Derleme
BibTex RIS Kaynak Göster
Yıl 2022, Cilt: 9 Sayı: 3, 57 - 64, 08.09.2022
https://doi.org/10.30897/ijegeo.1037382

Öz

Kaynakça

  • Allwood, A. C., Walter, M. R., Kamber, B. S., Marshall, C. P., & Burch, I. W. (2006). Stromatolite reef from the Early Archaean era of Australia. Nature, 441(7094), 714-718.
  • Almatroushi, H., AlMazmi, H., AlMheiri, N., AlShamsi, M., AlTunaiji, E., Badri, K., ... & Young, R. (2021). Emirates Mars Mission characterization of Mars Atmosphere dynamics and processes. Space Science Reviews, 217(8), 1-31.
  • Amils, R., González-Toril, E., Fernández-Remolar, D., Gómez, F., Aguilera, Á., Rodríguez, N., ... & Sanz, J. L. (2007). Extreme environments as Mars terrestrial analogs: The Rio Tinto case. Planetary and Space Science, 55(3), 370-381.
  • Baldridge, A. M., & Calvin, W. M. (2004). Hydration state of the Martian coarse‐grained hematite exposures: Implications for their origin and evolution. Journal of Geophysical Research: Planets, 109(E4).
  • Barabesi, C., Galizzi, A., Mastromei, G., Rossi, M., Tamburini, E., & Perito, B. (2007). Bacillus subtilis gene cluster involved in calcium carbonate biomineralization. Journal of bacteriology, 189(1), 228-235.
  • Barker, D. C., & Bhattacharya, J. P. (2018). Sequence stratigraphy on an early wet Mars. Planetary and Space Science, 151, 97-108.
  • Barton, H. A. (2006). Introduction to cave microbiology: a review for the non-specialist. Journal of cave and karst studies, 68(2), 43-54.
  • Bendia, A. G., Callefo, F., Araújo, M. N., Sanchez, E., Teixeira, V. C., Vasconcelos, A., ... & Galante, D. (2021). Metagenome-assembled genomes from Monte Cristo Cave (Diamantina, Brazil) reveal prokaryotic lineages as functional models for life on Mars. Astrobiology.
  • Bibring, J. P., Arvidson, R. E., Gendrin, A., Gondet, B., Langevin, Y., Le Mouelic, S., ... & Sotin, C. (2007). Coupled ferric oxides and sulfates on the Martian surface. Science, 317(5842), 1206-1210.
  • Blank, J. G., Roush, T. L., Stoker, C. L., Colaprete, A., Datta, S., Wong, U., ... & Wynne, J. J. (2018, December). Planetary Caves as Astrobiology Targets. In AGU Fall Meeting 2018. AGU.
  • Boston, P. J., Ivanov, M. V., & McKay, C. P. (1992). On the possibility of chemosynthetic ecosystems in subsurface habitats on Mars. Icarus, 95(2), 300-308.
  • Boston, P. J., Spilde, M. N., Northup, D. E., Melim, L. A., Soroka, D. S., Kleina, L. G., ... & Schelble, R. T. (2001). Cave biosignature suites: microbes, minerals, and Mars. Astrobiology, 1(1), 25-55.
  • Brockett, R. M., Ferguson, J. K., & Henney, M. R. (1978). Prevalence of fungi during Skylab missions. Applied and environmental microbiology, 36(2), 243-246.
  • Brown, A. J., Cudahy, T. J., & Walter, M. R. (2006). Hydrothermal alteration at the Panorama formation, North pole dome, Pilbara craton, Western Australia. Precambrian Research, 151(3-4), 211-223.
  • Bryant, E., & Rech, S. (2008). The effect of moisture on soil microbial communities in the Mojave desert. Astrobiology, 8, 427. Cacchio, P., Contento, R., Ercole, C., Cappuccio, G., Martinez, M. P., & Lepidi, A. (2004). Involvement of microorganisms in the formation of carbonate speleothems in the Cervo Cave (L'Aquila-Italy). Geomicrobiology Journal, 21(8), 497-509.
  • Catling, D. C. (2004). On Earth, as it is on Mars?. Nature, 429(6993), 707-708.
  • Catling, D. C., & Moore, J. M. (2003). The nature of coarse-grained crystalline hematite and its implications for the early environment of Mars. Icarus, 165(2), 277-300.
  • Catling, D. C., Claire, M. W., Zahnle, K. J., Quinn, R. C., Clark, B. C., Hecht, M. H., & Kounaves, S. (2010). Atmospheric origins of perchlorate on Mars and in the Atacama. Journal of Geophysical Research: Planets, 115(E1).
  • Christensen, P. R., Bandfield, J. L., Clark, R. N., Edgett, K. S., Hamilton, V. E., Hoefen, T., ... & Smith, M. D. (2000). Detection of crystalline hematite mineralization on Mars by the Thermal Emission Spectrometer: Evidence for near‐surface water. Journal of Geophysical Research: Planets, 105(E4), 9623-9642.
  • Christensen, P. R., Morris, R. V., Lane, M. D., Bandfield, J. L., & Malin, M. C. (2001). Global mapping of Martian hematite mineral deposits: Remnants of water‐driven processes on early Mars. Journal of Geophysical Research: Planets, 106(E10), 23873-23885.
