Research Article
BibTex RIS Cite
Year 2024, Volume: 11 Issue: 3, 60 - 68, 28.09.2024
https://doi.org/10.30897/ijegeo.1467716

Abstract

Project Number

Yalova University, BAP (Scientific Research Project) Project No: 2023/YL/0007

References

  • Aksoy, Ö., Alyamaç, E., Mocan, M., Sütçü, M., Özveren-Uçar, N., Seydibeyoğlu, M. Ö. (2022). Characterization of perlite powders from Izmir, Türkiye region. Physicochemical Problems of Mineral Processing, 58(6), 155277.
  • Almazrouei, M., Adeyemi, I., Janajreh, I. (2022). Thermogravimetric assessment of the thermal degradation during combustion of crude and pure glycerol. Biomass Conversion and Biorefinery, 12(10), 4403-4417.
  • Almazrouei, M., Samad, T. El, Janajreh, I. (2017). Thermogravimetric Kinetics and High Fidelity Analysis of Crude Glycerol. Energy Procedia, 142, 1699-1705.
  • Al-Mulla, E. A. J., Yunus, W. M. Z. W., Ibrahim, N. A. B., Rahman, M. Z. A. (2010). Properties of epoxidized palm oil plasticized polytlactic acid. Journal of Materials Science, 45(7), 1942-1946.
  • Arrieta, M. P. (2021). Influence of plasticizers on the compostability of polylactic acid. Journal of Applied Research in Technology Engineering, 2(1), 1-9.
  • Carpintero, M., Marcet, I., Rendueles, M., Díaz, M. (2022). Egg Yolk Oil as a Plasticizer for Polylactic Acid Films. Membranes, 12(1), 46.
  • Cetin, M. S., Aydogdu, R. B., Toprakci, O., Karahan Toprakci, H. A. (2022). Sustainable, Tree-Free, PLA Coated, Biodegradable, Barrier Papers from Kendir (Turkish Hemp). Journal of Natural Fibers, 19(16), 13802–13814.
  • Chen, P., Zhou, H., Liu, W., Zhang, M., Du, Z., Wang, X. (2015). The synergistic effect of zinc oxide and phenylphosphonic acid zinc salt on the crystallization behavior of poly (lactic acid). Polymer Degradation and Stability, 122, 25-35.
  • Chieng, B. W., Ibrahim, N. A., Then, Y. Y., Loo, Y. Y. (2014). Epoxidized vegetable oils plasticized poly(lactic acid) biocomposites: Mechanical, thermal and morphology properties. Molecules, 19(10), 16024-16038.
  • Chieng, B. W., Ibrahim, N. A., Yunus, W. M. Z. W., Hussein, M. Z. (2014). Poly(lactic acid)/poly(ethylene glycol) polymer nanocomposites: Effects of graphene nanoplatelets. Polymers, 6(1), 93-104.
  • Di Lorenzo, M. L., Androsch, R. (2019). Influence of α′-/α-crystal polymorphism on properties of poly(l-lactic acid). Polymer International, 68(3), 320-334.
  • Doǧan, M., Alkan, M. (2004). Some physicochemical properties of perlite as an adsorbent. Fresenius Environmental Bulletin, 13(3B), 251-257.
  • Dou, B., Dupont, V., Williams, P. T., Chen, H., Ding, Y. (2009). Thermogravimetric kinetics of crude glycerol. Bioresource Technology, 100(9), 2613-2620.
  • Eğri, Ö. (2019). Use of microperlite in direct polymerization of lactic acid. International Journal of Polymer Analysis and Characterization, 24(2), 142-149.
  • Ekiz, I., Cetin, M. S., Toprakci, O., Toprakci, H. A. K. (2022). Effects of S/EB ratio on some properties of PLA/SEBS blends. Bulletin of Materials Science, 45(4), 251.
  • Ferri, J. M., Garcia-Garcia, D., Montanes, N., Fenollar, O., Balart, R. (2017). The effect of maleinized linseed oil as biobased plasticizer in poly(lactic acid)-based formulations. Polymer International, 66(6), 882–891.
  • Fortunati, E., Armentano, I., Zhou, Q., Puglia, D., Terenzi, A., Berglund, L. A., Kenny, J. M. (2012). Microstructure and nonisothermal cold crystallization of PLA composites based on silver nanoparticles and nanocrystalline cellulose. Polymer Degradation and Stability, 97(10), 2027-2036.
