Kısa Bildiri
BibTex RIS Kaynak Göster
Yıl 2022, Cilt: 9 Sayı: 1, 60 - 63, 06.03.2022
https://doi.org/10.30897/ijegeo.767519

Öz

Kaynakça

  • Ayalew, L., Yamagishi, H., & Ugawa, N. (2004). Landslide susceptibility mapping using GIS-based weighted linear combination, the case in Tsugawa area of Agano River, Niigata Prefecture, Japan. Landslides, 1(1), 73–81. https://doi.org/10.1007/s10346-003-0006-9
  • Bathurst, J. C., Moretti, G., El-Hames, A., Beguería, S., & García-Ruiz, J. M. (2007). Modelling the impact of forest loss on shallow landslide sediment yield, Ijuez river catchment, Spanish Pyrenees. Hydrology and Earth System Sciences, 11(1), 569–583. https://doi.org/10.5194/hess-11-569-2007
  • Dahal, R. K., & Hasegawa, S. (2008). Representative rainfall thresholds for landslides in the Nepal Himalaya. Geomorphology, 100(3–4), 429–443. https://doi.org/10.1016/j.geomorph.2008.01.014
  • Krivoguz, D., & Bespalova, L. (2017). Spatial analysis of topography of Kerch peninsula using GIS and its impact on landslides. International Journal of Professional Science, (6), 19–32.
  • Krivoguz, D., & Bespalova, L. (2018). Analysis of Kerch peninsula’s climatic parameters in scope of landslide susceptibility. Vestnik Kerchenskogo Gosudarstvennogo Morskogo Tehnologicheskogo Universiteta, (2), 5–11.
  • Krivoguz, D. O., & Burtnik, D. N. (2018). Neural network modeling of changes in the land cover of the Kerch peninsula in the context of landslides occurence. Nauchno-Tekhnicheskiy Vestnik Bryanskogo Gosudarstvennogo Universiteta, 4(1), 113–121. https://doi.org/10.22281/2413-9920-2018-04-01-113-121
  • Krivoguz, Denis. (2020). Methodology of physiography zoning using machine learning: A case study of the Black Sea. Russian Journal of Earth Sciences, 20(1), 1–10. https://doi.org/10.2205/2020ES000707
  • Krivoguz, Denis, & Bespalova, L. (2020). Landslide susceptibility analysis for the Kerch Peninsula using weights of evidence approach and GIS. Russian Journal of Earth Sciences, 20(1), 1–12. https://doi.org/10.2205/2020ES000682
  • Lari, S., Frattini, P., & Crosta, G. B. (2014). A probabilistic approach for landslide hazard analysis. Engineering Geology, 182, 3–14. https://doi.org/10.1016/j.enggeo.2014.07.015
  • Margielewski, W., & Urban, J. (2000). The type of initiation of mass movements in the Flysch Carpathians studied on the base of structural development of the selected crevice type caves (southern Poland). Przeglad Geologiczny, 48(3).
  • Van Westen, C. (1997). Statistical landslide hazard analysis. Ilwis, 2, 1–10. Retrieved from http://www.adpc.net/casita/Case_studies/Landslide hazard assessment/Statistical landslide susceptibility assessmen landslide index method CS Chinchina Colombia/Statistical_landslide_susceptibility_analysis.pdf
  • van Westen, C. J., Castellanos, E., & Kuriakose, S. L. (2008). Spatial data for landslide susceptibility, hazard, and vulnerability assessment: An overview. Engineering Geology, 102(3–4), 112–131. https://doi.org/10.1016/j.enggeo.2008.03.010

Statistical Analysis Of Hydrological Drivers Of Landslide Inducing Factors Using Weights Of Evidence Approach On Kerch Peninsula

Yıl 2022, Cilt: 9 Sayı: 1, 60 - 63, 06.03.2022
https://doi.org/10.30897/ijegeo.767519

Öz

Article is devoted to statistical analysis of the influence of the surface water of Kerch Peninsula on landslides. We chose a distance from water as indicator that can be express the impact of surface water on landslides. The territory of the peninsula was divided into 5 classes according to the degree of distance. Thus, according to the results of the study, it was found that the greatest impact on landslides is observed at a distance of up to 500 m. On the other hand, it is noted that there is no effect of surface water on landslides at a distance over 2 km.