  • Cockell, C. (2002). Astrobiology—a new opportunity for interdisciplinary thinking. Space Policy, 18(4), 263-266.
  • Cockell, C. S., Catling, D. C., Davis, W. L., Snook, K., Kepner, R. L., Lee, P., & McKay, C. P. (2000). The ultraviolet environment of Mars: biological implications past, present, and future. Icarus, 146(2), 343-359.
  • Cushing, G. E., Titus, T. N., Wynne, J. J., & Christensen, P. R. (2007). THEMIS observes possible cave skylights on Mars. Geophysical Research Letters, 34(17).
  • Davies, W. E., & Morgan, I. M. (1980). Geology of Caves.
  • Dehant, V., Lammer, H., Kulikov, Y. N., Grießmeier, J. M., Breuer, D., Verhoeven, O., ... & Lognonné, P. (2007). Planetary magnetic dynamo effect on atmospheric protection of early Earth and Mars. Space Science Reviews, 129(1-3), 279-300.
  • Des Marais, D. J., Nuth III, J. A., Allamandola, L. J., Boss, A. P., Farmer, J. D., Hoehler, T. M., ... & Spormann, A. M. (2008). The NASA astrobiology roadmap. Astrobiology, 8(4), 715-730. E. Northup, Kathleen H. Lavoie, D. (2001).
  • Dhami, N. K., Reddy, M. S., & Mukherjee, A. (2013). Biomineralization of calcium carbonate polymorphs by the bacterial strains isolated from calcareous sites. Journal of microbiology and biotechnology, 23(5), 707-714.
  • Fairén, A. G., Davila, A. F., Lim, D., Bramall, N., Bonaccorsi, R., Zavaleta, J., ... & McKay, C. P. (2010). Astrobiology through the ages of Mars: the study of terrestrial analogues to understand the habitability of Mars. Astrobiology, 10(8), 821-843.
  • Fernández-Remolar, D. C., Morris, R. V., Gruener, J. E., Amils, R., & Knoll, A. H. (2005). The Río Tinto Basin, Spain: mineralogy, sedimentary geobiology, and implications for interpretation of outcrop rocks at Meridiani Planum, Mars. Earth and Planetary Science Letters, 240(1), 149-167.
  • Franck, S., Von Bloh, W., Bounama, C., Steffen, M., Schönberner, D., & Schellnhuber, H. J. (2002). Habitable zones in extrasolar planetary systems. In Astrobiology (pp. 47-56). Springer, Berlin, Heidelberg.
  • Friedmann, E. I. (1980). Endolithic microbial life in hot and cold deserts. In Limits of life (pp. 33-45). Springer, Dordrecht.
  • Gendrin, A., Mangold, N., Bibring, J. P., Langevin, Y., Gondet, B., Poulet, F., ... & LeMouélic, S. (2005). Sulfates in Martian layered terrains: the OMEGA/Mars Express view. Science, 307(5715), 1587-1591.
  • Northup E., Kathleen H. Lavoie, D. (2001). Geomicrobiology of caves: a review. Geomicrobiology journal, 18(3), 199-222.
  • González-Toril, E., Llobet-Brossa, E., Casamayor, E. O., Amann, R., & Amils, R. (2003). Microbial ecology of an extreme acidic environment, the Tinto River. Applied and environmental microbiology, 69(8), 4853-4865.
  • Greeley, R., Bridges, N. T., Kuzmin, R. O., & Laity, J. E. (2002). Terrestrial analogs to wind‐related features at the Viking and Pathfinder landing sites on Mars. Journal of Geophysical Research: Planets, 107(E1), 5-1.
  • Gudmundsson, M. T., Sigmundsson, F., & Björnsson, H. (1997). Ice–volcano interaction of the 1996 Gjálp subglacial eruption, Vatnajökull, Iceland. Nature, 389(6654), 954-957.
  • Heldmann, J. L., Pollard, W., McKay, C. P., Marinova, M. M., Davila, A., Williams, K. E., ... & Andersen, D. T. (2013). The high elevation Dry Valleys in Antarctica as analog sites for subsurface ice on Mars. Planetary and Space Science, 85, 53-58.
  • Herring, C. M., Brandsberg, J. W., Oxborrow, G. S., & Puleo, J. R. (1974). Comparison of media for detection of fungi on spacecraft. Applied microbiology, 27(3), 566-569.
  • Hodges, C. A., & Moore, H. J. (1994). Atlas of volcanic landforms on Mars (No. 1534). US Government Printing Office.
  • Horneck, G. (2000). The microbial world and the case for Mars. Planetary and Space Science, 48(11), 1053-1063.
  • Hose, L. D., Palmer, A. N., Palmer, M. V., Northup, D. E., Boston, P. J., & DuChene, H. R. (2000). Microbiology and geochemistry in a hydrogen-sulphide-rich karst environment. Chemical Geology, 169(3-4), 399-423.
  • Joseph, R. G., Dass, R. S., Rizzo, V., Cantasano, N., & Bianciardi, G. (2019). Evidence of life on Mars. Journal of Astrobiology and Space Science Reviews, 1, 40-81.
  • Kasting, J. F., Whitmire, D. P., & Reynolds, R. T. (1993). Habitable zones around main sequence stars. Icarus, 101(1), 108-128.
