Research Article
BibTex RIS Cite

Prediction in Terrestrial and Aquatic Ecosystems Using Sentinel-2, Landsat 8, and MODIS Data: An Integrated Approach through Google Earth Engine

Year 2025, Volume: 12 Issue: 3, 251 - 262, 29.09.2025

Abstract

This study focuses on predicting drought conditions in terrestrial and aquatic ecosystems by leveraging data from Sentinel-2, Landsat 8, and MODIS satellites. Using the Google Earth Engine (GEE) platform, the study integrates these diverse satellite datasets to assess plant indices and drought indicators. The research covers the period from 2017 to 2023 and employs the Normalized Difference Vegetation Index (NDVI) and Vegetation Condition Index (VCI) derived from Sentinel-2 data to evaluate drought conditions. NDVI values are processed to calculate annual averages and VCI, while Landsat 8 and MODIS data are utilized to monitor larger areas and conduct long-term assessments. The data processing involves calculating the minimum and maximum NDVI values for VCI computation, which is then classified into various drought severity levels. Results are visualized through color maps and histograms, illustrating the spatial distribution of drought conditions. Additionally, a graph depicting annual average NDVI and VCI values highlights changes and trends over the study period. The findings indicate that combining Sentinel-2, Landsat 8, and MODIS data provides a robust method for drought prediction. The integration of these datasets within the Google Earth Engine framework demonstrates effective data processing and visualization capabilities. The study concludes that this comprehensive approach is valuable for monitoring and managing drought conditions in both terrestrial and aquatic ecosystems, offering insights into vegetation cover changes and drought trends.

