Research Article
BibTex RIS Cite
Year 2022, Volume: 9 Issue: 4, 124 - 137, 25.12.2022
https://doi.org/10.30897/ijegeo.1091852

Abstract

References

  • Anspach, J.H., (1996). "Subsurface Utility Engineering: Utility Detection Methods and Applications", Society of Exploration Geophysicists, 443-449. https://doi.org/10.4133/1.2922301
  • Blindow, N., Eisenburger, D., Illich, B., Petzold, H., and Richter, T. (2007). Ground penetrating radar. In Environmental Geology (pp. 283-335). Springer, Berlin, Heidelberg.
  • Costello, S., Chapman, D., Rogers, C. & Metje, N., (2007). "Underground Asset Location and Condition Assessment Technologies", Tunnelling and Underground Space Technology, 22: 524-542. https://doi.org/10.1016/j.tust.2007.06.001
  • Daniels, J.J., (1989). "Fundamentals of ground penetrating radar": Society of Exploration Geophysicists, 62-142.
  • Chow, T. and Rees, H., (1989). "Identification of subsurface drain locations with ground-penetrating radar", Canadian Journal of Soil Science, 69: 223-234. https://doi.org/10.4141/cjss89-023
  • Conyers, L. B., & Goodman, D. (1997). Ground-penetrating radar: an introduction for archaeologists. AltaMira press.
  • Goodman, D. and Piro, S., (2013). GPR remote sensing in archaeology: Springer.
  • Golden Software, (2015). Voxler4 Ouick Start Guide, Colorado, USA.
  • GPR, (2017). https://lostclipper.files.wordpress.com/2017/12/gpr-cart.jpg. [Accessed 10~February 2020]
  • Kurt, B.B., Kadıoğlu, S. & Ekincioğlu, E.E., (2009). "Yer radarı yöntemi ile gömülü boruların konum, büyüklük ve fiziksel özellikleri ile belirlenmesi", Yerbilimleri/Hacettepe Üniversitesi Yerbilimleri Uygulama ve Araştırma Merkezi Dergisi, 30: 45-57.
  • Leckebusch, J., (2003). "Ground‐penetrating radar: a modern three‐dimensional prospection method", Archaeological Prospection, 10: 213-240. https://doi.org/10.1002/arp.211
  • Jeng, Y. and Chen, C. S. (2012). Subsurface GPR imaging of a potential collapse area in urban environments. Engineering Geology, 147, 57-67. https://doi.org/10.1016/j.enggeo.2012.07.009
  • Jol, H.M., (2008). Ground penetrating radar theory and applications, Elsevier, U.K.
  • Metwaly, M., (2015). "Application of GPR technique for subsurface utility mapping: A case study from urban area of Holy Mecca, Saudi Arabia", Measurement, 60: 139-145. https://doi.org/10.1016/j.measurement.2014.09.064
  • Öztürk, C., (2011). Yeraltına Nüfuz Eden Radar (Yner) Modellemesinde Işın İzleme Ve Fdtd Yöntemlerinin Karşılaştırılması, Doktora Tezi . Dokuz Eylül Üniversitesi.
  • Prego, F. J., Solla, M., Puente, I., and Arias, P., 2017. Efficient GPR data acquisition to detect underground pipes. NDT and E International, 91, 22-31. https://doi.org/10.1016/j.ndteint.2017.06.002
  • Ristic, A. V., Petrovacki, D., and Govedarica, M., 2009. A new method to simultaneously estimate the radius of a cylindrical object and the wave propagation velocity from GPR data. Computers and Geosciences, 35(8), 1620-1630. https://doi.org/10.1016/j.cageo.2009.01.003
  • Šarlah, N., Podobnikar, T., Ambrožič, T., & Mušič, B. (2020). Application of Kinematic GPR-TPS Model with High 3D Georeference Accuracy for Underground Utility Infrastructure Mapping: A Case Study from Urban Sites in Celje, Slovenia. Remote Sensing, 12(8), 1228.
  • Tzanis, A., 2010. matGPR Release 2: A freeware MATLAB® package for the analysis and interpretation of common and single offset GPR data. FastTimes, 15 (1), 17 – 43.
  • URL1. Uçar S. Türkiye’de Kazı Kaynaklı Doğal Gaz Boru Hattı Hasarları, Etkin Müdahale Usulleri, Kazı Hasarlarının Önemli Ölçüde Azaltılamsı İçin Öneriler ve İnovatif Sistem Örneği (In Turkish). http://www.gazmer.com.tr/dokumanlar/1566889107-d.pdf. Last Accessed Date: 05 October 2021.
  • URL2.Sensors&Software. https://www.sensoft.ca/blog/what-is-gpr/. Last Accessed Date: 05 October 2021.

The Detection of the Buried Pipes Using GPR in Utility Works: A Case Study

Year 2022, Volume: 9 Issue: 4, 124 - 137, 25.12.2022
https://doi.org/10.30897/ijegeo.1091852

Abstract

The increasing population and accordingly the new settlement ultimately need for the utility. Location and attribute information of utilities significantly affect the maintenance, repair and construction of utilities. The lack of such information causes accidents resulting in material and moral damages in utility excavations ‘especially in the city’. The lack of information on utility works in our country raises problems such as damage to another utility during the work, being unable to complete the work on time, affecting vehicle and pedestrian traffic. This study has focused on the detectability of utilities with unknown location and attribute (diameter) using a ground penetrating radar (GPR) based on simulation model and field surveys. An antenna frequency of 300 MHz was chosen in both applications. The analysis of the data obtained from the simulation model revealed positive results in terms of the usability of the GPR for the determination of location and attributes in utility works. Furthermore, the results of the field studies demonstrated that if the dielectric constants of a utility element and of its location are close, data on the utility cannot be obtained; if the trench base is narrow, it gives a hyperbola reflection like pipeline; and if it is not analyzed carefully, this pseudo- reflection may lead to mistakes. The field study shows that if there are no continuous hyperbola reflections on consecutive radargrams, the possibility that the reflection may not be due to pipeline should be considered.