  • Kato, Y., Suzuki, K., Nakamura, K., Hickman, A. H., Nedachi, M., Kusakabe, M., ... & Ohmoto, H. (2009). Hematite formation by oxygenated groundwater more than 2.76 billion years ago. Earth and Planetary Science Letters, 278(1-2), 40-49.
  • Koshland, D. E. (2002). The seven pillars of life. Science, 295(5563), 2215-2216.
  • Kumaresan, D., Wischer, D., Stephenson, J., Hillebrand-Voiculescu, A., & Murrell, J. C. (2014). Microbiology of Movile Cave—a chemolithoautotrophic ecosystem. Geomicrobiology Journal, 31(3), 186-193.
  • Lee, C. K., Barbier, B. A., Bottos, E. M., McDonald, I. R., & Cary, S. C. (2012). The inter-valley soil comparative survey: the ecology of Dry Valley edaphic microbial communities. The ISME journal, 6(5), 1046-1057.
  • Léveillé, R. J., & Datta, S. (2010). Lava tubes and basaltic caves as astrobiological targets on Earth and Mars: a review. Planetary and Space Science, 58(4), 592-598.
  • Levin, G. V., & Straat, P. A. (1977). Life on Mars? The Viking labeled release experiment. Biosystems, 9(2-3), 165-174.
  • Liberman, A. M., Barthel, P., & Wesellius, P. (2018). Terrestrial Subsurface Research and the Future of Astrobiology.
  • Lindskog, S., & Coleman, J. E. (1973). The catalytic mechanism of carbonic anhydrase. Proceedings of the National Academy of Sciences, 70(9), 2505-2508.
  • Lingam, M. (2021). A brief history of the term ‘habitable zone’in the 19th century. International Journal of Astrobiology, 20(5), 332-336.
  • Malin, M. C., Edgett, K. S., Posiolova, L. V., McColley, S. M., & Dobrea, E. Z. N. (2006). Present-day impact cratering rate and contemporary gully activity on Mars. Science, 314(5805), 1573-1577.
  • Mangold, N., Dromart, G., Ansan, V., Salese, F., Kleinhans, M. G., Massé, M., ... & Stack, K. M. (2020). Fluvial regimes, morphometry, and age of Jezero crater paleolake inlet valleys and their exobiological significance for the 2020 Rover Mission Landing Site. Astrobiology, 20(8), 994-1013.
  • Mattes, J. (2015). Disciplinary identities and crossing boundaries: The academization of speleology in the first half of the twentieth century. Earth Sciences History, 34(2), 275-295.
  • Méndez, A., Rivera-Valentín, E. G., Schulze-Makuch, D., Filiberto, J., Ramírez, R., Wood, T. E., ... & Haqq-Misra, J. (2020). Habitability Models for Planetary Sciences. arXiv preprint arXiv:2007.05491.
  • Mileikowsky, C., Cucinotta, F. A., Wilson, J. W., Gladman, B., Horneck, G., Lindegren, L., ... & Zheng, J. Q. (2000). Natural transfer of viable microbes in space: 1. From Mars to Earth and Earth to Mars. Icarus, 145(2), 391-427.
  • Navarro-González, R., Rainey, F. A., Molina, P., Bagaley, D. R., Hollen, B. J., de la Rosa, J., ... & McKay, C. P. (2003). Mars-like soils in the Atacama Desert, Chile, and the dry limit of microbial life. Science, 302(5647), 1018-1021.
  • Nealson, K. H. (1997). The limits of life on Earth and searching for life on Mars. Journal of Geophysical Research: Planets, 102(E10), 23675-23686.
  • Nicholson, W. L., Schuerger, A. C., & Setlow, P. (2005). The solar UV environment and bacterial spore UV resistance: considerations for Earth-to-Mars transport by natural processes and human spaceflight. Mutation Research/Fundamental and Molecular Mechanisms of Mutagenesis, 571(1-2), 249-264.
  • Palmer, A. N. (1991). Origin and morphology of limestone caves. Geological Society of America Bulletin, 103(1), 1-21.
  • Palmer, A. N., & Hill, C. A. (2019). Sulfuric acid caves. In Encyclopedia of caves (pp. 1053-1062). Academic Press.
  • Parenteau, M. N., & Cady, S. L. (2010). Microbial biosignatures in iron-mineralized phototrophic mats at Chocolate Pots hot springs, Yellowstone National Park, United States. Palaios, 25(2), 97-111.
  • Patel, M. R., Zarnecki, J. C., & Catling, D. C. (2002). Ultraviolet radiation on the surface of Mars and the Beagle 2 UV sensor. Planetary and Space Science, 50(9), 915-927.
  • Ponce, A., Beaty, S. M., Lee, C., Lee, C., Noell, A. C., Stam, C. N., & Connon, S. A. (2011a). Microbial Habitat on Kilimanjaro's Glaciers. In Lunar and Planetary Science Conference (No. 1608, p. 2645).
  • Ponce, A., Anderson, R. C., & McKay, C. P. (2011b). Microbial habitability in periglacial soils of Kilimanjaro. Analogue sites for Mars missions: MSL and beyond, 1612(161), 6018.
  • Poulson, T. L., & White, W. B. (1969). The cave environment. Science, 165(3897), 971-981.
