Research Article
BibTex RIS Cite

Designing a Solar PV-Battery based on Electric Vehicle Charging Station

Year 2023, , 123 - 136, 30.06.2023
https://doi.org/10.47933/ijeir.1231500

Abstract

Increasing transport demand necessitates higher oil consumption, resulting in an increase in carbon dioxide (CO2) emissions, which is a major cause of air pollution. The use of electric vehicles (EVs) is becoming more common around the world. Recent advancements in lithium-ion battery technology have increased the improvement of EVs. In this work, a solar photovoltaic (PV) battery-based EV charging station is designed. Meanwhile, the overall system comprises a battery energy storage system (BESS), solar PV module, grid and EV charging station. Thus, the primary source for the charging station is the PV source but due to less power during the night, we included battery storage as a backup. Grid source is also recommendable for an uninterruptable power supply. An artificial neural network strategy is developed in MATLAB/Simulink for proper power management of the solar PV-battery based EV charging station connected to the AC grid. Moreover, by employing an adaptive neuro-fuzzy inference system (ANFIS) and PI controller-based MPPT, the grid voltage and current, real/reactive grid power and the maximum output power are obtained. The overall system is evaluated under different scenarios of irradiance level and temperature with a state of charge (SOC) greater than 10 % for simulation purposes. The result shows that during the night hour due to less power from the PV source, an artificial neural network begins to regulate the grid power so that it supplies power to the stationary storage and EV battery.