  • Grigale, Z., Kalnins, M., Dzene, A., Tupureina, V. (2010). Biodegradable Plasticized Poly(lactic acid) Films. Scientific Journal of Riga Technical University Material Science and Applied Chemistry, 21, 97–103.
  • Gumus, S., Ozkoc, G., Aytac, A. (2012a). Plasticized and unplasticized PLA/organoclay nanocomposites: Short- and long-term thermal properties, morphology, and nonisothermal crystallization behavior. Journal of Applied Polymer Science, 123(5), 2837–2848.
  • Gumus, S., Ozkoc, G., Aytac, A. (2012b). Plasticized and unplasticized PLA/organoclay nanocomposites: Short- and long-term thermal properties, morphology, and nonisothermal crystallization behavior. Journal of Applied Polymer Science, 123(5), 2837-2848.
  • Halász, K., Csóka, L. (2013). Plasticized Biodegradable Poly(lactic acid) Based Composites Containing Cellulose in Micro- and Nanosize. Journal of Engineering (United Kingdom), 2013, 329379.
  • Halloran, M. W., Danielczak, L., Nicell, J. A., Leask, R. L., Marić, M. (2022). Highly Flexible Polylactide Food Packaging Plasticized with Nontoxic, Biosourced Glycerol Plasticizers. ACS Applied Polymer Materials, 4(5), 3608-3617.
  • Immergut, E. H., Mark, H. F. (1965). Principles of Plasticization. Advances in Chemistry, 48, 1-29 Jacobsen, S., Fritz, H. G. (1999). Plasticizing polylactide - the effect of different plasticizers on the mechanical properties. Polymer Engineering and Science, 39(7), 1303.
  • Jing, Q., Fang, L., Liu, H., Liu, P. (2011). Preparation of surface-vitrified micron sphere using perlite from Xinyang, China. Applied Clay Science, 53(4), 745-748.
  • Kabra, S., Katara, S., Rani, A. (2013). Characterization and Study of Turkish Perlite. International Journal of Innovative Research in Science, Engineering and Technology, 2(9), 4319-4326.
  • Kantee, J., Kajorncheappunngam, S. (2017). Properties of plasticized polylactic acid films with epoxidized rubber seed oil. Chiang Mai Journal of Science, 44(4), 1591-1600.
  • Kaufhold, S., Reese, A., Schwiebacher, W., Dohrmann, R., Grathoff, G. H., Warr, L. N., Halisch, M., Müller, C., Schwarz-Schampera, U., Ufer, K. (2014). Porosity and distribution of water in perlite from the island of Milos, Greece. Journal of the Korean Physical Society, 3(1), 598.
  • Li, D., Jiang, Y., Lv, S., Liu, X., Gu, J., Chen, Q., Zhang, Y. (2018). Preparation of plasticized poly (lactic acid) and its influence on the properties of composite materials. PLoS ONE, 13(3), 1-15.
  • Li, H., Huneault, M. A. (2007). Effect of nucleation and plasticization on the crystallization of poly(lactic acid). Polymer, 48(23), 6855-6866.
  • Ljungberg, N., Wesslén, B. (2005). Preparation and properties of plasticized poly(lactic acid) films. Biomacromolecules, 6(3), 1789-1796.
  • Maiza, M. ’Benaniba, M. T. ’Quintard, G. ’Massardier-N. V. (2015). Biobased additive plasticizing Polylactic acid (PLA). . Polimeros , 25, 581–590.
  • Maizatul, N., Norazowa, I., Yunus, W. M. Z. W., Khalina, A., Khalisanni, K. (2013). FTIR and TGA analysis of biodegradable poly(lactic acid)/treated kenaf bast fibre: Effect of plasticizers. Pertanika Journal of Science and Technology, 21(1), 151-160.
  • Martino, V. P., Jiménez, A., Ruseckaite, R. A. (2009). Processing and characterization of poly(lactic acid) films plasticized with commercial adipates. Journal of Applied Polymer Science, 112(4), 2010-2018.
  • Maxim, L. D., Niebo, R., Mcconnell, E. E. (2014). Perlite toxicology and epidemiology - A review. Inhalation Toxicology, 26(5), 259-270.