References

  • Aksoy, H., Cetin, M., Eris, E., Burgan, H.I., Cavus, Y., Yildirim, I., Sivapalan, M. (2021). Critical drought intensity-duration-frequency curves based on total probability theorem-coupled frequency analysis. Hydrological Sciences Journal, 66, 1337–1358. https://doi.org/10.1080/02626667.2021.1934473
  • Cao, R., Xu, Z., Chen, Y., Chen, J., Shen, M. (2022). Reconstructing High-Spatiotemporal-Resolution (30 m and 8-Days) NDVI Time-Series Data for the Qinghai–Tibetan Plateau from 2000–2020. Remote Sensing, 14, 3648. https://doi.org/10.3390/rs14153648
  • Domenikiotis, C., Spiliotopoulos, M., Tsiros, E., Dalezios, N. (2004). Early cotton yield assessment by the use of the NOAA/AVHRR derived Vegetation Condition Index (VCI) in Greece. International Journal of Remote Sensing, 25, 2807–2819. https://doi.org/10.1080/01431160310001632729
  • Feng, S., Li, W., Xu, J., Liang, T., Ma, X., Wang, W., Yu, H. (2022). Land Use/Land Cover Mapping Based on GEE for the Monitoring of Changes in Ecosystem Types in the Upper Yellow River Basin over the Tibetan Plateau. Remote Sensing, 14, 5361. https://doi.org/10.3390/rs14215361
  • Ghorbanian, A., Mohammadzadeh, A., Jamali, S. (2022). Linear and Non-Linear Vegetation Trend Analysis throughout Iran Using Two Decades of MODIS NDVI Imagery. Remote Sensing, 14, 3683. https://doi.org/10.3390/rs14153683
  • Gu, Y., Brown, J.F., Verdin, J.P., Wardlow, B. (2007). A five-year analysis of MODIS NDVI and NDWI for grassland drought assessment over the central Great Plains of the United States. Geophysical Research Letters, 34. https://doi.org/10.1029/2006GL029127
  • Guo, Y., Xia, H., Pan, L., Zhao, X., Li, R., Bian, X., Wang, R., Yu, C. (2021). Development of a New Phenology Algorithm for Fine Mapping of Cropping Intensity in Complex Planting Areas Using Sentinel-2 and Google Earth Engine. ISPRS International Journal of Geo-Information, 10, 587. https://doi.org/10.3390/ijgi10090587
  • Huang, T., Wu, Z., Xiao, P., Sun, Z., Liu, Y., Wang, J., Wang, Z. (2023). Possible Future Climate Change Impacts on the Meteorological and Hydrological Drought Characteristics in the Jinghe River Basin, China. Remote Sensing, 15, 1297. https://doi.org/10.3390/rs15051297
  • Kogan, F.N. (1995). Droughts of the late 1980s in the United States as derived from NOAA polar-orbiting satellite data. Bulletin of the American Meteorological Society, 76, 655–668. https://doi.org/10.1175/1520-0477(1995)076<0655:DOTLIT>2.0.CO;2
  • Kuri, F., Murwira, A., Murwira, K.S., Masocha, M. (2014). Predicting maize yield in Zimbabwe using dry dekads derived from remotely sensed Vegetation Condition Index. International Journal of Applied Earth Observation and Geoinformation, 33, 39–46. https://doi.org/10.1016/j.jag.2014.04.021
  • Liu, L., Cao, R., Chen, J., Shen, M., Wang, S., Zhou, J., He, B. (2022). Detecting crop phenology from vegetation index time-series data by improved shape model fitting in each phenological stage. Remote Sensing of Environment, 277, 113060. https://doi.org/10.1016/j.rse.2022.113060
  • Liu, W., Kogan, F. (2002). Monitoring Brazilian soybean production using NOAA/AVHRR based vegetation condition indices. International Journal of Remote Sensing, 23, 1161–1179. https://doi.org/10.1080/01431160110076126
  • Lyle, G., Clarke, K., Kilpatrick, A., Summers, D.M., Ostendorf, B. (2023). Spatial and Temporal Evaluation of Broad-Scale Yield Predictions Created from Yield Mapping Technology and Landsat Satellite Imagery in the Australian Mediterranean Dryland Cropping Region. ISPRS International Journal of Geo-Information, 12, 50. https://doi.org/10.3390/ijgi12020050
  • Ma, Z., Dong, C., Lin, K., Yan, Y., Luo, J., Jiang, D., Chen, X. (2018). Global 250-m Downscaled NDVI Product from 1982 to 2018. Remote Sensing, 14, 3639. https://doi.org/10.3390/rs14153639
  • Mashhadi, N., Alganci, U. (2022). Evaluating BFASTMonitor Algorithm in Monitoring Deforestation Dynamics in Coniferous and Deciduous Forests with LANDSAT Time Series: A Case Study on Marmara Region, Turkey. ISPRS International Journal of Geo-Information, 11, 573. https://doi.org/10.3390/ijgi11110573
  • Mishra, A.K., Ines, A.V.M., Das, N.N., Prakash Khedun, C., Singh, V.P., Sivakumar, B., Hansen, J.W. (2015). Anatomy of a local-scale drought: application of assimilated remote sensing products, crops model, and statistical methods to an agricultural drought study. Journal of Hydrology, 526, 15–29. https://doi.org/10.1016/j.jhydrol.2014.10.038
  • Rhee, J., Im, J., Carbone, G.J. (2010). Monitoring agricultural drought for arid and humid regions using multi-sensor remote sensing data. Remote Sensing of Environment, 114, 2875–2887. https://doi.org/10.1016/j.rse.2010.07.005
  • Seiler, R., Kogan, F., Sullivan, J. (1998). AVHRR-based vegetation and temperature condition indices for drought detection in Argentina. Advances in Space Research, 21, 481–484. https://doi.org/10.1016/S0273-1177(97)00884-3
  • Shen, Y., Liu, X., Huang, Y. (2014). Impacts of crop rotation on vegetation condition index for species-level drought monitoring. In Proceedings of the Third International Conference on Agro-Geoinformatics (Agro-Geoinformatics 2014), Beijing, China, 11–14 August 2014, 1–5. DOI: 10.1109/Agro-Geoinformatics.2014.6910603
  • Singh, R.P., Roy, S., Kogan, F. (2003). Vegetation and temperature condition indices from NOAA AVHRR data for drought monitoring over India. International Journal of Remote Sensing, 24, 4393–4402. https://doi.org/10.1080/0143116031000084323
  • Wan, Z. (2001). NDVI anomaly patterns over Africa during the 1997/98 ENSO warm event. International Journal of Remote Sensing, 22.
  • Wang, J., Xiao, X., Liu, L., Wu, X., Qin, Y., Steiner, J.L., Dong, J. (2020). Mapping sugarcane plantation dynamics in Guangxi, China, by time series Sentinel-1, Sentinel-2 and Landsat images. Remote Sensing of Environment, 247, 111951. https://doi.org/10.1016/j.rse.2020.111951
  • Wu, J., Zhou, L., Liu, M., Zhang, J., Leng, S., Diao, C. (2013). Establishing and assessing the Integrated Surface Drought Index (ISDI) for agricultural drought monitoring in mid-eastern China. International Journal of Applied Earth Observation and Geoinformation, 23, 397–410. https://doi.org/10.1016/j.jag.2012.11.003
  • Xiong, S., Du, S., Zhang, X., Ouyang, S., Cui, W. (2022). Fusing Landsat-7, Landsat-8 and Sentinel-2 surface reflectance to generate dense time series images with 10m spatial resolution. International Journal of Remote Sensing, 43, 1630–1654. https://doi.org/10.1080/01431161.2022.2047240
  • Yang, K., Luo, Y., Li, M., Zhong, S., Liu, Q., Li, X. (2022). Reconstruction of Sentinel-2 Image Time Series Using Google Earth Engine. Remote Sensing, 14, 4395. https://doi.org/10.3390/rs14174395
  • Zambrano, F., Saavedra, M.L., Verbist, K., Lagos, O. (2016). Sixteen years of agricultural drought Assessment of the BioBio Region in Chile using a 250 m Resolution Vegetation Condition Index (VCI). Journal of Remote Sensing, 8(6), 530. https://doi.org/10.3390/rs8060530