  • Preston, L. J., & Dartnell, L. R. (2014). Planetary habitability: lessons learned from terrestrial analogues. International Journal of Astrobiology, 13(1), 81-98.
  • Preston, L. J., Benedix, G. K., Genge, M. J., & Sephton, M. A. (2008). A multidisciplinary study of silica sinter deposits with applications to silica identification and detection of fossil life on Mars. Icarus, 198(2), 331-350.
  • Preston, L. J., Shuster, J., Fernández‐Remolar, D., Banerjee, N. R., Osinski, G. R., & Southam, G. (2011). The preservation and degradation of filamentous bacteria and biomolecules within iron oxide deposits at Rio Tinto, Spain. Geobiology, 9(3), 233-249.
  • Ramirez, R. M. (2018). A more comprehensive habitable zone for finding life on other planets. Geosciences, 8(8), 280.
  • Raulin-Cerceau, F. (2004). Historical review of the origin of life and astrobiology. In Origins (pp. 15-33). Springer, Dordrecht.
  • Ruff, S. W., Farmer, J. D., Calvin, W. M., Herkenhoff, K. E., Johnson, J. R., Morris, R. V., ... & Squyres, S. W. (2011). Characteristics, distribution, origin, and significance of opaline silica observed by the Spirit rover in Gusev crater, Mars. Journal of Geophysical Research: Planets, 116(E7).
  • Sanchez-Moral, S., Portillo, M. C., Janices, I., Cuezva, S., Fernandez-Cortes, A., Cañaveras, J. C., & Gonzalez, J. M. (2012). The role of microorganisms in the formation of calcitic moonmilk deposits and speleothems in Altamira Cave. Geomorphology, 139, 285-292.
  • Schneegurt, M. A. (2020). Mars Extant Life: What's Next? Conference Report.
  • Souness, C. J., & Abramov, A. (2012, March). The Volcanic terrains of Kamchatka, Eastern Russia: a Glacial and periglacial environment with potential for Mars analog-based research. In Lunar and Planetary Science Conference (No. 1659, p. 1071).
  • Tomczyk-Żak, K., & Zielenkiewicz, U. (2016). Microbial diversity in caves. Geomicrobiology Journal, 33(1), 20-38.
  • Türkgenci, M. D., & Doğruöz Güngör, N. (2021). Profiling of Bacteria Capable of Precipitating CaCO3 on the Speleothem Surfaces in Dupnisa Cave, Kırklareli, Turkey. Geomicrobiology Journal, 38(9), 816-827.
  • Valdivia-Silva, J. E., Navarro-González, R., Ortega-Gutierrez, F., Fletcher, L. E., Perez-Montaño, S., Condori-Apaza, R., & McKay, C. P. (2011). Multidisciplinary approach of the hyperarid desert of Pampas de La Joya in southern Peru as a new Mars-like soil analog. Geochimica et Cosmochimica Acta, 75(7), 1975-1991.
  • Walter, M. R., Buick, R., & Dunlop, J. S. R. (1980). Stromatolites 3,400–3,500 Myr old from the North pole area, Western Australia. Nature, 284(5755), 443-445.
  • Westall, F. (2008). Morphological biosignatures in early terrestrial and extraterrestrial materials. Space Science Reviews, 135(1-4), 95-114. White, W. B., & Culver, D. C. (2019). Cave, definition of. In Encyclopedia of caves (pp. 255-259). Academic Press.
  • Wierzchos, J., Davila, A. F., Artieda, O., Cámara-Gallego, B., de los Ríos, A., Nealson, K. H., ... & Ascaso, C. (2013). Ignimbrite as a substrate for endolithic life in the hyper-arid Atacama Desert: implications for the search for life on Mars. Icarus, 224(2), 334-346.
  • Wynn-Williams, D. D., & Edwards, H. G. M. (2000). Antarctic ecosystems as models for extraterrestrial surface habitats. Planetary and Space Science, 48(11), 1065-1075.
  • Wyrick, D., Ferrill, D. A., Morris, A. P., Colton, S. L., & Sims, D. W. (2004). Distribution, morphology, and origins of Martian pit crater chains. Journal of Geophysical Research: Planets, 109(E6).
  • Yoshikawa, I., Yoshioka, K., Murakami, G., Yamazaki, A., Tsuchiya, F., Kagitani, M., ... & Tadokoro, H. (2014). Extreme ultraviolet radiation measurement for planetary atmospheres/magnetospheres from the Earth-orbiting spacecraft (Extreme Ultraviolet Spectroscope for Exospheric Dynamics: EXCEED). Space Science Reviews, 184(1), 237-258.
  • Zheng, T., & Qian, C. (2020). Influencing factors and formation mechanism of CaCO3 precipitation induced by microbial carbonic anhydrase. Process Biochemistry, 91, 271-281.
  • Zhuang, D., Yan, H., Tucker, M. E., Zhao, H., Han, Z., Zhao, Y., ... & Tang, R. (2018). Calcite precipitation induced by Bacillus cereus MRR2 cultured at different Ca2+ concentrations: Further insights into biotic and abiotic calcite. Chemical Geology, 500, 64-87.

