Research Article
BibTex RIS Cite

THERMODYNAMIC ANALYSIS OF A NOVEL COMBINED SUPERCRITICAL CO2 AND ORGANIC RANKINE CYCLE

Year 2023, , 33 - 47, 20.01.2023
https://doi.org/10.47933/ijeir.1187448

Abstract

Sustainable and innovative technologies offer us the inevitable opportunity to use the last drop of energy. In this study, gradual compression and gradual expansion were carried out with intermediate heat exchangers in single and double stage S-CO2 brayton cycles operating at the same operating temperature ranges. The ORC (Organic Rankine Cycle) is integrated from the system's waste heat source. The performance characteristics of the S-CO2 power systems and the combined ORC system, as well as the energy and energy analysis results of the system components for each component, are presented in tables. The performance of the gradual compression and gradual expansion systems, the operating conditions of the stepless system operating under the same operating conditions, were examined. It has been reported that there is an increase in electricity generation of 136% and an increase in thermal efficiency of 22% when switching from single-stage to double-stage. The addition of the ORC system to the single-stage and double-stage systems increased the thermal efficiency by 10.2% and the net work by 39.75KW. When switching from single stage to double stage, energy destruction increased by 86% and energy efficiency decreased by 1%. The addition of the ORC system to the single-stage and double-stage systems increased the energy efficiency by 15% and the energy destruction by 44.27KW. As a result, nature-friendly CO2 shows us that it is an alternative, innovative, and sustainable source in low temperature applications.

