Research Article
BibTex RIS Cite

BROAD PHASE RESPONSE UNIT CELL AND HIGH GAIN REFLECARRAY ANTENNA DESIGN WITH CIRCLE-MINKOWSKI STRUCTURES

Year 2023, , 77 - 89, 20.01.2023
https://doi.org/10.47933/ijeir.1213358

Abstract

In this study, it is aimed to increase the phase responses of the obtained unit cells by using the fractal structures nested together. Then, the effect of these obtained broad phase-response unit cells on the antenna gain is examined by using them as reflective elements on the reflect array antenna. For this purpose, 3 different structures are designed: the circle, the Minkowski used in the circle, and the unit cells obtained by rotating the Minkowski structure in the circle. The phase response of the first designed circle structure could not meet the phase requirement for a whole band, and a phase response of 280 degree is obtained. Then, in the second stage, the Minkowski structure is designed in the designed circle, and a phase response of 329 degree is obtained in this structure. Finally, a structure sufficient for the entire phase response is obtained by rotating the Minkowski structure in the circle between 0-30 degree. A unit cell with a wide phase response and a 11.7 dBi horn antenna and reflect array antenna are designed. The gain of the designed reflect array antenna has increased by 91% compared to the horn antenna and has been obtained as 22.4 dBi. With this result, it has been revealed that the phase response can be increased by using fractal structures together and especially by rotating the structures, and with this method, high-gain reflect array antennas with broadband phase response can be designed.

References

  • 1. Genç, A.(2019). Gain Increase of Horn Antenna with Waveguide Feeding Network by using 3D Printing Technology. Bayburt Üniversitesi Fen Bilimleri Dergisi, Cilt 2, Sayı 1, Sayfa 17-25.
  • 2. Genç, A., Başyiğit, İ. B., Çolak B., Helhel, S.(2018). Investigation of the characteristics of low-cost and lightweight horn array antennas with novel monolithic waveguide feeding networks, AEU - International Journal of Electronics and Communications, vol. 89, issue 1, pp 15-23.
  • 3. Tütüncü, B., Urul, B. (2019). LHM superstrate for high directivity microstrip antenna”, Celal Bayar University Journal of Science, vol. 15, issue 1, pp 71-74.
  • 4. Gianvittorio, J.P., Rahmat-Samii, Y. (2002). Fractal antennas: a novel antenna miniaturization technique, and applications. IEEE Antennas and Propagation Magazine, vol. 44,no. 1, pp. 20–36.
  • 5. Werner, D.H., Ganguly, S. ( 2003). An overview of fractal antenna engineering research. IEEE Antennas and Propagation Magazine, vol. 45, no. 1, pp. 38–57.
  • 6. Costanzo, S., Venneri, F., Di Massa, G., Borgia, A., Costanzo, A., Raffo, A. (2016). Fractal reflectarray antennas: state of art and new opportunities. Hindawi Publ.Corp.Int.J.of Antennas and Propagation, vol. 2016, Art. ID 7165143, pp 17 http://dx.doi.org/10.1155/2016/7165143
  • 7. Venneri, F., Costanzo, S., Di Massa, G., Amendola, G. (2008). Aperturecoupled reflectarrays with enhanced bandwidth features. J. Electromagn. Waves Appl., vol. 22, pp. 1527–1537.
  • 8. Al-Saedi, H., Abdel-Wahab, W.M., Raeis-Zadeh, S.M., Gigoyan, S., Safavi-Naeini, S. (2018). An Ultra-Wideband Modified Aperture-Coupled Millimeter-Wave Reflectarray Antenna. IEEE International Symposium on Antennas and Propagation & USNC/URSI National Radio Science Meeting, Boston, MA, USA, pp. 1423–1424, Jul.
  • 9. Chaharmir, M.R., Shaker, J., Gagnon, N., Lee, D. (2010). Design of broadband, single layer dual-band large reflectarray using multi open loop elements. IEEE Trans. Antennas Propagat., vol. 58, no. 9, pp. 2875–2883, Jun.
  • 10. Li, L., Chen, Q., Yuan, Q., Sawaya, K., Maruyama T. (2009). Novel broadband planar reflectarray with parasitic dipoles for wireless communication applications. IEEE Antennas Wireless Propag. Lett., vol. 8, pp. 881–885, Jul.
  • 11. Yoon, J.H., Yoon, Y.J., Lee, W.S., So, J.H. (2015). Broadband microstrip reflectarray with five parallel dipole elements. IEEE Antennas Wireless Propag. Lett., vol. 14, pp. 1109–1112, Jan.
  • 12. Pozar, D.M. (2007). Wideband reflectarrays using artificial impedance surfaces. Electron. Lett., vol. 43, no. 3, pp. 148–149, Feb.
  • 13. Qin, P.Y., Guo, Y.J., Weily, A.R. (2016). Broadband reflectarray antenna using subwavelength elements based on double square meander-line rings. IEEE Trans. Antennas Propag., vol. 64, no. 1, pp. 378–383.
  • 14. Zubir, F., Rahim, M.K.A., Ayop, O., Wahid , A., Majid, H. A. (2010). Design and analysis of microstrip reflectarray antenna with minkowski shape radiating element. Progress in Electromagnetics Research B, vol. 24, pp 317–331.
  • 15. Huang, J., Pogorzelski, R.J. (1998). A ka-band microstrip reflectarray with elements having variable rotation angles. IEEE Transactions on Antennas and Propa., vol. 46, Issue 5, pp 650–656.
  • 16. Lingasamy, V., Selvan, K.T. (2019). A comparison of planar convex dielectric lens loaded flat reflector with parabolic reflector and reflectarray. Micr. and Optical Tech.Letters, vol. 61 Issue 11, pp 2500-2505.
  • 17. Keyghobad, K., Homayoon O. (2007). Phase Response of Microstrip Reflectarray Elements by FDTD Analysis. Workshop on Computational Electromagnetics in Time-Domain, IEEE, pp 1-3.

