MD.
  • Şerban, G., Cotfas, D.T. and Cotfas, P. A. (2012). Crop albedo measurements after anthesis reveal significant differences among Romanian wheat cultivars. Romanian Agricultural Research, 29:39-43.
  • Singarayer, J. S., Ridgwell, A., and Irvine, P.(2009). Assessing the benefits of crop albedo bio-geoengineering. Environmental Research Letters. 4: 045110
  • Susaki, J., Hara, K., Park, J.,Yasuda, Y., Kajiwara, K. and Honda, Y.(2004). Validation of temporal BRDFs of paddy fields estimated from MODIS reflectance data, IEEE Transactions on Geoscience and Remote Sensing, 42, 1262−1270.
  • Thenkabail, P.S., R.B. Smith and De Pauw, E. (2002). Evaluation of narrowband and broadband vegetation indices for determining optimal hyperspectral wavebands for agricultural crop characterization. Photogrammetric Engineering and Remote Sensing, 68:607–621.
  • Wanner, W., Strahler, A. H., Hu, B., Lewis, P., Muller, J.P., Li, X., Schaaf, C. B., and Barnsley, M. J.(1997). Global retrieval of bidirectional reflectance and albedo over land from EOS MODIS and MISR data: Theory and algorithm, Journal of Geophysical Research, 102, 17,143– 17,161.
  • Yang, R. Q., M. Friedl, and Ni, W. (2001). Parameterization of shortwave radiation fluxes for nonuniform vegetation canopies in land surface models. Journal of Geophysical Research, 106, 14275–14286.

Determination of Spectral and Broadband Albedos in Visible-near Infrared Bands for Different Phenophases of Wheat Using Hemispherical Directional Reflectance Measurements

Yıl 2021, Cilt: 8 Sayı: 4, 460 - 466, 15.12.2021
https://doi.org/10.30897/ijegeo.855633

Öz

Albedo is an important parameter in radiation balance, energy balance, atmospheric correction of remote sensing data and weather forecasting models. The values of albedo of agricultural area vary with changes in biophysical parameters at different phenophases of the crop. Spectral and broadband albedo of visible-infrared bands for wheat canopy was estimated with numerical and spectral integration of hemispherical directional reflectance factors (HDRFs). The HDRF measurements on wheat were acquired at 54 view angles (6 azimuthal planes × 9 view zenith angles) to cover the hemispheric span up to 60° view zenith at 7-8 days’ interval during early growth stages to physiological maturity. Canopy and atmospheric parameters were measured parallel to HDRFs of the crop. The spectral and broadband albedo of wheat varies in decreasing pattern with advancement of growth stages. Visible-infrared albedo of crop was maximum at early growth stages (tillering and booting; 0.23) and minimum at late growth stages (late milking and dough; 0.15). The albedo values retrieved from HDRF in this investigation can be useful for phenophase specific applications in cropland fluxes algorithms, crop phenotyping, regional climate modeling and other remote sensing studies.