  • Mousa, N., Galiwango, E., Haris, S., Al‐marzouqi, A. H., Abu‐jdayil, B., Caires, Y. L. (2022). A New Green Composite Based on Plasticized Polylactic Acid Mixed with Date Palm Waste for Single‐Use Plastics Applications. Polymers, 14(3), 574.
  • Muller, J., González-Martínez, C., Chiralt, A. (2017). Poly(lactic) acid (PLA) and starch bilayer films, containing cinnamaldehyde, obtained by compression moulding. European Polymer Journal, 95, 56–70.
  • Papageorgiou, G. Z., Terzopoulou, Z., Bikiaris, D., Triantafyllidis, K. S., Diamanti, E., Gournis, D., Klonos, P., Giannoulidis, E., Pissis, P. (2014). Evaluation of the formed interface in biodegradable poly(l-lactic acid)/graphene oxide nanocomposites and the effect of nanofillers on mechanical and thermal properties. Thermochimica Acta, 597, 48-57.
  • Pop, M. A., Croitoru, C., Bedő, T., Geaman, V., Radomir, I., Coșnița, M., Zaharia, S. M., Chicoș, L. A., Miloșan, I. (2019). Structural changes during 3D printing of bioderived and synthetic thermoplastic materials. Journal of Applied Polymer Science, 136(17), 47382.
  • Sears, J. K. and D. J. R. (1982). The Technology of plasticizers. Journal of Polymer Science: Polymer Letters Edition, 20(8), 459.
  • Sodeyama, K., Sakka, Y., Kamino, Y., Seki, H. (1999). Preparation of fine expanded perlite. Journal of Materials Science, 34(10), 2461-2468.
  • Su, Z., Liu, Y., Guo, W., Li, Q., Wu, C. (2009). Crystallization behavior of poly(lactic acid) filled with modified carbon black. Journal of Macromolecular Science, Part B: Physics, 48(4), 670-683.
  • Szostak, R., Thomas, T. L. (1986). Reassessment of zeolite and molecular sieve framework infrared vibrations. Journal of Catalysis, 101(2), 549-552.
  • Tarani, E., Pušnik Črešnar, K., Zemljič, L. F., Chrissafis, K., Papageorgiou, G. Z., Lambropoulou, D., Zamboulis, A., Bikiaris, D. N., Terzopoulou, Z. (2021). Cold crystallization kinetics and thermal degradation of pla composites with metal oxide nanofillers. Applied Sciences (Switzerland), 11(7), 3004.
  • Tian, H., Tagaya, H. (2007). Preparation, characterization and mechanical properties of the polylactide/perlite and the polylactide/montmorillonite composites. Journal of Materials Science, 42(9), 3244-3250.
  • Velghe, I., Buffel, B., Vandeginste, V., Thielemans, W., Desplentere, F. (2023). Review on the Degradation of Poly(lactic acid) during Melt Processing. Polymers, 15(9), 2047.
  • Wypych, A. (2017). Databook of Plasticizers. Toronto: ChemTec Publishing.
  • Wypych, G. (2017). Handbook of plasticisers. Toronto: ChemTec Publishing.
  • Xu, Y. Q., Qu, J. P. (2009). Mechanical and rheological properties of epoxidized soybean oil plasticized poly(lactic acid). Journal of Applied Polymer Science, 112(6), 3185-3191.
  • YousefniaPasha, H., Mohtasebi, S. S., Tabatabaeekoloor, R., Taherimehr, M., Javadi, A., Soltani Firouz, M. (2021). Preparation and characterization of the plasticized polylactic acid films produced by the solvent-casting method for food packaging applications. Journal of Food Processing and Preservation, 45(12), e16089.
  • Yuan, Y., Hu, Z., Fu, X., Jiang, L., Xiao, Y., Hu, K., Yan, P., Lei, J. (2016). Poly(lactic acid) plasticized by biodegradable glyceryl lactate. Journal of Applied Polymer Science, 133(21), 43460.
  • Zhai, W., Ko, Y., Zhu, W., Wong, A., Park, C. B. (2009). A study of the crystallization, melting, and foaming behaviors of polylactic acid in compressed CO2. International Journal of Molecular Sciences, 10(12), 5381-5397.