DAİRE-MİNKOWSKİ YAPILARI İLE GENİŞ FAZ CEVAPLI BİRİM HÜCRE VE YÜKSEK KAZANÇLI YANSITICI DİZİ ANTEN TASARIMI

Year 2023, , 77 - 89, 20.01.2023
https://doi.org/10.47933/ijeir.1213358

Abstract

Bu çalışmada fraktal yapıların iç içe kullanılması ile ilk olarak elde edilen birim hücrelerin faz cevaplarının artırılması hedeflenmiştir. Daha sonra bu elde edilen birim hücrelerinin yansıtıcı dizi anten üzerinde yansıtıcı eleman olarak kullanılması ile anten kazancı üzerine etkisi incelenmektedir. Bunun için daire, daire içerisinde kullanılan minkowski ve daire içerisindeki minkowski yapısının döndürülmesi ile elde edilen birim hücreler olmak üzere 3 farklı yapı tasarlanmaktadır. İlk tasarlanan yapının faz cevabı tüm bir band boyunca faz gereksimini karşılayamayarak 280 derecelik bir faz cevabı elde edilmiştir. Daha sonra ikinci aşama da tasarlanan daire içerisinde minkowski yapısı tasarlanmış bu yapı da 329 derecelik bir faz cevabı elde edilmiştir. Son olarak daire içerisinde 0-30 derece arasında minkowski yapısı döndürülerek tüm faz cevabını karşılayabilecek bir yapı elde edilmiştir. Elde edilen geniş faz cevabına sahip birim hücre ve 11.7 dBi’lık bir horn anten ile yansıtıcı dizi anten tasarlanmıştır. Tasarlanan yansıtıcı dizi antenin kazancı, horn antene göre 91% artarak 22.4 dBi olarak elde edilmiştir. Bu sonuç ile fraktal yapıların iç içe kullanılması ve özellikle yapıların döndürülmesi ile faz cevabının arttırılabildiği ve bu metodla geniş band faz cevabına sahip, yüksek kazançlı yansıtıcı dizi antenler tasarlanabileceği ortaya konulmuştur.