The Astrobiological Significance of Caves on Earth and on Mars

Yıl 2022, Cilt: 9 Sayı: 3, 57 - 64, 08.09.2022
https://doi.org/10.30897/ijegeo.1037382

Öz

Caves are geologic entities that can be frequently found around the globe. Cave-like features have been documented on Mars by satellite imagery and special detection devices. On Earth Subterranean habitats like caves might host microbial growth because of their relatively stable physicochemical conditions and mineral rich content. Moreover, caves have also been isolated from UV radiation and other present environmental conditions which actually make them ideal for searching for unique microbial life. Mars is an arid planet with thin atmosphere and quite weak magnetosphere. Therefore Mars as we know is inunhabitable. Research shows that Mars might have been a wet planet in the past, having streams of running water. Earth like subterranean cavities on Mars might provide protection from these environmental hazards. This makes Earth caves important astrobiological sites as Mars analogues for the investigation of the possibility of life on Mars. Researching caves both on Earth and Mars will provide us insight into extreme life conditions and important astrobiological questions. In this review, we are suggesting that geobiological significance of Earth caves plays an important role in searching for life on Mars and defining Mars analogues on Earth.

Kaynakça

  • Allwood, A. C., Walter, M. R., Kamber, B. S., Marshall, C. P., & Burch, I. W. (2006). Stromatolite reef from the Early Archaean era of Australia. Nature, 441(7094), 714-718.
  • Almatroushi, H., AlMazmi, H., AlMheiri, N., AlShamsi, M., AlTunaiji, E., Badri, K., ... & Young, R. (2021). Emirates Mars Mission characterization of Mars Atmosphere dynamics and processes. Space Science Reviews, 217(8), 1-31.
  • Amils, R., González-Toril, E., Fernández-Remolar, D., Gómez, F., Aguilera, Á., Rodríguez, N., ... & Sanz, J. L. (2007). Extreme environments as Mars terrestrial analogs: The Rio Tinto case. Planetary and Space Science, 55(3), 370-381.
  • Baldridge, A. M., & Calvin, W. M. (2004). Hydration state of the Martian coarse‐grained hematite exposures: Implications for their origin and evolution. Journal of Geophysical Research: Planets, 109(E4).
  • Barabesi, C., Galizzi, A., Mastromei, G., Rossi, M., Tamburini, E., & Perito, B. (2007). Bacillus subtilis gene cluster involved in calcium carbonate biomineralization. Journal of bacteriology, 189(1), 228-235.
  • Barker, D. C., & Bhattacharya, J. P. (2018). Sequence stratigraphy on an early wet Mars. Planetary and Space Science, 151, 97-108.
  • Barton, H. A. (2006). Introduction to cave microbiology: a review for the non-specialist. Journal of cave and karst studies, 68(2), 43-54.
  • Bendia, A. G., Callefo, F., Araújo, M. N., Sanchez, E., Teixeira, V. C., Vasconcelos, A., ... & Galante, D. (2021). Metagenome-assembled genomes from Monte Cristo Cave (Diamantina, Brazil) reveal prokaryotic lineages as functional models for life on Mars. Astrobiology.
  • Bibring, J. P., Arvidson, R. E., Gendrin, A., Gondet, B., Langevin, Y., Le Mouelic, S., ... & Sotin, C. (2007). Coupled ferric oxides and sulfates on the Martian surface. Science, 317(5842), 1206-1210.
  • Blank, J. G., Roush, T. L., Stoker, C. L., Colaprete, A., Datta, S., Wong, U., ... & Wynne, J. J. (2018, December). Planetary Caves as Astrobiology Targets. In AGU Fall Meeting 2018. AGU.
  • Boston, P. J., Ivanov, M. V., & McKay, C. P. (1992). On the possibility of chemosynthetic ecosystems in subsurface habitats on Mars. Icarus, 95(2), 300-308.
  • Boston, P. J., Spilde, M. N., Northup, D. E., Melim, L. A., Soroka, D. S., Kleina, L. G., ... & Schelble, R. T. (2001). Cave biosignature suites: microbes, minerals, and Mars. Astrobiology, 1(1), 25-55.
  • Brockett, R. M., Ferguson, J. K., & Henney, M. R. (1978). Prevalence of fungi during Skylab missions. Applied and environmental microbiology, 36(2), 243-246.
  • Brown, A. J., Cudahy, T. J., & Walter, M. R. (2006). Hydrothermal alteration at the Panorama formation, North pole dome, Pilbara craton, Western Australia. Precambrian Research, 151(3-4), 211-223.
  • Bryant, E., & Rech, S. (2008). The effect of moisture on soil microbial communities in the Mojave desert. Astrobiology, 8, 427. Cacchio, P., Contento, R., Ercole, C., Cappuccio, G., Martinez, M. P., & Lepidi, A. (2004). Involvement of microorganisms in the formation of carbonate speleothems in the Cervo Cave (L'Aquila-Italy). Geomicrobiology Journal, 21(8), 497-509.
  • Catling, D. C. (2004). On Earth, as it is on Mars?. Nature, 429(6993), 707-708.
  • Catling, D. C., & Moore, J. M. (2003). The nature of coarse-grained crystalline hematite and its implications for the early environment of Mars. Icarus, 165(2), 277-300.