Kaynakça

  • Blum, A.(2005). Drought resistance, water-use efficiency, and yield potential – are they compatible, dissonant, or mutually exclusive? Australian Journal of Agricultural Research, 56: 1159-1168.
  • Carrer, D., Pique, G., Ferlicoq, M., Ceamanos, X. and Ceschia, E.(2018). What is the potential of cropland albedo management in the fight against global warming? A case study based on the use of cover crops, Environmental Research Letters, 13, 044030, DOI: 10.1088/1748-9326/aab650
  • Chopping, M. J.(2000). Testing a LiSK BRDF model with in situ bidirectional reflectance factor measurements over semiarid grasslands, Remote Sensing of Environment, 74, 287−312.
  • Eck, T.F. and Deering, D.W.(1998). Estimation of total albedo from spectral hemispheric reflectance for steppe grassland, Remote Sensing Reviews, 17:1-4, 133-148.
  • Febrero, A., Santiago Fernandez, S., Molina-Cano, J.L. and Araus, J.L.(1998). Yield, carbon isotope discrimination, canopy reflectance and cuticular conductance of barley isolines of differing glaucousness. Journal of Experimental Botany, 49 (326): 1575-1581.
  • Grover, K. D., Steven, M. D. and Rondeaux, G.(2000). Estimating albedo from limited spectral and angular data. International Journal of Remote Sensing, 21(1):155-165.
  • Hatfield, J.L. and Carlson, R.E.(1979). Light quality distributions and spectral albedo of three maize canopies. Agricultural Meteorology, 20 (3): 215-226.
  • Iqbal, M.(1983). An introduction to solar radiation. Academic press, Toronto.
  • Irons, J.R., Ranson, K. J. and Daughtry, C. S. T.(1988). Estimating Big Bluestem Albedo from Directional Reflectance Measurements. Remote Sensing of Environment, 25:185-199.
  • Jacob, F., Olioso, A., Weiss, M., Baret, F. and Hautecoeur, O.(2002). Mapping short-wave albedo of agricultural surfaces using airborne PolDER data. Remote Sensing of Environment, 80: 36– 46.
  • Jin, Y., Schaaf, C.B., Woodcock, C.E., Gao, F., Li, X., Strahler, A.H., Lucht, W., and Liang, S.(2003). Consistency of MODIS surface bidirectional reflectance distribution function and albedo retrievals: 2. Validation. J. Geophys. Res.,108, doi:10.1029/2002JD002804.
  • Kimes, D.S., and Sellers, P.J.(1985). Inferring hemispherical reflectance of the earth’s surface for global energy budgets from remotely sensed nadir of directional radiance values. Remote Sensing of Environment, 18:205-223.
  • Lucht, W., and Roujean, J.L.(2000). Considerations in the parametric modeling of BRDF and albedo from multiangular satellite sensor observations, Remote Sensing Reviews, 18, 343–379.
  • Lucht, W., Schaaf, C.B., and Strahler, A.H.(2000). An algorithm for the retrieval of albedo from space using semiempirical BRDF models. IEEE Transactions on Geoscience and Remote Sensing, 38(2), 977-998.
  • Lunagaria, M. M., and Patel, H. R.(2017). Changes in reflectance anisotropy of wheat crop during different phenophases. International Agrophysics, 31, 203-218. doi: 10.1515/intag-2016-0045.
  • Lunagaria, M. M., Patel, H. R., and Pandey, V.(2015). Evaluation and calibration of noninvasive leaf chlorophyll meters for wheat. Journal of Agrometeorology, 17(1), 51-54.
  • Peltoniemi, J. I., Manninen, T., Suomalainen, J., Hakala, T., Puttonen, E. and Riihelä, A.(2010). Land Surface Albedos Computed from BRF Measurements with a Study of Conversion Formulae, Remote Sensing, 2:1918-1940.
  • Pinty, B., and Verstraete, M.(1992). On the design and validation of surface bidirectional reflectance and albedo model. Remote Sensing of Environment, 41:155– 167.
  • Pinty, B., Verstraete, M.M., Gobron, N., Roveda, F., Govaerts, Y., Martonchik, J.V., Diner, D.J., Kahn, R.A.(2001). Exploitation of surface albedo derived from the Meteosat data to characterize land surface changes. Proceedings of the Geoscience and Remote Sensing Symposium, 2001, IGARSS’01, IEEE 2001, International Sydney, NSW, 5: 2250-2252.