References

  • Anspach, J.H., (1996). "Subsurface Utility Engineering: Utility Detection Methods and Applications", Society of Exploration Geophysicists, 443-449. https://doi.org/10.4133/1.2922301
  • Blindow, N., Eisenburger, D., Illich, B., Petzold, H., and Richter, T. (2007). Ground penetrating radar. In Environmental Geology (pp. 283-335). Springer, Berlin, Heidelberg.
  • Costello, S., Chapman, D., Rogers, C. & Metje, N., (2007). "Underground Asset Location and Condition Assessment Technologies", Tunnelling and Underground Space Technology, 22: 524-542. https://doi.org/10.1016/j.tust.2007.06.001
  • Daniels, J.J., (1989). "Fundamentals of ground penetrating radar": Society of Exploration Geophysicists, 62-142.
  • Chow, T. and Rees, H., (1989). "Identification of subsurface drain locations with ground-penetrating radar", Canadian Journal of Soil Science, 69: 223-234. https://doi.org/10.4141/cjss89-023
  • Conyers, L. B., & Goodman, D. (1997). Ground-penetrating radar: an introduction for archaeologists. AltaMira press.
  • Goodman, D. and Piro, S., (2013). GPR remote sensing in archaeology: Springer.
  • Golden Software, (2015). Voxler4 Ouick Start Guide, Colorado, USA.
  • GPR, (2017). https://lostclipper.files.wordpress.com/2017/12/gpr-cart.jpg. [Accessed 10~February 2020]
  • Kurt, B.B., Kadıoğlu, S. & Ekincioğlu, E.E., (2009). "Yer radarı yöntemi ile gömülü boruların konum, büyüklük ve fiziksel özellikleri ile belirlenmesi", Yerbilimleri/Hacettepe Üniversitesi Yerbilimleri Uygulama ve Araştırma Merkezi Dergisi, 30: 45-57.
  • Leckebusch, J., (2003). "Ground‐penetrating radar: a modern three‐dimensional prospection method", Archaeological Prospection, 10: 213-240. https://doi.org/10.1002/arp.211
  • Jeng, Y. and Chen, C. S. (2012). Subsurface GPR imaging of a potential collapse area in urban environments. Engineering Geology, 147, 57-67. https://doi.org/10.1016/j.enggeo.2012.07.009
  • Jol, H.M., (2008). Ground penetrating radar theory and applications, Elsevier, U.K.
  • Metwaly, M., (2015). "Application of GPR technique for subsurface utility mapping: A case study from urban area of Holy Mecca, Saudi Arabia", Measurement, 60: 139-145. https://doi.org/10.1016/j.measurement.2014.09.064
  • Öztürk, C., (2011). Yeraltına Nüfuz Eden Radar (Yner) Modellemesinde Işın İzleme Ve Fdtd Yöntemlerinin Karşılaştırılması, Doktora Tezi . Dokuz Eylül Üniversitesi.
  • Prego, F. J., Solla, M., Puente, I., and Arias, P., 2017. Efficient GPR data acquisition to detect underground pipes. NDT and E International, 91, 22-31. https://doi.org/10.1016/j.ndteint.2017.06.002
  • Ristic, A. V., Petrovacki, D., and Govedarica, M., 2009. A new method to simultaneously estimate the radius of a cylindrical object and the wave propagation velocity from GPR data. Computers and Geosciences, 35(8), 1620-1630. https://doi.org/10.1016/j.cageo.2009.01.003
  • Šarlah, N., Podobnikar, T., Ambrožič, T., & Mušič, B. (2020). Application of Kinematic GPR-TPS Model with High 3D Georeference Accuracy for Underground Utility Infrastructure Mapping: A Case Study from Urban Sites in Celje, Slovenia. Remote Sensing, 12(8), 1228.
  • Tzanis, A., 2010. matGPR Release 2: A freeware MATLAB® package for the analysis and interpretation of common and single offset GPR data. FastTimes, 15 (1), 17 – 43.
  • URL1. Uçar S. Türkiye’de Kazı Kaynaklı Doğal Gaz Boru Hattı Hasarları, Etkin Müdahale Usulleri, Kazı Hasarlarının Önemli Ölçüde Azaltılamsı İçin Öneriler ve İnovatif Sistem Örneği (In Turkish). http://www.gazmer.com.tr/dokumanlar/1566889107-d.pdf. Last Accessed Date: 05 October 2021.
  • URL2.Sensors&Software. https://www.sensoft.ca/blog/what-is-gpr/. Last Accessed Date: 05 October 2021.
There are 21 citations in total.

Details

Primary Language English
Subjects Engineering
Journal Section Research Articles
Authors

Yalçın Yılmaz 0000-0003-3195-2533

Arzu Soycan This is me 0000-0002-9221-887X

Publication Date December 25, 2022
Published in Issue Year 2022 Volume: 9 Issue: 4

Cite

APA Yılmaz, Y., & Soycan, A. (2022). The Detection of the Buried Pipes Using GPR in Utility Works: A Case Study. International Journal of Environment and Geoinformatics, 9(4), 124-137. https://doi.org/10.30897/ijegeo.1091852