  • Catling, D. C., Claire, M. W., Zahnle, K. J., Quinn, R. C., Clark, B. C., Hecht, M. H., & Kounaves, S. (2010). Atmospheric origins of perchlorate on Mars and in the Atacama. Journal of Geophysical Research: Planets, 115(E1).
  • Christensen, P. R., Bandfield, J. L., Clark, R. N., Edgett, K. S., Hamilton, V. E., Hoefen, T., ... & Smith, M. D. (2000). Detection of crystalline hematite mineralization on Mars by the Thermal Emission Spectrometer: Evidence for near‐surface water. Journal of Geophysical Research: Planets, 105(E4), 9623-9642.
  • Christensen, P. R., Morris, R. V., Lane, M. D., Bandfield, J. L., & Malin, M. C. (2001). Global mapping of Martian hematite mineral deposits: Remnants of water‐driven processes on early Mars. Journal of Geophysical Research: Planets, 106(E10), 23873-23885.
  • Cockell, C. (2002). Astrobiology—a new opportunity for interdisciplinary thinking. Space Policy, 18(4), 263-266.
  • Cockell, C. S., Catling, D. C., Davis, W. L., Snook, K., Kepner, R. L., Lee, P., & McKay, C. P. (2000). The ultraviolet environment of Mars: biological implications past, present, and future. Icarus, 146(2), 343-359.
  • Cushing, G. E., Titus, T. N., Wynne, J. J., & Christensen, P. R. (2007). THEMIS observes possible cave skylights on Mars. Geophysical Research Letters, 34(17).
  • Davies, W. E., & Morgan, I. M. (1980). Geology of Caves.
  • Dehant, V., Lammer, H., Kulikov, Y. N., Grießmeier, J. M., Breuer, D., Verhoeven, O., ... & Lognonné, P. (2007). Planetary magnetic dynamo effect on atmospheric protection of early Earth and Mars. Space Science Reviews, 129(1-3), 279-300.
  • Des Marais, D. J., Nuth III, J. A., Allamandola, L. J., Boss, A. P., Farmer, J. D., Hoehler, T. M., ... & Spormann, A. M. (2008). The NASA astrobiology roadmap. Astrobiology, 8(4), 715-730. E. Northup, Kathleen H. Lavoie, D. (2001).
  • Dhami, N. K., Reddy, M. S., & Mukherjee, A. (2013). Biomineralization of calcium carbonate polymorphs by the bacterial strains isolated from calcareous sites. Journal of microbiology and biotechnology, 23(5), 707-714.
  • Fairén, A. G., Davila, A. F., Lim, D., Bramall, N., Bonaccorsi, R., Zavaleta, J., ... & McKay, C. P. (2010). Astrobiology through the ages of Mars: the study of terrestrial analogues to understand the habitability of Mars. Astrobiology, 10(8), 821-843.
  • Fernández-Remolar, D. C., Morris, R. V., Gruener, J. E., Amils, R., & Knoll, A. H. (2005). The Río Tinto Basin, Spain: mineralogy, sedimentary geobiology, and implications for interpretation of outcrop rocks at Meridiani Planum, Mars. Earth and Planetary Science Letters, 240(1), 149-167.
  • Franck, S., Von Bloh, W., Bounama, C., Steffen, M., Schönberner, D., & Schellnhuber, H. J. (2002). Habitable zones in extrasolar planetary systems. In Astrobiology (pp. 47-56). Springer, Berlin, Heidelberg.
  • Friedmann, E. I. (1980). Endolithic microbial life in hot and cold deserts. In Limits of life (pp. 33-45). Springer, Dordrecht.
  • Gendrin, A., Mangold, N., Bibring, J. P., Langevin, Y., Gondet, B., Poulet, F., ... & LeMouélic, S. (2005). Sulfates in Martian layered terrains: the OMEGA/Mars Express view. Science, 307(5715), 1587-1591.
  • Northup E., Kathleen H. Lavoie, D. (2001). Geomicrobiology of caves: a review. Geomicrobiology journal, 18(3), 199-222.
  • González-Toril, E., Llobet-Brossa, E., Casamayor, E. O., Amann, R., & Amils, R. (2003). Microbial ecology of an extreme acidic environment, the Tinto River. Applied and environmental microbiology, 69(8), 4853-4865.
  • Greeley, R., Bridges, N. T., Kuzmin, R. O., & Laity, J. E. (2002). Terrestrial analogs to wind‐related features at the Viking and Pathfinder landing sites on Mars. Journal of Geophysical Research: Planets, 107(E1), 5-1.
  • Gudmundsson, M. T., Sigmundsson, F., & Björnsson, H. (1997). Ice–volcano interaction of the 1996 Gjálp subglacial eruption, Vatnajökull, Iceland. Nature, 389(6654), 954-957.
  • Heldmann, J. L., Pollard, W., McKay, C. P., Marinova, M. M., Davila, A., Williams, K. E., ... & Andersen, D. T. (2013). The high elevation Dry Valleys in Antarctica as analog sites for subsurface ice on Mars. Planetary and Space Science, 85, 53-58.
  • Herring, C. M., Brandsberg, J. W., Oxborrow, G. S., & Puleo, J. R. (1974). Comparison of media for detection of fungi on spacecraft. Applied microbiology, 27(3), 566-569.
  • Hodges, C. A., & Moore, H. J. (1994). Atlas of volcanic landforms on Mars (No. 1534). US Government Printing Office.
  • Horneck, G. (2000). The microbial world and the case for Mars. Planetary and Space Science, 48(11), 1053-1063.
  • Hose, L. D., Palmer, A. N., Palmer, M. V., Northup, D. E., Boston, P. J., & DuChene, H. R. (2000). Microbiology and geochemistry in a hydrogen-sulphide-rich karst environment. Chemical Geology, 169(3-4), 399-423.