  • Ranson, K. J., Irons, J. R. and Daughtry, C. S. T.(1991). Surface albedo from bidirectional reflectance. Remote Sensing of Environment, 35: 201-211.
  • Reda, I. and Andreas, A.(2003). Solar position algorithm for solar radiation application. National Renewable Energy Laboratory (NREL) Technical report NREL/TP-560-34302.
  • Ricchiazzi, P., S. R. Yang, C. Gautier, and Sowle, D. (1998). SBDART: A research and teaching software tool for plane-parallel radiative transfer in the Earth’s atmosphere. Bulletin of American Meteorological Society, 79:2101 – 2114.
  • Ridgwell, A., Singarayer, J.S., Hetherington, A.M., and Valdes, P.J.(2009). Tackling regional climate change by leaf albedo bio-geoengineering. Current Biology, 19: 1-5.
  • Sandmeier, S. R., and Itten, K. I.(1999). A Field Goniometer System (FIGOS) for acquisition of hyperspectral BRDF data. IEEE Transactions on Geoscience and Remote Sensing, 37(2):978-986.
  • Schaaf, C. B., F. Gao, A. H. Strahler, W. Lucht, X. Li, T. Tsang, N. C. Strugnell, X. Zhang, Y. Jin, J.-P. Muller, P. Lewis, M. Barnsley, P. Hobson, M. Disney, G. Roberts, M. Dunderdale, C. Doll, R. d'Entremont, B. Hu, S. Liang, and Privette, J. L. (2002). First Operational BRDF, Albedo and Nadir Reflectance Products from MODIS, Remote Sensing of Environment, 83: 135-148.
  • Schaepman-Strub G., Schaepman M.E., Painter T.H., Dangel S., Martonchik J.V.(2006). Reflectance quantities in optical remote sensing - Definitions and case studies Remote Sensing of Environment, 103: 27-42
  • Sellers, P. J.(1993). Remote sensing of the land surface for studies of global change, NASA/GSFC Int. Satell. Land Surface Climatol. Proj. Rep., Columbia, MD.
  • Şerban, G., Cotfas, D.T. and Cotfas, P. A. (2012). Crop albedo measurements after anthesis reveal significant differences among Romanian wheat cultivars. Romanian Agricultural Research, 29:39-43.
  • Singarayer, J. S., Ridgwell, A., and Irvine, P.(2009). Assessing the benefits of crop albedo bio-geoengineering. Environmental Research Letters. 4: 045110
  • Susaki, J., Hara, K., Park, J.,Yasuda, Y., Kajiwara, K. and Honda, Y.(2004). Validation of temporal BRDFs of paddy fields estimated from MODIS reflectance data, IEEE Transactions on Geoscience and Remote Sensing, 42, 1262−1270.
  • Thenkabail, P.S., R.B. Smith and De Pauw, E. (2002). Evaluation of narrowband and broadband vegetation indices for determining optimal hyperspectral wavebands for agricultural crop characterization. Photogrammetric Engineering and Remote Sensing, 68:607–621.
  • Wanner, W., Strahler, A. H., Hu, B., Lewis, P., Muller, J.P., Li, X., Schaaf, C. B., and Barnsley, M. J.(1997). Global retrieval of bidirectional reflectance and albedo over land from EOS MODIS and MISR data: Theory and algorithm, Journal of Geophysical Research, 102, 17,143– 17,161.
  • Yang, R. Q., M. Friedl, and Ni, W. (2001). Parameterization of shortwave radiation fluxes for nonuniform vegetation canopies in land surface models. Journal of Geophysical Research, 106, 14275–14286.
Toplam 33 adet kaynakça vardır.

Ayrıntılar

Birincil Dil İngilizce
Konular Fotogrametri ve Uzaktan Algılama
Bölüm Research Articles
Yazarlar

Manoj Lunagaria 0000-0002-8610-0170

Yayımlanma Tarihi 15 Aralık 2021
Yayımlandığı Sayı Yıl 2021 Cilt: 8 Sayı: 4

Kaynak Göster

APA Lunagaria, M. (2021). Determination of Spectral and Broadband Albedos in Visible-near Infrared Bands for Different Phenophases of Wheat Using Hemispherical Directional Reflectance Measurements. International Journal of Environment and Geoinformatics, 8(4), 460-466. https://doi.org/10.30897/ijegeo.855633