References

  • 1. Genç, A.(2019). Gain Increase of Horn Antenna with Waveguide Feeding Network by using 3D Printing Technology. Bayburt Üniversitesi Fen Bilimleri Dergisi, Cilt 2, Sayı 1, Sayfa 17-25.
  • 2. Genç, A., Başyiğit, İ. B., Çolak B., Helhel, S.(2018). Investigation of the characteristics of low-cost and lightweight horn array antennas with novel monolithic waveguide feeding networks, AEU - International Journal of Electronics and Communications, vol. 89, issue 1, pp 15-23.
  • 3. Tütüncü, B., Urul, B. (2019). LHM superstrate for high directivity microstrip antenna”, Celal Bayar University Journal of Science, vol. 15, issue 1, pp 71-74.
  • 4. Gianvittorio, J.P., Rahmat-Samii, Y. (2002). Fractal antennas: a novel antenna miniaturization technique, and applications. IEEE Antennas and Propagation Magazine, vol. 44,no. 1, pp. 20–36.
  • 5. Werner, D.H., Ganguly, S. ( 2003). An overview of fractal antenna engineering research. IEEE Antennas and Propagation Magazine, vol. 45, no. 1, pp. 38–57.
  • 6. Costanzo, S., Venneri, F., Di Massa, G., Borgia, A., Costanzo, A., Raffo, A. (2016). Fractal reflectarray antennas: state of art and new opportunities. Hindawi Publ.Corp.Int.J.of Antennas and Propagation, vol. 2016, Art. ID 7165143, pp 17 http://dx.doi.org/10.1155/2016/7165143
  • 7. Venneri, F., Costanzo, S., Di Massa, G., Amendola, G. (2008). Aperturecoupled reflectarrays with enhanced bandwidth features. J. Electromagn. Waves Appl., vol. 22, pp. 1527–1537.
  • 8. Al-Saedi, H., Abdel-Wahab, W.M., Raeis-Zadeh, S.M., Gigoyan, S., Safavi-Naeini, S. (2018). An Ultra-Wideband Modified Aperture-Coupled Millimeter-Wave Reflectarray Antenna. IEEE International Symposium on Antennas and Propagation & USNC/URSI National Radio Science Meeting, Boston, MA, USA, pp. 1423–1424, Jul.
  • 9. Chaharmir, M.R., Shaker, J., Gagnon, N., Lee, D. (2010). Design of broadband, single layer dual-band large reflectarray using multi open loop elements. IEEE Trans. Antennas Propagat., vol. 58, no. 9, pp. 2875–2883, Jun.
  • 10. Li, L., Chen, Q., Yuan, Q., Sawaya, K., Maruyama T. (2009). Novel broadband planar reflectarray with parasitic dipoles for wireless communication applications. IEEE Antennas Wireless Propag. Lett., vol. 8, pp. 881–885, Jul.
  • 11. Yoon, J.H., Yoon, Y.J., Lee, W.S., So, J.H. (2015). Broadband microstrip reflectarray with five parallel dipole elements. IEEE Antennas Wireless Propag. Lett., vol. 14, pp. 1109–1112, Jan.
  • 12. Pozar, D.M. (2007). Wideband reflectarrays using artificial impedance surfaces. Electron. Lett., vol. 43, no. 3, pp. 148–149, Feb.
  • 13. Qin, P.Y., Guo, Y.J., Weily, A.R. (2016). Broadband reflectarray antenna using subwavelength elements based on double square meander-line rings. IEEE Trans. Antennas Propag., vol. 64, no. 1, pp. 378–383.
  • 14. Zubir, F., Rahim, M.K.A., Ayop, O., Wahid , A., Majid, H. A. (2010). Design and analysis of microstrip reflectarray antenna with minkowski shape radiating element. Progress in Electromagnetics Research B, vol. 24, pp 317–331.
  • 15. Huang, J., Pogorzelski, R.J. (1998). A ka-band microstrip reflectarray with elements having variable rotation angles. IEEE Transactions on Antennas and Propa., vol. 46, Issue 5, pp 650–656.
  • 16. Lingasamy, V., Selvan, K.T. (2019). A comparison of planar convex dielectric lens loaded flat reflector with parabolic reflector and reflectarray. Micr. and Optical Tech.Letters, vol. 61 Issue 11, pp 2500-2505.
  • 17. Keyghobad, K., Homayoon O. (2007). Phase Response of Microstrip Reflectarray Elements by FDTD Analysis. Workshop on Computational Electromagnetics in Time-Domain, IEEE, pp 1-3.
There are 17 citations in total.

Details

Primary Language English
Subjects Engineering
Journal Section Research Articles
Authors

Bülent Urul 0000-0003-2656-2450

Publication Date January 20, 2023
Acceptance Date December 25, 2022
Published in Issue Year 2023

Cite

APA Urul, B. (2023). BROAD PHASE RESPONSE UNIT CELL AND HIGH GAIN REFLECARRAY ANTENNA DESIGN WITH CIRCLE-MINKOWSKI STRUCTURES. International Journal of Engineering and Innovative Research, 5(1), 77-89. https://doi.org/10.47933/ijeir.1213358

88x31.png

This work is licensed under a Creative Commons Attribution 4.0 International License