Research Article
BibTex RIS Cite

Development Of A Distance Education Experiment Set That Allows The Ratio Of Chemical Components In Hydroponic Farming Nutrient Liquid To Be Estimated By Artificial Intelligence

Year 2024, , 116 - 125, 14.07.2024
https://doi.org/10.47933/ijeir.1481594

Abstract

With the increase and development of electronic systems, especially with the advancement of artificial intelligence (AI) applications, AI has begun to meet many of humanity's needs. Due to the rapidly increasing human population and the decreasing availability of fertile land, the use of AI has become necessary in rapidly expanding soilless agriculture practices. One of the biggest challenges in soilless agriculture is the inability to accurately determine the chemical content of nutrient solutions in real-time. In this study, the results of inductively coupled plasma optical emission spectrometry (ICP-OES) and electrical conductivity (EC) were obtained for 300 hydroponic agriculture nutrient solutions containing different ratios of Mg, K, and P minerals. The obtained data were evaluated using artificial neural networks in Matlab® software, with ICP-OES results as inputs and EC results as outputs (3 inputs-1 output). The results were uploaded to the cloud system using Firebase, and an EC meter capable of communicating with the cloud was developed. The results of the produced EC meter were compared with the data in the cloud, and attempts were made to determine the element ratios in the nutrient solution content of 300 samples using artificial neural networks. The Pearson Correlation Constant (R) was found to be 0.860 for all data. According to the test results obtained with the produced system, the success rate of the artificial neural network in detecting the chemical composition of the nutrient solution ranged from 53.2% to 87.4% depending on the chemical ratios in the nutrient solution.

Supporting Institution

"Scientific Research Projects Coordination Unit (B.A.P)" of Isparta Applied Sciences University

Project Number

2023-D3-0218.

Thanks

We would like to express our gratitude to Celal Alp YAVRU, one of the authors of this article, and to the Council of Higher Education (YÖK) for their support within the scope of the 100/2000 Doctoral Program. This study was supported by the "Scientific Research Projects Coordination Unit (B.A.P)" of Isparta Applied Sciences University under project number 2023-D3-0218.