Sustainable Biopolymer Composites From Perlite, Plasticized and Unplasticized Poly(Lactic Acid)

Year 2024, Volume: 11 Issue: 3, 60 - 68, 28.09.2024
https://doi.org/10.30897/ijegeo.1467716

Abstract

In recent years, ecological pollution has reached critical levels and that has been experienced as climate change by all living organisms. Slowing down the negative effects of climate change depends on changing our consumption behavior. Based on that, people tend to prefer more environmentally friendly, sustainable raw materials, products and processes. Since polymers are one of the most widely used raw materials in the world, any improvement regarding their recycling or biodegradation process can significantly reduce the damage to nature. Considering this fact, manufacturers are taking initiatives to develop such products in line with the demand from consumers. As known, Poly(lactic acid) (PLA), one of the most consumed biodegradable polymers in the market, however there are various problems especially in film production due to its rigid structure. Plasticization is the easiest route to minimize this disadvantage. The aim of this study is to produce and characterize PLA composites with increased flexibility by using sustainable natural materials. In this context, glycerol-plasticized PLA and unplasticized PLA composites were prepared using perlite, a natural additive, and their morphological, thermal, and mechanical properties were investigated.

Ethical Statement

We declare that our study do not require ethical committee permission.

Supporting Institution

Yalova University, BAP (Scientific Research Project)

Project Number

Yalova University, BAP (Scientific Research Project) Project No: 2023/YL/0007

Thanks

This project was funded by Yalova University, BAP (Scientific Research Project) Project No and Title: 2023/YL/0007, Preparation and Characterization of Perlite Filled Poly(lactide acid) Composites.