Year 2025, Volume: 12 Issue: 3, 251 - 262, 29.09.2025

Abstract

References

  • Aksoy, H., Cetin, M., Eris, E., Burgan, H.I., Cavus, Y., Yildirim, I., Sivapalan, M. (2021). Critical drought intensity-duration-frequency curves based on total probability theorem-coupled frequency analysis. Hydrological Sciences Journal, 66, 1337–1358. https://doi.org/10.1080/02626667.2021.1934473
  • Cao, R., Xu, Z., Chen, Y., Chen, J., Shen, M. (2022). Reconstructing High-Spatiotemporal-Resolution (30 m and 8-Days) NDVI Time-Series Data for the Qinghai–Tibetan Plateau from 2000–2020. Remote Sensing, 14, 3648. https://doi.org/10.3390/rs14153648
  • Domenikiotis, C., Spiliotopoulos, M., Tsiros, E., Dalezios, N. (2004). Early cotton yield assessment by the use of the NOAA/AVHRR derived Vegetation Condition Index (VCI) in Greece. International Journal of Remote Sensing, 25, 2807–2819. https://doi.org/10.1080/01431160310001632729
  • Feng, S., Li, W., Xu, J., Liang, T., Ma, X., Wang, W., Yu, H. (2022). Land Use/Land Cover Mapping Based on GEE for the Monitoring of Changes in Ecosystem Types in the Upper Yellow River Basin over the Tibetan Plateau. Remote Sensing, 14, 5361. https://doi.org/10.3390/rs14215361
  • Ghorbanian, A., Mohammadzadeh, A., Jamali, S. (2022). Linear and Non-Linear Vegetation Trend Analysis throughout Iran Using Two Decades of MODIS NDVI Imagery. Remote Sensing, 14, 3683. https://doi.org/10.3390/rs14153683
  • Gu, Y., Brown, J.F., Verdin, J.P., Wardlow, B. (2007). A five-year analysis of MODIS NDVI and NDWI for grassland drought assessment over the central Great Plains of the United States. Geophysical Research Letters, 34. https://doi.org/10.1029/2006GL029127
  • Guo, Y., Xia, H., Pan, L., Zhao, X., Li, R., Bian, X., Wang, R., Yu, C. (2021). Development of a New Phenology Algorithm for Fine Mapping of Cropping Intensity in Complex Planting Areas Using Sentinel-2 and Google Earth Engine. ISPRS International Journal of Geo-Information, 10, 587. https://doi.org/10.3390/ijgi10090587
  • Huang, T., Wu, Z., Xiao, P., Sun, Z., Liu, Y., Wang, J., Wang, Z. (2023). Possible Future Climate Change Impacts on the Meteorological and Hydrological Drought Characteristics in the Jinghe River Basin, China. Remote Sensing, 15, 1297. https://doi.org/10.3390/rs15051297
  • Kogan, F.N. (1995). Droughts of the late 1980s in the United States as derived from NOAA polar-orbiting satellite data. Bulletin of the American Meteorological Society, 76, 655–668. https://doi.org/10.1175/1520-0477(1995)076<0655:DOTLIT>2.0.CO;2
  • Kuri, F., Murwira, A., Murwira, K.S., Masocha, M. (2014). Predicting maize yield in Zimbabwe using dry dekads derived from remotely sensed Vegetation Condition Index. International Journal of Applied Earth Observation and Geoinformation, 33, 39–46. https://doi.org/10.1016/j.jag.2014.04.021
  • Liu, L., Cao, R., Chen, J., Shen, M., Wang, S., Zhou, J., He, B. (2022). Detecting crop phenology from vegetation index time-series data by improved shape model fitting in each phenological stage. Remote Sensing of Environment, 277, 113060. https://doi.org/10.1016/j.rse.2022.113060
  • Liu, W., Kogan, F. (2002). Monitoring Brazilian soybean production using NOAA/AVHRR based vegetation condition indices. International Journal of Remote Sensing, 23, 1161–1179. https://doi.org/10.1080/01431160110076126
  • Lyle, G., Clarke, K., Kilpatrick, A., Summers, D.M., Ostendorf, B. (2023). Spatial and Temporal Evaluation of Broad-Scale Yield Predictions Created from Yield Mapping Technology and Landsat Satellite Imagery in the Australian Mediterranean Dryland Cropping Region. ISPRS International Journal of Geo-Information, 12, 50. https://doi.org/10.3390/ijgi12020050
  • Ma, Z., Dong, C., Lin, K., Yan, Y., Luo, J., Jiang, D., Chen, X. (2018). Global 250-m Downscaled NDVI Product from 1982 to 2018. Remote Sensing, 14, 3639. https://doi.org/10.3390/rs14153639