Kaynakça

  • Ayalew, L., Yamagishi, H., & Ugawa, N. (2004). Landslide susceptibility mapping using GIS-based weighted linear combination, the case in Tsugawa area of Agano River, Niigata Prefecture, Japan. Landslides, 1(1), 73–81. https://doi.org/10.1007/s10346-003-0006-9
  • Bathurst, J. C., Moretti, G., El-Hames, A., Beguería, S., & García-Ruiz, J. M. (2007). Modelling the impact of forest loss on shallow landslide sediment yield, Ijuez river catchment, Spanish Pyrenees. Hydrology and Earth System Sciences, 11(1), 569–583. https://doi.org/10.5194/hess-11-569-2007
  • Dahal, R. K., & Hasegawa, S. (2008). Representative rainfall thresholds for landslides in the Nepal Himalaya. Geomorphology, 100(3–4), 429–443. https://doi.org/10.1016/j.geomorph.2008.01.014
  • Krivoguz, D., & Bespalova, L. (2017). Spatial analysis of topography of Kerch peninsula using GIS and its impact on landslides. International Journal of Professional Science, (6), 19–32.
  • Krivoguz, D., & Bespalova, L. (2018). Analysis of Kerch peninsula’s climatic parameters in scope of landslide susceptibility. Vestnik Kerchenskogo Gosudarstvennogo Morskogo Tehnologicheskogo Universiteta, (2), 5–11.
  • Krivoguz, D. O., & Burtnik, D. N. (2018). Neural network modeling of changes in the land cover of the Kerch peninsula in the context of landslides occurence. Nauchno-Tekhnicheskiy Vestnik Bryanskogo Gosudarstvennogo Universiteta, 4(1), 113–121. https://doi.org/10.22281/2413-9920-2018-04-01-113-121
  • Krivoguz, Denis. (2020). Methodology of physiography zoning using machine learning: A case study of the Black Sea. Russian Journal of Earth Sciences, 20(1), 1–10. https://doi.org/10.2205/2020ES000707
  • Krivoguz, Denis, & Bespalova, L. (2020). Landslide susceptibility analysis for the Kerch Peninsula using weights of evidence approach and GIS. Russian Journal of Earth Sciences, 20(1), 1–12. https://doi.org/10.2205/2020ES000682
  • Lari, S., Frattini, P., & Crosta, G. B. (2014). A probabilistic approach for landslide hazard analysis. Engineering Geology, 182, 3–14. https://doi.org/10.1016/j.enggeo.2014.07.015
  • Margielewski, W., & Urban, J. (2000). The type of initiation of mass movements in the Flysch Carpathians studied on the base of structural development of the selected crevice type caves (southern Poland). Przeglad Geologiczny, 48(3).
  • Van Westen, C. (1997). Statistical landslide hazard analysis. Ilwis, 2, 1–10. Retrieved from http://www.adpc.net/casita/Case_studies/Landslide hazard assessment/Statistical landslide susceptibility assessmen landslide index method CS Chinchina Colombia/Statistical_landslide_susceptibility_analysis.pdf
  • van Westen, C. J., Castellanos, E., & Kuriakose, S. L. (2008). Spatial data for landslide susceptibility, hazard, and vulnerability assessment: An overview. Engineering Geology, 102(3–4), 112–131. https://doi.org/10.1016/j.enggeo.2008.03.010
Toplam 12 adet kaynakça vardır.

Ayrıntılar

Birincil Dil İngilizce
Konular Çevre Bilimleri, Beşeri Coğrafya
Bölüm Short Communications
Yazarlar

Denis Krivoguz 0000-0002-7368-3303

Yayımlanma Tarihi 6 Mart 2022
Yayımlandığı Sayı Yıl 2022 Cilt: 9 Sayı: 1

Kaynak Göster

APA Krivoguz, D. (2022). Statistical Analysis Of Hydrological Drivers Of Landslide Inducing Factors Using Weights Of Evidence Approach On Kerch Peninsula. International Journal of Environment and Geoinformatics, 9(1), 60-63. https://doi.org/10.30897/ijegeo.767519