  • Joseph, R. G., Dass, R. S., Rizzo, V., Cantasano, N., & Bianciardi, G. (2019). Evidence of life on Mars. Journal of Astrobiology and Space Science Reviews, 1, 40-81.
  • Kasting, J. F., Whitmire, D. P., & Reynolds, R. T. (1993). Habitable zones around main sequence stars. Icarus, 101(1), 108-128.
  • Kato, Y., Suzuki, K., Nakamura, K., Hickman, A. H., Nedachi, M., Kusakabe, M., ... & Ohmoto, H. (2009). Hematite formation by oxygenated groundwater more than 2.76 billion years ago. Earth and Planetary Science Letters, 278(1-2), 40-49.
  • Koshland, D. E. (2002). The seven pillars of life. Science, 295(5563), 2215-2216.
  • Kumaresan, D., Wischer, D., Stephenson, J., Hillebrand-Voiculescu, A., & Murrell, J. C. (2014). Microbiology of Movile Cave—a chemolithoautotrophic ecosystem. Geomicrobiology Journal, 31(3), 186-193.
  • Lee, C. K., Barbier, B. A., Bottos, E. M., McDonald, I. R., & Cary, S. C. (2012). The inter-valley soil comparative survey: the ecology of Dry Valley edaphic microbial communities. The ISME journal, 6(5), 1046-1057.
  • Léveillé, R. J., & Datta, S. (2010). Lava tubes and basaltic caves as astrobiological targets on Earth and Mars: a review. Planetary and Space Science, 58(4), 592-598.
  • Levin, G. V., & Straat, P. A. (1977). Life on Mars? The Viking labeled release experiment. Biosystems, 9(2-3), 165-174.
  • Liberman, A. M., Barthel, P., & Wesellius, P. (2018). Terrestrial Subsurface Research and the Future of Astrobiology.
  • Lindskog, S., & Coleman, J. E. (1973). The catalytic mechanism of carbonic anhydrase. Proceedings of the National Academy of Sciences, 70(9), 2505-2508.
  • Lingam, M. (2021). A brief history of the term ‘habitable zone’in the 19th century. International Journal of Astrobiology, 20(5), 332-336.
  • Malin, M. C., Edgett, K. S., Posiolova, L. V., McColley, S. M., & Dobrea, E. Z. N. (2006). Present-day impact cratering rate and contemporary gully activity on Mars. Science, 314(5805), 1573-1577.
  • Mangold, N., Dromart, G., Ansan, V., Salese, F., Kleinhans, M. G., Massé, M., ... & Stack, K. M. (2020). Fluvial regimes, morphometry, and age of Jezero crater paleolake inlet valleys and their exobiological significance for the 2020 Rover Mission Landing Site. Astrobiology, 20(8), 994-1013.
  • Mattes, J. (2015). Disciplinary identities and crossing boundaries: The academization of speleology in the first half of the twentieth century. Earth Sciences History, 34(2), 275-295.
  • Méndez, A., Rivera-Valentín, E. G., Schulze-Makuch, D., Filiberto, J., Ramírez, R., Wood, T. E., ... & Haqq-Misra, J. (2020). Habitability Models for Planetary Sciences. arXiv preprint arXiv:2007.05491.
  • Mileikowsky, C., Cucinotta, F. A., Wilson, J. W., Gladman, B., Horneck, G., Lindegren, L., ... & Zheng, J. Q. (2000). Natural transfer of viable microbes in space: 1. From Mars to Earth and Earth to Mars. Icarus, 145(2), 391-427.
  • Navarro-González, R., Rainey, F. A., Molina, P., Bagaley, D. R., Hollen, B. J., de la Rosa, J., ... & McKay, C. P. (2003). Mars-like soils in the Atacama Desert, Chile, and the dry limit of microbial life. Science, 302(5647), 1018-1021.
  • Nealson, K. H. (1997). The limits of life on Earth and searching for life on Mars. Journal of Geophysical Research: Planets, 102(E10), 23675-23686.
  • Nicholson, W. L., Schuerger, A. C., & Setlow, P. (2005). The solar UV environment and bacterial spore UV resistance: considerations for Earth-to-Mars transport by natural processes and human spaceflight. Mutation Research/Fundamental and Molecular Mechanisms of Mutagenesis, 571(1-2), 249-264.
  • Palmer, A. N. (1991). Origin and morphology of limestone caves. Geological Society of America Bulletin, 103(1), 1-21.
  • Palmer, A. N., & Hill, C. A. (2019). Sulfuric acid caves. In Encyclopedia of caves (pp. 1053-1062). Academic Press.
  • Parenteau, M. N., & Cady, S. L. (2010). Microbial biosignatures in iron-mineralized phototrophic mats at Chocolate Pots hot springs, Yellowstone National Park, United States. Palaios, 25(2), 97-111.
  • Patel, M. R., Zarnecki, J. C., & Catling, D. C. (2002). Ultraviolet radiation on the surface of Mars and the Beagle 2 UV sensor. Planetary and Space Science, 50(9), 915-927.
  • Ponce, A., Beaty, S. M., Lee, C., Lee, C., Noell, A. C., Stam, C. N., & Connon, S. A. (2011a). Microbial Habitat on Kilimanjaro's Glaciers. In Lunar and Planetary Science Conference (No. 1608, p. 2645).
  • Ponce, A., Anderson, R. C., & McKay, C. P. (2011b). Microbial habitability in periglacial soils of Kilimanjaro. Analogue sites for Mars missions: MSL and beyond, 1612(161), 6018.
  • Poulson, T. L., & White, W. B. (1969). The cave environment. Science, 165(3897), 971-981.