  • Mashhadi, N., Alganci, U. (2022). Evaluating BFASTMonitor Algorithm in Monitoring Deforestation Dynamics in Coniferous and Deciduous Forests with LANDSAT Time Series: A Case Study on Marmara Region, Turkey. ISPRS International Journal of Geo-Information, 11, 573. https://doi.org/10.3390/ijgi11110573
  • Mishra, A.K., Ines, A.V.M., Das, N.N., Prakash Khedun, C., Singh, V.P., Sivakumar, B., Hansen, J.W. (2015). Anatomy of a local-scale drought: application of assimilated remote sensing products, crops model, and statistical methods to an agricultural drought study. Journal of Hydrology, 526, 15–29. https://doi.org/10.1016/j.jhydrol.2014.10.038
  • Rhee, J., Im, J., Carbone, G.J. (2010). Monitoring agricultural drought for arid and humid regions using multi-sensor remote sensing data. Remote Sensing of Environment, 114, 2875–2887. https://doi.org/10.1016/j.rse.2010.07.005
  • Seiler, R., Kogan, F., Sullivan, J. (1998). AVHRR-based vegetation and temperature condition indices for drought detection in Argentina. Advances in Space Research, 21, 481–484. https://doi.org/10.1016/S0273-1177(97)00884-3
  • Shen, Y., Liu, X., Huang, Y. (2014). Impacts of crop rotation on vegetation condition index for species-level drought monitoring. In Proceedings of the Third International Conference on Agro-Geoinformatics (Agro-Geoinformatics 2014), Beijing, China, 11–14 August 2014, 1–5. DOI: 10.1109/Agro-Geoinformatics.2014.6910603
  • Singh, R.P., Roy, S., Kogan, F. (2003). Vegetation and temperature condition indices from NOAA AVHRR data for drought monitoring over India. International Journal of Remote Sensing, 24, 4393–4402. https://doi.org/10.1080/0143116031000084323
  • Wan, Z. (2001). NDVI anomaly patterns over Africa during the 1997/98 ENSO warm event. International Journal of Remote Sensing, 22.
  • Wang, J., Xiao, X., Liu, L., Wu, X., Qin, Y., Steiner, J.L., Dong, J. (2020). Mapping sugarcane plantation dynamics in Guangxi, China, by time series Sentinel-1, Sentinel-2 and Landsat images. Remote Sensing of Environment, 247, 111951. https://doi.org/10.1016/j.rse.2020.111951
  • Wu, J., Zhou, L., Liu, M., Zhang, J., Leng, S., Diao, C. (2013). Establishing and assessing the Integrated Surface Drought Index (ISDI) for agricultural drought monitoring in mid-eastern China. International Journal of Applied Earth Observation and Geoinformation, 23, 397–410. https://doi.org/10.1016/j.jag.2012.11.003
  • Xiong, S., Du, S., Zhang, X., Ouyang, S., Cui, W. (2022). Fusing Landsat-7, Landsat-8 and Sentinel-2 surface reflectance to generate dense time series images with 10m spatial resolution. International Journal of Remote Sensing, 43, 1630–1654. https://doi.org/10.1080/01431161.2022.2047240
  • Yang, K., Luo, Y., Li, M., Zhong, S., Liu, Q., Li, X. (2022). Reconstruction of Sentinel-2 Image Time Series Using Google Earth Engine. Remote Sensing, 14, 4395. https://doi.org/10.3390/rs14174395
  • Zambrano, F., Saavedra, M.L., Verbist, K., Lagos, O. (2016). Sixteen years of agricultural drought Assessment of the BioBio Region in Chile using a 250 m Resolution Vegetation Condition Index (VCI). Journal of Remote Sensing, 8(6), 530. https://doi.org/10.3390/rs8060530
There are 26 citations in total.

Details

Primary Language English
Subjects Photogrammetry and Remote Sensing
Journal Section Research Articles
Authors

Nehir Uyar 0000-0003-3358-3145

Publication Date September 29, 2025
Submission Date October 12, 2024
Acceptance Date August 19, 2025
Published in Issue Year 2025 Volume: 12 Issue: 3

Cite

APA Uyar, N. (2025). Prediction in Terrestrial and Aquatic Ecosystems Using Sentinel-2, Landsat 8, and MODIS Data: An Integrated Approach through Google Earth Engine. International Journal of Environment and Geoinformatics, 12(3), 251-262.