References

  • Aksoy, Ö., Alyamaç, E., Mocan, M., Sütçü, M., Özveren-Uçar, N., Seydibeyoğlu, M. Ö. (2022). Characterization of perlite powders from Izmir, Türkiye region. Physicochemical Problems of Mineral Processing, 58(6), 155277.
  • Almazrouei, M., Adeyemi, I., Janajreh, I. (2022). Thermogravimetric assessment of the thermal degradation during combustion of crude and pure glycerol. Biomass Conversion and Biorefinery, 12(10), 4403-4417.
  • Almazrouei, M., Samad, T. El, Janajreh, I. (2017). Thermogravimetric Kinetics and High Fidelity Analysis of Crude Glycerol. Energy Procedia, 142, 1699-1705.
  • Al-Mulla, E. A. J., Yunus, W. M. Z. W., Ibrahim, N. A. B., Rahman, M. Z. A. (2010). Properties of epoxidized palm oil plasticized polytlactic acid. Journal of Materials Science, 45(7), 1942-1946.
  • Arrieta, M. P. (2021). Influence of plasticizers on the compostability of polylactic acid. Journal of Applied Research in Technology Engineering, 2(1), 1-9.
  • Carpintero, M., Marcet, I., Rendueles, M., Díaz, M. (2022). Egg Yolk Oil as a Plasticizer for Polylactic Acid Films. Membranes, 12(1), 46.
  • Cetin, M. S., Aydogdu, R. B., Toprakci, O., Karahan Toprakci, H. A. (2022). Sustainable, Tree-Free, PLA Coated, Biodegradable, Barrier Papers from Kendir (Turkish Hemp). Journal of Natural Fibers, 19(16), 13802–13814.
  • Chen, P., Zhou, H., Liu, W., Zhang, M., Du, Z., Wang, X. (2015). The synergistic effect of zinc oxide and phenylphosphonic acid zinc salt on the crystallization behavior of poly (lactic acid). Polymer Degradation and Stability, 122, 25-35.
  • Chieng, B. W., Ibrahim, N. A., Then, Y. Y., Loo, Y. Y. (2014). Epoxidized vegetable oils plasticized poly(lactic acid) biocomposites: Mechanical, thermal and morphology properties. Molecules, 19(10), 16024-16038.
  • Chieng, B. W., Ibrahim, N. A., Yunus, W. M. Z. W., Hussein, M. Z. (2014). Poly(lactic acid)/poly(ethylene glycol) polymer nanocomposites: Effects of graphene nanoplatelets. Polymers, 6(1), 93-104.
  • Di Lorenzo, M. L., Androsch, R. (2019). Influence of α′-/α-crystal polymorphism on properties of poly(l-lactic acid). Polymer International, 68(3), 320-334.
  • Doǧan, M., Alkan, M. (2004). Some physicochemical properties of perlite as an adsorbent. Fresenius Environmental Bulletin, 13(3B), 251-257.
  • Dou, B., Dupont, V., Williams, P. T., Chen, H., Ding, Y. (2009). Thermogravimetric kinetics of crude glycerol. Bioresource Technology, 100(9), 2613-2620.
  • Eğri, Ö. (2019). Use of microperlite in direct polymerization of lactic acid. International Journal of Polymer Analysis and Characterization, 24(2), 142-149.
  • Ekiz, I., Cetin, M. S., Toprakci, O., Toprakci, H. A. K. (2022). Effects of S/EB ratio on some properties of PLA/SEBS blends. Bulletin of Materials Science, 45(4), 251.
  • Ferri, J. M., Garcia-Garcia, D., Montanes, N., Fenollar, O., Balart, R. (2017). The effect of maleinized linseed oil as biobased plasticizer in poly(lactic acid)-based formulations. Polymer International, 66(6), 882–891.
  • Fortunati, E., Armentano, I., Zhou, Q., Puglia, D., Terenzi, A., Berglund, L. A., Kenny, J. M. (2012). Microstructure and nonisothermal cold crystallization of PLA composites based on silver nanoparticles and nanocrystalline cellulose. Polymer Degradation and Stability, 97(10), 2027-2036.
  • Grigale, Z., Kalnins, M., Dzene, A., Tupureina, V. (2010). Biodegradable Plasticized Poly(lactic acid) Films. Scientific Journal of Riga Technical University Material Science and Applied Chemistry, 21, 97–103.
  • Gumus, S., Ozkoc, G., Aytac, A. (2012a). Plasticized and unplasticized PLA/organoclay nanocomposites: Short- and long-term thermal properties, morphology, and nonisothermal crystallization behavior. Journal of Applied Polymer Science, 123(5), 2837–2848.