References

  • [1] Khalid, M. R., Alam, M. S., Sarwar, A., Asghar, M. S. J. (2019). A Comprehensive review on electric vehicles charging infrastructures and their impacts on power-quality of the utility grid. eTransportation, 1, 100006.
  • [2] Sun, X., Li, Z., Wang, X., Li, C. (2019). Technology development of electric vehicles: A review. Energies, 13, 1, 1–29.
  • [3] Khan, S., Ahmad, A., Ahmad, F., Shafaati Shemami, M., Saad Alam, M., Khateeb, S. (2018). A Comprehensive Review on Solar Powered Electric Vehicle Charging System. Smart Sci., 6, 1, 54–79.
  • [4] Ismael, S. M., Abdel Aleem, S. H., Abdelaziz, A. Y., Zobaa, A. F. (2019). Probabilistic hosting capacity enhancement in non-sinusoidal power distribution systems using a hybrid PSOGSA optimization algorithm. Energies, 12, 6, 1018.
  • [5] Omar, A. I., Sharaf, A. M., Abdel, A. S. H., Mohamed, A. A., El-Zahab Essam, EA. 2019. Optimal Switched Compensator for Vehicle-To-Grid Battery Chargers Using Salp Optimization. 21st International Middle East Power Systems Conference (MEPCON), 139-144.
  • [6] Singh, B., Verma, A., Chandra, A., Al-Haddad, K. (2020). Implementation of solar PV-battery and diesel generator based electric vehicle charging station. IEEE Transactions on Industry Applications, 56, 4, 4007- 4016.
  • [7] Biya, T. S., Sindhu, M. R. (2019). Design and power management of solar powered electric vehicle charging station with energy storage system. 3rd International conference on Electronics, Communication and Aerospace Technology (ICECA), 815-820.
  • [8] Savio, D. A., Juliet, V. A., Chokkalingam, B., Padmanaban, S., Holm-Nielsen, J. B., Blaabjerg, F. (2019). Photovoltaic integrated hybrid microgrid structured electric vehicle charging station and its energy management approach. Energies, 12, 1, 168.
  • [9] Shariff, S. M., Alam, M. S., Ahmad, F., Rafat, Y., Asghar, M. S. J., Khan, S. (2019). System design and realization of a solar-powered electric vehicle charging station. IEEE Systems Journal, 14, 2, 2748-2758.
  • [10] Khan, W., Ahmad, F., Alam, M. S. (2019). Fast EV charging station integration with grid ensuring optimal and quality power exchange. Engineering Science and Technology, an International Journal, 22, 1, 143-152.
  • [11] Mehrjerdi, H. (2019). Off-grid solar powered charging station for electric and hydrogen vehicles including fuel cell and hydrogen storage. International journal of hydrogen Energy, 44, 23, 11574-11583.
  • [12] Minh, P. V., Le Quang, S., Pham, M. H. (2021). Technical economic analysis of photovoltaic-powered electric vehicle charging stations under different solar irradiation conditions in Vietnam. Sustainability, 13, 6, 3528.
  • [13] Liao, J. T., Huang, H. W., Yang, H. T., Li, D. (2021). Decentralized V2G/G2V scheduling of EV charging stations by considering the conversion efficiency of bidirectional chargers. Energies, 14, 4, 962.
  • [14] Solar Energy (2022). Energy efficiency & renewable energy, from https://www.energy.gov/eere/solar/howdoes- solar-work [Access Date: 06.12.2022].
  • [15] Kadeval, H. N., Patel, V. K. (2021). Mathematical modelling for solar cell, panel and array for photovoltaic system. Journal of Applied and Natural Science, 13, 3, 937-943.
  • [16] K. Kachhiya, “MATLAB / Simulink Model of Solar PV Module and MPPT Algorithm,” Natl. Conf. Recent Trends Eng. Technol., vol. 13, 2011, p. 5.
  • [17] Mohammed, S. S., Devaraj, D. (2014). Simulation and analysis of stand-alone photovoltaic system with boost converter using MATLAB/Simulink. International Conference on Circuits, Power and Computing Technologies [ICCPCT-2014], 814-821.
  • [18] Singh, V. K., Sahu, Y., Mishra, P. K., Tiwari, P., Maurya, R. (2020). Charging of Electric Vehicles Battery Using Bidirectional Converter. International Conference on Electrical and Electronics Engineering (ICE3), 82-88.
  • [19] Khedekar, V. G., Anandh, N., Paragond, L. R. S., Kulkarni, P. (2019). Bidirectional on-board EV battery charger with V2H application. Innovations in Power and Advanced Computing Technologies (i-PACT), 1, 1-5.
  • [20] Salman, S., Ai, X., Wu, Z. (2018). Design of a P-&-O algorithm based MPPT charge controller for a standalone 200W PV system. Protection and Control of Modern Power Systems, 3, 1, 1-8.
  • [21] Rai, A. K., Kaushika, N. D., Singh, B., Agarwal, N. (2011). Simulation model of ANN based maximum power point tracking controller for solar PV system. Solar Energy Materials and Solar Cells, 95, 2, 773-778.
  • [22] Premkumar, K., Manikandan, B. V. (2014). Adaptive Neuro-Fuzzy Inference System based speed controller for brushless DC motor. Neurocomputing, 138, 260-270.
  • [23] Barker, T., Ghosh, A. (2022). Neural Network-Based PV Powered Electric Vehicle Charging Station. IEEE Delhi Section Conference (DELCON), 1-6.
  • [24] Güneşer, M. T., Erdil, E., Cernat, M., Öztürk, T. (2015). Improving the energy management of a solar electric vehicle. Advances in Electrical and Computer Engineering, 15, 4, 53-62.