References

  • [1] Wang, E., Peng, N., & Zhang, M. (2021). System design and application of supercritical and transcritical CO2 power cycles: A review. Frontiers in Energy Research, 699.
  • [2] Mishra, R. S., & Kumar, M. (2019). Thermodynamic analysis of brayton cycle for power generation.
  • [3] Bellos, E., & Tzivanidis, C. (2021). Parametric Analysis of a Polygeneration System with CO2 Working Fluid. Applied Sciences, 11(7), 3215.
  • [4] Zhang, L., Deng, T., Klemeš, J. J., Zeng, M., Ma, T., & Wang, Q. (2021). Supercritical CO2 Brayton cycle at different heat source temperatures and its analysis under leakage and disturbance conditions. Energy, 237, 121610.
  • [5] Zhang, R., Su, W., Lin, X., Zhou, N., & Zhao, L. (2020). Thermodynamic analysis and parametric optimization of a novel S–CO2 power cycle for the waste heat recovery of internal combustion engines. Energy, 209, 118484.
  • [6] Hoang, H. T., Corcoran, M. R., & Wuthrich, J. W. (2009). Thermodynamic study of a supercritical CO2 Brayton cycle concept. In Proceedings of supercritical CO2 power cycle symposium.
  • [7] Wang, X., Wang, J., Zhao, P., & Dai, Y. (2016). Thermodynamic comparison and optimization of supercritical CO2 Brayton cycles with a bottoming transcritical CO2 cycle. Journal of Energy Engineering, 142(3), 04015028.
  • [8] Yari, M., & Sirousazar, M. (2010). A novel recompression S-CO2 Brayton cycle with pre-cooler exergy utilization. Proceedings of the Institution of Mechanical Engineers, Part A: Journal of Power and Energy, 224(7), 931-946.
  • [9] Al-Sulaiman, F. A., & Atif, M. (2015). Performance comparison of different supercritical carbon dioxide Brayton cycles integrated with a solar power tower. Energy, 82, 61-71.
  • [10] Yu, W., Gong, Q., Gao, D., Wang, G., Su, H., & Li, X. (2020). Thermodynamic analysis of supercritical carbon dioxide cycle for internal combustion engine waste heat recovery. Processes, 8(2), 216.
  • [11] Ruiz-Casanova, E., Rubio-Maya, C., Pacheco-Ibarra, J. J., Ambriz-Díaz, V. M., Romero, C. E., & Wang, X. (2020). Thermodynamic analysis and optimization of supercritical carbon dioxide Brayton cycles for use with low-grade geothermal heat sources. Energy Conversion and Management, 216, 112978.
  • [12] Zhou, J., Zhang, C., Su, S., Wang, Y., Hu, S., Liu, L., ... & Xiang, J. (2018). Exergy analysis of a 1000 MW single reheat supercritical CO2 Brayton cycle coal-fired power plant. Energy conversion and management, 173, 348-358.
  • [13] Chowdhury, J. I., Asfand, F., Hu, Y., Balta-Ozkan, N., Varga, L., & Patchigolla, K. (2019, January). Waste heat recovery potential from industrial bakery ovens using thermodynamic power cycles. In ECOS 2019-Proceedings of the 32nd International Conference on Efficiency, Cost, Optimization, Simulation and Environmental Impact of Energy Systems (pp. 2435-2441). Institute of Thermal Technology.
  • [14] Wang, K., Li, M. J., Guo, J. Q., Li, P., & Liu, Z. B. (2018). A systematic comparison of different S-CO2 Brayton cycle layouts based on multi-objective optimization for applications in solar power tower plants. Applied energy, 212, 109-121.
  • [15] Gao, W., Yao, M., Chen, Y., Li, H., Zhang, Y., & Zhang, L. (2019). Performance of S-CO2 Brayton cycle and organic Rankine cycle (ORC) combined system considering the diurnal distribution of solar radiation. Journal of Thermal Science, 28(3), 463-471.
  • [16] Ma, H., & Liu, Z. (2022). An Engine Exhaust Utilization System by Combining CO2 Brayton Cycle and Transcritical Organic Rankine Cycle. Sustainability, 14(3), 1276.
  • [17] Li, B., Wang, S. S., Wang, K., & Song, L. (2021). Comparative investigation on the supercritical carbon dioxide power cycle for waste heat recovery of gas turbine. Energy Conversion and Management, 228, 113670.
  • [18] Purjam, M., Goudarzi, K., & Keshtgar, M. (2017). A new supercritical carbon dioxide brayton cycle with high efficiency. Heat Transfer—Asian Research, 46(5), 465-482.
  • [19] Padilla, R. V., Benito, R. G., & Stein, W. (2015). An exergy analysis of recompression supercritical CO2 cycles with and without reheating. Energy Procedia, 69, 1181-1191.
  • [20] Besarati, S. M., & Yogi Goswami, D. (2014). Analysis of advanced supercritical carbon dioxide power cycles with a bottoming cycle for concentrating solar power applications. Journal of solar energy engineering, 136(1).
  • [21] Akbari, A. D., & Mahmoudi, S. M. (2014). Thermoeconomic analysis & optimization of the combined supercritical CO2 (carbon dioxide) recompression Brayton/organic Rankine cycle. Energy, 78, 501-512.
  • [22] Khan, Y., & Mishra, R. S. (2021). Performance evaluation of solar based combined pre-compression supercritical CO2 cycle and organic Rankine cycle. International journal of Green energy, 18(2), 172-186.
  • [23] Chacartegui, R., Sánchez, D., Muñoz, J. M., & Sánchez, T. (2009). Alternative ORC bottoming cycles for combined cycle power plants. Applied Energy, 86(10), 2162-2170.
  • [24] Dincer, I., & Rosen, M. A. (2012). Exergy: energy, environment and sustainable development. Newnes.
  • [25] Cengel, Y. A., Boles, M. A., & Kanoğlu, M. (2011). Thermodynamics: an engineering approach (Vol. 5, p. 445). New York: McGraw-hill.
  • [26] Klein, S. A., & Alvarado, F. L. (2002). Engineering equation solver. F-Chart Software, Madison, WI, 1.