  • Preston, L. J., & Dartnell, L. R. (2014). Planetary habitability: lessons learned from terrestrial analogues. International Journal of Astrobiology, 13(1), 81-98.
  • Preston, L. J., Benedix, G. K., Genge, M. J., & Sephton, M. A. (2008). A multidisciplinary study of silica sinter deposits with applications to silica identification and detection of fossil life on Mars. Icarus, 198(2), 331-350.
  • Preston, L. J., Shuster, J., Fernández‐Remolar, D., Banerjee, N. R., Osinski, G. R., & Southam, G. (2011). The preservation and degradation of filamentous bacteria and biomolecules within iron oxide deposits at Rio Tinto, Spain. Geobiology, 9(3), 233-249.
  • Ramirez, R. M. (2018). A more comprehensive habitable zone for finding life on other planets. Geosciences, 8(8), 280.
  • Raulin-Cerceau, F. (2004). Historical review of the origin of life and astrobiology. In Origins (pp. 15-33). Springer, Dordrecht.
  • Ruff, S. W., Farmer, J. D., Calvin, W. M., Herkenhoff, K. E., Johnson, J. R., Morris, R. V., ... & Squyres, S. W. (2011). Characteristics, distribution, origin, and significance of opaline silica observed by the Spirit rover in Gusev crater, Mars. Journal of Geophysical Research: Planets, 116(E7).
  • Sanchez-Moral, S., Portillo, M. C., Janices, I., Cuezva, S., Fernandez-Cortes, A., Cañaveras, J. C., & Gonzalez, J. M. (2012). The role of microorganisms in the formation of calcitic moonmilk deposits and speleothems in Altamira Cave. Geomorphology, 139, 285-292.
  • Schneegurt, M. A. (2020). Mars Extant Life: What's Next? Conference Report.
  • Souness, C. J., & Abramov, A. (2012, March). The Volcanic terrains of Kamchatka, Eastern Russia: a Glacial and periglacial environment with potential for Mars analog-based research. In Lunar and Planetary Science Conference (No. 1659, p. 1071).
  • Tomczyk-Żak, K., & Zielenkiewicz, U. (2016). Microbial diversity in caves. Geomicrobiology Journal, 33(1), 20-38.
  • Türkgenci, M. D., & Doğruöz Güngör, N. (2021). Profiling of Bacteria Capable of Precipitating CaCO3 on the Speleothem Surfaces in Dupnisa Cave, Kırklareli, Turkey. Geomicrobiology Journal, 38(9), 816-827.
  • Valdivia-Silva, J. E., Navarro-González, R., Ortega-Gutierrez, F., Fletcher, L. E., Perez-Montaño, S., Condori-Apaza, R., & McKay, C. P. (2011). Multidisciplinary approach of the hyperarid desert of Pampas de La Joya in southern Peru as a new Mars-like soil analog. Geochimica et Cosmochimica Acta, 75(7), 1975-1991.
  • Walter, M. R., Buick, R., & Dunlop, J. S. R. (1980). Stromatolites 3,400–3,500 Myr old from the North pole area, Western Australia. Nature, 284(5755), 443-445.
  • Westall, F. (2008). Morphological biosignatures in early terrestrial and extraterrestrial materials. Space Science Reviews, 135(1-4), 95-114. White, W. B., & Culver, D. C. (2019). Cave, definition of. In Encyclopedia of caves (pp. 255-259). Academic Press.
  • Wierzchos, J., Davila, A. F., Artieda, O., Cámara-Gallego, B., de los Ríos, A., Nealson, K. H., ... & Ascaso, C. (2013). Ignimbrite as a substrate for endolithic life in the hyper-arid Atacama Desert: implications for the search for life on Mars. Icarus, 224(2), 334-346.
  • Wynn-Williams, D. D., & Edwards, H. G. M. (2000). Antarctic ecosystems as models for extraterrestrial surface habitats. Planetary and Space Science, 48(11), 1065-1075.
  • Wyrick, D., Ferrill, D. A., Morris, A. P., Colton, S. L., & Sims, D. W. (2004). Distribution, morphology, and origins of Martian pit crater chains. Journal of Geophysical Research: Planets, 109(E6).
  • Yoshikawa, I., Yoshioka, K., Murakami, G., Yamazaki, A., Tsuchiya, F., Kagitani, M., ... & Tadokoro, H. (2014). Extreme ultraviolet radiation measurement for planetary atmospheres/magnetospheres from the Earth-orbiting spacecraft (Extreme Ultraviolet Spectroscope for Exospheric Dynamics: EXCEED). Space Science Reviews, 184(1), 237-258.
  • Zheng, T., & Qian, C. (2020). Influencing factors and formation mechanism of CaCO3 precipitation induced by microbial carbonic anhydrase. Process Biochemistry, 91, 271-281.
  • Zhuang, D., Yan, H., Tucker, M. E., Zhao, H., Han, Z., Zhao, Y., ... & Tang, R. (2018). Calcite precipitation induced by Bacillus cereus MRR2 cultured at different Ca2+ concentrations: Further insights into biotic and abiotic calcite. Chemical Geology, 500, 64-87.
Toplam 87 adet kaynakça vardır.

Ayrıntılar

Birincil Dil İngilizce
Konular Çevre Bilimleri
Bölüm Review Articles
Yazarlar

Batu Çolak Bu kişi benim 0000-0001-8705-8827

Nihal Doğruöz Güngör 0000-0002-8098-039X

Yayımlanma Tarihi 8 Eylül 2022
Yayımlandığı Sayı Yıl 2022 Cilt: 9 Sayı: 3

Kaynak Göster

APA Çolak, B., & Doğruöz Güngör, N. (2022). The Astrobiological Significance of Caves on Earth and on Mars. International Journal of Environment and Geoinformatics, 9(3), 57-64. https://doi.org/10.30897/ijegeo.1037382