Elektrikli Araç Şarj İstasyonuna Dayalı Bir Solar FV-Pil Tasarlamak

Year 2023, , 123 - 136, 30.06.2023
https://doi.org/10.47933/ijeir.1231500

Abstract

Artan ulaşım talebi, daha fazla petrol tüketimini zorunlu kılarak, hava kirliliğinin önemli bir nedeni olan karbondioksit (CO2) emisyonlarında artışa neden olur. Elektrikli araçların (EA) kullanımı tüm dünyada giderek yaygınlaşıyor. Lityum-iyon pil teknolojisindeki son gelişmeler, EA'lerin gelişimini artırdı. Bu çalışmada, bir solar fotovoltaik (FV) pil tabanlı EA şarj istasyonu tasarlanmıştır. Bu arada, genel sistem bir pil enerji depolama sistemi (PEDS), güneş FV modülü, şebeke ve EA şarj istasyonundan oluşur. Bu nedenle, şarj istasyonu için birincil kaynak FV kaynağıdır, ancak gece boyunca daha az güç olması nedeniyle yedek olarak pil depolamayı dahil ettik. Kesintisiz bir güç kaynağı için şebeke kaynağı da tavsiye edilir. MATLAB/Simulink'te AC şebekesine bağlı solar FV-pil tabanlı EA şarj istasyonunun uygun güç yönetimi için bir yapay sinir ağı stratejisi geliştirilmiştir. Ayrıca, uyarlanabilir bir nöro-bulanık çıkarım sistemi (NBÇS) ve PI denetleyici tabanlı MPPT kullanılarak, şebeke gerilimi ve akımı, gerçek/reaktif şebeke gücü ve maksimum çıkış gücü elde edilir. Genel sistem, simülasyon amacıyla %10'dan daha yüksek bir şarj durumu (SOC) ile farklı ışınım seviyesi ve sıcaklık senaryoları altında değerlendirilir. Sonuç, gece saatlerinde FV kaynağından daha az güç gelmesi nedeniyle yapay bir sinir ağının şebeke gücünü düzenlemeye başladığını ve böylece sabit depolamaya ve EA piline güç sağladığını gösteriyor.