References

  • [1] Özaydın, G., Çelik, Y. (2018). R and D Inovation in Agricultural Sector. Turkish Journal of Agricultural Ecomomics, 25, 1, 1-13, https://doi.org/10.24181/tarekoder.464556.
  • [2] Andrade, D., Pasini F., Scarano, F.R., (2020). Syntropy and Innovation in Agriculture. Current Opinion Environmental Sustain 45, 1, 20–24, https://doi.org/10.1016/j.cosust.2020.08.003.
  • [3] Özkan Ş., (2014). 2012-2013 Yıllarında Türkiye’nin Akdeniz Bölgesi’nde gelişmekte olan Topraksız tarım ürünlerinin bugünkü durumu ve gelecekle ilgili tahminler. Giresun Üniversitesi, Sosyal Bilimler Enstitüsü, İktisat Anabilim Dalı, Yüksek Lisans Tezi, 1-84.
  • [4] Azizoglu, U., Yilmaz, N., Simsek, O., Ibal, J.C., Tagele, S.B., Shin, J.H., (2021). The Fate of Plant Growth-Promoting Rhizobacteria in Soilless Agriculture: Future Perspectives. 3 Biotech, 11, 382, 1-13, https://doi.org/10.1007/s13205-021-02941-2.
  • [5] Ünal, O., (2010). İnorganik ve Organik Maddeler KarıştırılmıĢ Cibrenin, Fide Üretiminde ve Topraksız Tarımda, Yetiştirme Ortamı Olarak Kullanım Olanakları. Namık Kemal Üniversitesi, Fen Bilimleri Enstitüsü, Bahçe Bitkileri Anabilim Dalı, Yüksek Lisans Tezi, 1-57.
  • [6] Çakmak, P., (2011). Farklı dikim zamanları ve organik gübrelerin topraksız tarım koşullarında kıvırcık yapraklı salata (lactuca sativa var. Crispa) yetiştiriciliğinde verim ve kalite özelliklerine etkisi. Gaziosmanpaşa Üniversitesi, Fen Bilimleri Enstitüsü, Bahçe Bitkileri Anabilim Dalı, Yüksek Lisans Tezi, 1-54.
  • [7] Tarı, O., (2021). Topraksız Tarımda Bazı Çilek Çeşitlerinin Performansları. Aydın Adnan Menderes Üniversitesi Fen Bilimleri Enstitüsü Bahçe Bitkileri Yüksek Lisans Tezi, 1-53.
  • [8] EI-Kazzaz, A., (2017). Soilless Agriculture a New and Advanced Method for Agriculture Development: an Introduction. Agricultural Research & Technology: Open Access Journal, 3, 2, 1-9, https://doi.org/10.19080/artoaj.2017.03.555610.
  • [9] Hendrickson, T., Dunn, B. L., Goad, C., Hu, B., Singh, H. (2022). Effects of Elevated Water Temperature on Growth of Basil Using Nutrient Film Technique. HortScience, 57(8), 925-932, https://doi.org/10.21273/HORTSCI16690-22
  • [10] Husna, N., Hanafiah, M., Samsuri, S., Yusup, S., Amran, N.A., (2019). Effects of nutrıents on the growth of pak-choı (brassıca chınensıs l.) Seedlıngs ın a hydroponıc system. A Journal of Science and Technology, DOI: 10.61762/pjstvol2iss1art4920.
  • [11] Saroosh, R.A., Cresswell G.C., (2014). Effects of Hydroponic Solution Composition, Electrical Conductivity and Plant Spacing on Yield and Quality of Strawberries. Australian Journal of Experimental Agriculture, 34, 4, 529-535, https://doi.org/10.1071/EA9940529.
  • [12] Fuangthong, Pramokchon, M. P., (2018). Automatic Control of Electrical Conductivity and PH Using Fuzzy Logic for Hydroponics System, 3rd International Conference on Digital Arts, Media and Technology, 65–70, doi.org/10.1109/ICDAMT.2018.8376497.
  • [13] A.L. Seyfferth, D.R. Parker, Determination of low levels of perchlorate in lettuce and spinach using ion chromatography-electrospray ionization mass spectrometry (IC-ESI-MS), J Agric Food Chem 54 (2006) 2012–2017. https://doi.org/10.1021/jf052897v.
  • [14] Öztürk, K., Şahin, M.E., (2018). A General View of Artificial Neural Networks and Artificial Intelligence. Takvim-i Vekayi, 6, 1, 25–36.
  • [15] Söylemez, S., Yıldız, A., (2017). Domates Meyvesinin Element İçeriği Üzerine Farklı Anaçların ve Besin Kaynaklı EC Seviyelerinin Etkisi. Turkısh Journal Of Agrıcultural And Natural Sciences, 4, 2, 155-161.
  • [16] Olesik, J.W., (1991). Elemental Analysis Using An Evaluation and assesment of Remaining Problems. Analytical Chemistry, 63, 1, 12-21, https://doi.org/10.1021/ac00001a711.
  • [17] Rowland, A.P., Haygarth, P.M., (1997). Determination of Total Dissolved Phosphorus in Soil Solutions, Journal of Environmental Quality. 26, 2, 410–415, doi.org/10.2134/jeq1997.00472425002600020011x.
  • [18] Cherevko, S., Mayrhofer, K.J.J., (2018). On-Line Inductively Coupled Plasma Spectrometry İn Electrochemistry: Basic Principles And Applications. Encyclopedia of Interfacial Chemistry: Surface Science and Electrochemistry, 1, 1, 326–335 https://doi.org/10.1016/B978-0-12-409547-2.13292-5.
  • [19] Altınel, Ö., (2009). PLCTabanlı Su İletkenlđk Ölçümü Ve Depolama Kontrolü. Sakarya Üniversitesi, Fen Bilimleri Enstitüsü, Elektrik Elektronik Mühendisliği Anabilim Dalı, Yüksek Lisans Tezi, 1-127.
  • [20] Taheri, R., (2015). Electrical conductivity of CuO nanofluids, Internatioanl Journal of Nano Dimension, 6, 1, 66-71.
  • [21] Bre, F., Gimenez, J.M., Fachinotti, V.D., (2018). Prediction Of Wind Pressure Coefficients On Building Surfaces Using Artificial Neural Networks. Energy Buildings, 158, 1, 1429-1441, https://doi.org/10.1016/j.enbuild.2017.11.045.

HİDROPONİK TARIM BESİN SIVILARINDAKİ KİMYASAL BİLEŞENLERİN ORANININ YAPAY ZEKA İLE TAHMİN EDİLMESİNE İZİN VEREN UZAKTAN EĞİTİM DENEY SETİ GELİŞTİRİLMESİ