  • Gumus, S., Ozkoc, G., Aytac, A. (2012b). Plasticized and unplasticized PLA/organoclay nanocomposites: Short- and long-term thermal properties, morphology, and nonisothermal crystallization behavior. Journal of Applied Polymer Science, 123(5), 2837-2848.
  • Halász, K., Csóka, L. (2013). Plasticized Biodegradable Poly(lactic acid) Based Composites Containing Cellulose in Micro- and Nanosize. Journal of Engineering (United Kingdom), 2013, 329379.
  • Halloran, M. W., Danielczak, L., Nicell, J. A., Leask, R. L., Marić, M. (2022). Highly Flexible Polylactide Food Packaging Plasticized with Nontoxic, Biosourced Glycerol Plasticizers. ACS Applied Polymer Materials, 4(5), 3608-3617.
  • Immergut, E. H., Mark, H. F. (1965). Principles of Plasticization. Advances in Chemistry, 48, 1-29 Jacobsen, S., Fritz, H. G. (1999). Plasticizing polylactide - the effect of different plasticizers on the mechanical properties. Polymer Engineering and Science, 39(7), 1303.
  • Jing, Q., Fang, L., Liu, H., Liu, P. (2011). Preparation of surface-vitrified micron sphere using perlite from Xinyang, China. Applied Clay Science, 53(4), 745-748.
  • Kabra, S., Katara, S., Rani, A. (2013). Characterization and Study of Turkish Perlite. International Journal of Innovative Research in Science, Engineering and Technology, 2(9), 4319-4326.
  • Kantee, J., Kajorncheappunngam, S. (2017). Properties of plasticized polylactic acid films with epoxidized rubber seed oil. Chiang Mai Journal of Science, 44(4), 1591-1600.
  • Kaufhold, S., Reese, A., Schwiebacher, W., Dohrmann, R., Grathoff, G. H., Warr, L. N., Halisch, M., Müller, C., Schwarz-Schampera, U., Ufer, K. (2014). Porosity and distribution of water in perlite from the island of Milos, Greece. Journal of the Korean Physical Society, 3(1), 598.
  • Li, D., Jiang, Y., Lv, S., Liu, X., Gu, J., Chen, Q., Zhang, Y. (2018). Preparation of plasticized poly (lactic acid) and its influence on the properties of composite materials. PLoS ONE, 13(3), 1-15.
  • Li, H., Huneault, M. A. (2007). Effect of nucleation and plasticization on the crystallization of poly(lactic acid). Polymer, 48(23), 6855-6866.
  • Ljungberg, N., Wesslén, B. (2005). Preparation and properties of plasticized poly(lactic acid) films. Biomacromolecules, 6(3), 1789-1796.
  • Maiza, M. ’Benaniba, M. T. ’Quintard, G. ’Massardier-N. V. (2015). Biobased additive plasticizing Polylactic acid (PLA). . Polimeros , 25, 581–590.
  • Maizatul, N., Norazowa, I., Yunus, W. M. Z. W., Khalina, A., Khalisanni, K. (2013). FTIR and TGA analysis of biodegradable poly(lactic acid)/treated kenaf bast fibre: Effect of plasticizers. Pertanika Journal of Science and Technology, 21(1), 151-160.
  • Martino, V. P., Jiménez, A., Ruseckaite, R. A. (2009). Processing and characterization of poly(lactic acid) films plasticized with commercial adipates. Journal of Applied Polymer Science, 112(4), 2010-2018.
  • Maxim, L. D., Niebo, R., Mcconnell, E. E. (2014). Perlite toxicology and epidemiology - A review. Inhalation Toxicology, 26(5), 259-270.
  • Mousa, N., Galiwango, E., Haris, S., Al‐marzouqi, A. H., Abu‐jdayil, B., Caires, Y. L. (2022). A New Green Composite Based on Plasticized Polylactic Acid Mixed with Date Palm Waste for Single‐Use Plastics Applications. Polymers, 14(3), 574.
  • Muller, J., González-Martínez, C., Chiralt, A. (2017). Poly(lactic) acid (PLA) and starch bilayer films, containing cinnamaldehyde, obtained by compression moulding. European Polymer Journal, 95, 56–70.