References

  • [1] Khalid, M. R., Alam, M. S., Sarwar, A., Asghar, M. S. J. (2019). A Comprehensive review on electric vehicles charging infrastructures and their impacts on power-quality of the utility grid. eTransportation, 1, 100006.
  • [2] Sun, X., Li, Z., Wang, X., Li, C. (2019). Technology development of electric vehicles: A review. Energies, 13, 1, 1–29.
  • [3] Khan, S., Ahmad, A., Ahmad, F., Shafaati Shemami, M., Saad Alam, M., Khateeb, S. (2018). A Comprehensive Review on Solar Powered Electric Vehicle Charging System. Smart Sci., 6, 1, 54–79.
  • [4] Ismael, S. M., Abdel Aleem, S. H., Abdelaziz, A. Y., Zobaa, A. F. (2019). Probabilistic hosting capacity enhancement in non-sinusoidal power distribution systems using a hybrid PSOGSA optimization algorithm. Energies, 12, 6, 1018.
  • [5] Omar, A. I., Sharaf, A. M., Abdel, A. S. H., Mohamed, A. A., El-Zahab Essam, EA. 2019. Optimal Switched Compensator for Vehicle-To-Grid Battery Chargers Using Salp Optimization. 21st International Middle East Power Systems Conference (MEPCON), 139-144.
  • [6] Singh, B., Verma, A., Chandra, A., Al-Haddad, K. (2020). Implementation of solar PV-battery and diesel generator based electric vehicle charging station. IEEE Transactions on Industry Applications, 56, 4, 4007- 4016.
  • [7] Biya, T. S., Sindhu, M. R. (2019). Design and power management of solar powered electric vehicle charging station with energy storage system. 3rd International conference on Electronics, Communication and Aerospace Technology (ICECA), 815-820.
  • [8] Savio, D. A., Juliet, V. A., Chokkalingam, B., Padmanaban, S., Holm-Nielsen, J. B., Blaabjerg, F. (2019). Photovoltaic integrated hybrid microgrid structured electric vehicle charging station and its energy management approach. Energies, 12, 1, 168.
  • [9] Shariff, S. M., Alam, M. S., Ahmad, F., Rafat, Y., Asghar, M. S. J., Khan, S. (2019). System design and realization of a solar-powered electric vehicle charging station. IEEE Systems Journal, 14, 2, 2748-2758.
  • [10] Khan, W., Ahmad, F., Alam, M. S. (2019). Fast EV charging station integration with grid ensuring optimal and quality power exchange. Engineering Science and Technology, an International Journal, 22, 1, 143-152.
  • [11] Mehrjerdi, H. (2019). Off-grid solar powered charging station for electric and hydrogen vehicles including fuel cell and hydrogen storage. International journal of hydrogen Energy, 44, 23, 11574-11583.
  • [12] Minh, P. V., Le Quang, S., Pham, M. H. (2021). Technical economic analysis of photovoltaic-powered electric vehicle charging stations under different solar irradiation conditions in Vietnam. Sustainability, 13, 6, 3528.
  • [13] Liao, J. T., Huang, H. W., Yang, H. T., Li, D. (2021). Decentralized V2G/G2V scheduling of EV charging stations by considering the conversion efficiency of bidirectional chargers. Energies, 14, 4, 962.
  • [14] Solar Energy (2022). Energy efficiency & renewable energy, from https://www.energy.gov/eere/solar/howdoes- solar-work [Access Date: 06.12.2022].
  • [15] Kadeval, H. N., Patel, V. K. (2021). Mathematical modelling for solar cell, panel and array for photovoltaic system. Journal of Applied and Natural Science, 13, 3, 937-943.
  • [16] K. Kachhiya, “MATLAB / Simulink Model of Solar PV Module and MPPT Algorithm,” Natl. Conf. Recent Trends Eng. Technol., vol. 13, 2011, p. 5.
  • [17] Mohammed, S. S., Devaraj, D. (2014). Simulation and analysis of stand-alone photovoltaic system with boost converter using MATLAB/Simulink. International Conference on Circuits, Power and Computing Technologies [ICCPCT-2014], 814-821.
  • [18] Singh, V. K., Sahu, Y., Mishra, P. K., Tiwari, P., Maurya, R. (2020). Charging of Electric Vehicles Battery Using Bidirectional Converter. International Conference on Electrical and Electronics Engineering (ICE3), 82-88.
  • [19] Khedekar, V. G., Anandh, N., Paragond, L. R. S., Kulkarni, P. (2019). Bidirectional on-board EV battery charger with V2H application. Innovations in Power and Advanced Computing Technologies (i-PACT), 1, 1-5.
  • [20] Salman, S., Ai, X., Wu, Z. (2018). Design of a P-&-O algorithm based MPPT charge controller for a standalone 200W PV system. Protection and Control of Modern Power Systems, 3, 1, 1-8.
  • [21] Rai, A. K., Kaushika, N. D., Singh, B., Agarwal, N. (2011). Simulation model of ANN based maximum power point tracking controller for solar PV system. Solar Energy Materials and Solar Cells, 95, 2, 773-778.
  • [22] Premkumar, K., Manikandan, B. V. (2014). Adaptive Neuro-Fuzzy Inference System based speed controller for brushless DC motor. Neurocomputing, 138, 260-270.
  • [23] Barker, T., Ghosh, A. (2022). Neural Network-Based PV Powered Electric Vehicle Charging Station. IEEE Delhi Section Conference (DELCON), 1-6.
  • [24] Güneşer, M. T., Erdil, E., Cernat, M., Öztürk, T. (2015). Improving the energy management of a solar electric vehicle. Advances in Electrical and Computer Engineering, 15, 4, 53-62.
There are 24 citations in total.

Details

Primary Language English
Subjects Engineering
Journal Section Research Articles
Authors

Samatar Abdı Yonıs 0000-0002-8926-5229

Ziyodulla Yusupov 0000-0002-0798-2903

Muhammet Tahir Guneser 0000-0003-3502-2034

Early Pub Date June 6, 2023
Publication Date June 30, 2023
Acceptance Date March 24, 2023
Published in Issue Year 2023

Cite

APA Abdı Yonıs, S., Yusupov, Z., & Guneser, M. T. (2023). Designing a Solar PV-Battery based on Electric Vehicle Charging Station. International Journal of Engineering and Innovative Research, 5(2), 123-136. https://doi.org/10.47933/ijeir.1231500

88x31.png

This work is licensed under a Creative Commons Attribution 4.0 International License