YENİ BİR KOMBİNE SÜPERKRİTİK CO2 VE ORGANİK RANKİNE DÖNGÜSÜNÜN TERMODİNAMİK ANALİZİ

Year 2023, , 33 - 47, 20.01.2023
https://doi.org/10.47933/ijeir.1187448

Abstract

Sürdürülebilir ve yenilikçi teknolojiler, bize enerjinin son damlasını kullanmak için kaçınılmaz bir fırsat sunuyor. Bu çalışmada, aynı çalışma sıcaklık aralıklarında çalışan tek ve çift kademeli S-CO2 brayton çevrimlerinde ara ısı eşanjörleri ile kademeli sıkıştırma ve kademeli genleşme gerçekleştirilmiştir. ORC (Organik Rankine Döngüsü), sistemin atık ısı kaynağından entegre edilmiştir. S-CO2 güç sistemlerinin ve birleşik ORC sisteminin performans özellikleri ile her bir bileşen için sistem bileşenlerinin enerji ve enerji analizi sonuçları tablolarda sunulmaktadır. Kademeli sıkıştırma ve kademeli genleşme sistemlerinin performansı, aynı çalışma koşullarında çalışan kademesiz sistemin çalışma koşulları incelenmiştir. Tek kademeliden çift kademeliye geçildiğinde elektrik üretiminde %136, ısıl verimde ise %22 artış olduğu bildirildi. Tek kademeli ve çift kademeli sistemlere ORC sisteminin eklenmesi, termal verimliliği %10,2 ve net çalışmayı 39,75KW artırdı. Tek kademeden çift kademeye geçildiğinde enerji tahribatı %86 arttı ve enerji verimliliği %1 azaldı. Tek kademeli ve çift kademeli sistemlere ORC sisteminin eklenmesi, enerji verimliliğini %15, enerji tahribatını ise 44,27KW artırmıştır. Sonuç olarak doğa dostu CO2 düşük sıcaklık uygulamalarında alternatif, yenilikçi ve sürdürülebilir bir kaynak olduğunu bize göstermektedir.