  • Papageorgiou, G. Z., Terzopoulou, Z., Bikiaris, D., Triantafyllidis, K. S., Diamanti, E., Gournis, D., Klonos, P., Giannoulidis, E., Pissis, P. (2014). Evaluation of the formed interface in biodegradable poly(l-lactic acid)/graphene oxide nanocomposites and the effect of nanofillers on mechanical and thermal properties. Thermochimica Acta, 597, 48-57.
  • Pop, M. A., Croitoru, C., Bedő, T., Geaman, V., Radomir, I., Coșnița, M., Zaharia, S. M., Chicoș, L. A., Miloșan, I. (2019). Structural changes during 3D printing of bioderived and synthetic thermoplastic materials. Journal of Applied Polymer Science, 136(17), 47382.
  • Sears, J. K. and D. J. R. (1982). The Technology of plasticizers. Journal of Polymer Science: Polymer Letters Edition, 20(8), 459.
  • Sodeyama, K., Sakka, Y., Kamino, Y., Seki, H. (1999). Preparation of fine expanded perlite. Journal of Materials Science, 34(10), 2461-2468.
  • Su, Z., Liu, Y., Guo, W., Li, Q., Wu, C. (2009). Crystallization behavior of poly(lactic acid) filled with modified carbon black. Journal of Macromolecular Science, Part B: Physics, 48(4), 670-683.
  • Szostak, R., Thomas, T. L. (1986). Reassessment of zeolite and molecular sieve framework infrared vibrations. Journal of Catalysis, 101(2), 549-552.
  • Tarani, E., Pušnik Črešnar, K., Zemljič, L. F., Chrissafis, K., Papageorgiou, G. Z., Lambropoulou, D., Zamboulis, A., Bikiaris, D. N., Terzopoulou, Z. (2021). Cold crystallization kinetics and thermal degradation of pla composites with metal oxide nanofillers. Applied Sciences (Switzerland), 11(7), 3004.
  • Tian, H., Tagaya, H. (2007). Preparation, characterization and mechanical properties of the polylactide/perlite and the polylactide/montmorillonite composites. Journal of Materials Science, 42(9), 3244-3250.
  • Velghe, I., Buffel, B., Vandeginste, V., Thielemans, W., Desplentere, F. (2023). Review on the Degradation of Poly(lactic acid) during Melt Processing. Polymers, 15(9), 2047.
  • Wypych, A. (2017). Databook of Plasticizers. Toronto: ChemTec Publishing.
  • Wypych, G. (2017). Handbook of plasticisers. Toronto: ChemTec Publishing.
  • Xu, Y. Q., Qu, J. P. (2009). Mechanical and rheological properties of epoxidized soybean oil plasticized poly(lactic acid). Journal of Applied Polymer Science, 112(6), 3185-3191.
  • YousefniaPasha, H., Mohtasebi, S. S., Tabatabaeekoloor, R., Taherimehr, M., Javadi, A., Soltani Firouz, M. (2021). Preparation and characterization of the plasticized polylactic acid films produced by the solvent-casting method for food packaging applications. Journal of Food Processing and Preservation, 45(12), e16089.
  • Yuan, Y., Hu, Z., Fu, X., Jiang, L., Xiao, Y., Hu, K., Yan, P., Lei, J. (2016). Poly(lactic acid) plasticized by biodegradable glyceryl lactate. Journal of Applied Polymer Science, 133(21), 43460.
  • Zhai, W., Ko, Y., Zhu, W., Wong, A., Park, C. B. (2009). A study of the crystallization, melting, and foaming behaviors of polylactic acid in compressed CO2. International Journal of Molecular Sciences, 10(12), 5381-5397.
There are 51 citations in total.

Details

Primary Language English
Subjects Geological Sciences and Engineering (Other)
Journal Section Research Articles
Authors

Hatice Aylin Karahan Toprakci 0000-0001-7078-9690

Deniz Yılmaz Savcı 0000-0002-6078-7509

Ozan Toprakçı 0000-0001-7944-4269

Project Number Yalova University, BAP (Scientific Research Project) Project No: 2023/YL/0007
Early Pub Date September 3, 2024
Publication Date September 28, 2024
Submission Date April 12, 2024
Acceptance Date September 3, 2024
Published in Issue Year 2024 Volume: 11 Issue: 3

Cite

APA Karahan Toprakci, H. A., Savcı, D. Y., & Toprakçı, O. (2024). Sustainable Biopolymer Composites From Perlite, Plasticized and Unplasticized Poly(Lactic Acid). International Journal of Environment and Geoinformatics, 11(3), 60-68. https://doi.org/10.30897/ijegeo.1467716