References

  • [1] Wang, E., Peng, N., & Zhang, M. (2021). System design and application of supercritical and transcritical CO2 power cycles: A review. Frontiers in Energy Research, 699.
  • [2] Mishra, R. S., & Kumar, M. (2019). Thermodynamic analysis of brayton cycle for power generation.
  • [3] Bellos, E., & Tzivanidis, C. (2021). Parametric Analysis of a Polygeneration System with CO2 Working Fluid. Applied Sciences, 11(7), 3215.
  • [4] Zhang, L., Deng, T., Klemeš, J. J., Zeng, M., Ma, T., & Wang, Q. (2021). Supercritical CO2 Brayton cycle at different heat source temperatures and its analysis under leakage and disturbance conditions. Energy, 237, 121610.
  • [5] Zhang, R., Su, W., Lin, X., Zhou, N., & Zhao, L. (2020). Thermodynamic analysis and parametric optimization of a novel S–CO2 power cycle for the waste heat recovery of internal combustion engines. Energy, 209, 118484.
  • [6] Hoang, H. T., Corcoran, M. R., & Wuthrich, J. W. (2009). Thermodynamic study of a supercritical CO2 Brayton cycle concept. In Proceedings of supercritical CO2 power cycle symposium.
  • [7] Wang, X., Wang, J., Zhao, P., & Dai, Y. (2016). Thermodynamic comparison and optimization of supercritical CO2 Brayton cycles with a bottoming transcritical CO2 cycle. Journal of Energy Engineering, 142(3), 04015028.
  • [8] Yari, M., & Sirousazar, M. (2010). A novel recompression S-CO2 Brayton cycle with pre-cooler exergy utilization. Proceedings of the Institution of Mechanical Engineers, Part A: Journal of Power and Energy, 224(7), 931-946.
  • [9] Al-Sulaiman, F. A., & Atif, M. (2015). Performance comparison of different supercritical carbon dioxide Brayton cycles integrated with a solar power tower. Energy, 82, 61-71.
  • [10] Yu, W., Gong, Q., Gao, D., Wang, G., Su, H., & Li, X. (2020). Thermodynamic analysis of supercritical carbon dioxide cycle for internal combustion engine waste heat recovery. Processes, 8(2), 216.
  • [11] Ruiz-Casanova, E., Rubio-Maya, C., Pacheco-Ibarra, J. J., Ambriz-Díaz, V. M., Romero, C. E., & Wang, X. (2020). Thermodynamic analysis and optimization of supercritical carbon dioxide Brayton cycles for use with low-grade geothermal heat sources. Energy Conversion and Management, 216, 112978.
  • [12] Zhou, J., Zhang, C., Su, S., Wang, Y., Hu, S., Liu, L., ... & Xiang, J. (2018). Exergy analysis of a 1000 MW single reheat supercritical CO2 Brayton cycle coal-fired power plant. Energy conversion and management, 173, 348-358.
  • [13] Chowdhury, J. I., Asfand, F., Hu, Y., Balta-Ozkan, N., Varga, L., & Patchigolla, K. (2019, January). Waste heat recovery potential from industrial bakery ovens using thermodynamic power cycles. In ECOS 2019-Proceedings of the 32nd International Conference on Efficiency, Cost, Optimization, Simulation and Environmental Impact of Energy Systems (pp. 2435-2441). Institute of Thermal Technology.
  • [14] Wang, K., Li, M. J., Guo, J. Q., Li, P., & Liu, Z. B. (2018). A systematic comparison of different S-CO2 Brayton cycle layouts based on multi-objective optimization for applications in solar power tower plants. Applied energy, 212, 109-121.
  • [15] Gao, W., Yao, M., Chen, Y., Li, H., Zhang, Y., & Zhang, L. (2019). Performance of S-CO2 Brayton cycle and organic Rankine cycle (ORC) combined system considering the diurnal distribution of solar radiation. Journal of Thermal Science, 28(3), 463-471.
  • [16] Ma, H., & Liu, Z. (2022). An Engine Exhaust Utilization System by Combining CO2 Brayton Cycle and Transcritical Organic Rankine Cycle. Sustainability, 14(3), 1276.
  • [17] Li, B., Wang, S. S., Wang, K., & Song, L. (2021). Comparative investigation on the supercritical carbon dioxide power cycle for waste heat recovery of gas turbine. Energy Conversion and Management, 228, 113670.
  • [18] Purjam, M., Goudarzi, K., & Keshtgar, M. (2017). A new supercritical carbon dioxide brayton cycle with high efficiency. Heat Transfer—Asian Research, 46(5), 465-482.
  • [19] Padilla, R. V., Benito, R. G., & Stein, W. (2015). An exergy analysis of recompression supercritical CO2 cycles with and without reheating. Energy Procedia, 69, 1181-1191.
  • [20] Besarati, S. M., & Yogi Goswami, D. (2014). Analysis of advanced supercritical carbon dioxide power cycles with a bottoming cycle for concentrating solar power applications. Journal of solar energy engineering, 136(1).
  • [21] Akbari, A. D., & Mahmoudi, S. M. (2014). Thermoeconomic analysis & optimization of the combined supercritical CO2 (carbon dioxide) recompression Brayton/organic Rankine cycle. Energy, 78, 501-512.
  • [22] Khan, Y., & Mishra, R. S. (2021). Performance evaluation of solar based combined pre-compression supercritical CO2 cycle and organic Rankine cycle. International journal of Green energy, 18(2), 172-186.
  • [23] Chacartegui, R., Sánchez, D., Muñoz, J. M., & Sánchez, T. (2009). Alternative ORC bottoming cycles for combined cycle power plants. Applied Energy, 86(10), 2162-2170.
  • [24] Dincer, I., & Rosen, M. A. (2012). Exergy: energy, environment and sustainable development. Newnes.
  • [25] Cengel, Y. A., Boles, M. A., & Kanoğlu, M. (2011). Thermodynamics: an engineering approach (Vol. 5, p. 445). New York: McGraw-hill.
  • [26] Klein, S. A., & Alvarado, F. L. (2002). Engineering equation solver. F-Chart Software, Madison, WI, 1.
There are 26 citations in total.

Details

Primary Language English
Subjects Engineering
Journal Section Research Articles
Authors

Ahmet Elbir 0000-0001-8934-7665

Mehmet Erhan Şahin 0000-0003-1613-7493

Arif Emre Özgür 0000-0001-6382-5462

Hilmi Cenk Bayrakçı 0000-0001-5064-7310

Publication Date January 20, 2023
Acceptance Date November 5, 2022
Published in Issue Year 2023

Cite

APA Elbir, A., Şahin, M. E., Özgür, A. E., Bayrakçı, H. C. (2023). THERMODYNAMIC ANALYSIS OF A NOVEL COMBINED SUPERCRITICAL CO2 AND ORGANIC RANKINE CYCLE. International Journal of Engineering and Innovative Research, 5(1), 33-47. https://doi.org/10.47933/ijeir.1187448

88x31.png

This work is licensed under a Creative Commons Attribution 4.0 International License