Year 2024, , 116 - 125, 14.07.2024
https://doi.org/10.47933/ijeir.1481594

Abstract

Elektronik sistemlerin artması ve gelişmesiyle birlikte, özellikle yapay zeka (AI) uygulamalarının ilerlemesiyle birlikte yapay zeka, insanlığın birçok ihtiyacını karşılamaya başladı. Hızla artan insan nüfusu ve verimli toprakların azalan mevcudiyeti nedeniyle, hızla yaygınlaşan topraksız tarım uygulamalarında yapay zeka kullanımı gerekli hale geldi. Topraksız tarımdaki en büyük zorluklardan biri, besin çözeltilerinin kimyasal içeriğinin gerçek zamanlı olarak doğru bir şekilde belirlenememesidir. Bu çalışmada farklı oranlarda Mg, K ve P mineralleri içeren 300 hidroponik tarım besin çözeltisi için indüktif eşleşmiş plazma optik emisyon spektrometresi (ICP-OES) ve elektriksel iletkenlik (EC) sonuçları elde edildi. Elde edilen veriler Matlab® yazılımındaki yapay sinir ağları kullanılarak, ICP-OES sonuçları girdi, EC sonuçları ise çıktı olarak (3 giriş-1 çıkış) değerlendirildi. Sonuçlar Firebase kullanılarak bulut sistemine yüklendi ve bulutla iletişim kurabilen EC ölçüm cihazı geliştirildi. Üretilen EC sayacının sonuçları buluttaki verilerle karşılaştırılarak, yapay sinir ağları kullanılarak 300 numunenin besin çözeltisi içeriğindeki element oranları belirlenmeye çalışıldı. Tüm veriler için Pearson Korelasyon Sabiti (R) 0,860 olarak bulunmuştur. Üretilen sistemle elde edilen test sonuçlarına göre yapay sinir ağının besin çözeltisinin kimyasal bileşimini tespit etmedeki başarı oranı, besin çözeltisindeki kimyasal oranlara bağlı olarak %53,2 ile %87,4 arasında değişmektedir.

Project Number

2023-D3-0218.

References

  • [1] Özaydın, G., Çelik, Y. (2018). R and D Inovation in Agricultural Sector. Turkish Journal of Agricultural Ecomomics, 25, 1, 1-13, https://doi.org/10.24181/tarekoder.464556.
  • [2] Andrade, D., Pasini F., Scarano, F.R., (2020). Syntropy and Innovation in Agriculture. Current Opinion Environmental Sustain 45, 1, 20–24, https://doi.org/10.1016/j.cosust.2020.08.003.
  • [3] Özkan Ş., (2014). 2012-2013 Yıllarında Türkiye’nin Akdeniz Bölgesi’nde gelişmekte olan Topraksız tarım ürünlerinin bugünkü durumu ve gelecekle ilgili tahminler. Giresun Üniversitesi, Sosyal Bilimler Enstitüsü, İktisat Anabilim Dalı, Yüksek Lisans Tezi, 1-84.
  • [4] Azizoglu, U., Yilmaz, N., Simsek, O., Ibal, J.C., Tagele, S.B., Shin, J.H., (2021). The Fate of Plant Growth-Promoting Rhizobacteria in Soilless Agriculture: Future Perspectives. 3 Biotech, 11, 382, 1-13, https://doi.org/10.1007/s13205-021-02941-2.
  • [5] Ünal, O., (2010). İnorganik ve Organik Maddeler KarıştırılmıĢ Cibrenin, Fide Üretiminde ve Topraksız Tarımda, Yetiştirme Ortamı Olarak Kullanım Olanakları. Namık Kemal Üniversitesi, Fen Bilimleri Enstitüsü, Bahçe Bitkileri Anabilim Dalı, Yüksek Lisans Tezi, 1-57.
  • [6] Çakmak, P., (2011). Farklı dikim zamanları ve organik gübrelerin topraksız tarım koşullarında kıvırcık yapraklı salata (lactuca sativa var. Crispa) yetiştiriciliğinde verim ve kalite özelliklerine etkisi. Gaziosmanpaşa Üniversitesi, Fen Bilimleri Enstitüsü, Bahçe Bitkileri Anabilim Dalı, Yüksek Lisans Tezi, 1-54.
  • [7] Tarı, O., (2021). Topraksız Tarımda Bazı Çilek Çeşitlerinin Performansları. Aydın Adnan Menderes Üniversitesi Fen Bilimleri Enstitüsü Bahçe Bitkileri Yüksek Lisans Tezi, 1-53.
  • [8] EI-Kazzaz, A., (2017). Soilless Agriculture a New and Advanced Method for Agriculture Development: an Introduction. Agricultural Research & Technology: Open Access Journal, 3, 2, 1-9, https://doi.org/10.19080/artoaj.2017.03.555610.
  • [9] Hendrickson, T., Dunn, B. L., Goad, C., Hu, B., Singh, H. (2022). Effects of Elevated Water Temperature on Growth of Basil Using Nutrient Film Technique. HortScience, 57(8), 925-932, https://doi.org/10.21273/HORTSCI16690-22
  • [10] Husna, N., Hanafiah, M., Samsuri, S., Yusup, S., Amran, N.A., (2019). Effects of nutrıents on the growth of pak-choı (brassıca chınensıs l.) Seedlıngs ın a hydroponıc system. A Journal of Science and Technology, DOI: 10.61762/pjstvol2iss1art4920.
  • [11] Saroosh, R.A., Cresswell G.C., (2014). Effects of Hydroponic Solution Composition, Electrical Conductivity and Plant Spacing on Yield and Quality of Strawberries. Australian Journal of Experimental Agriculture, 34, 4, 529-535, https://doi.org/10.1071/EA9940529.
  • [12] Fuangthong, Pramokchon, M. P., (2018). Automatic Control of Electrical Conductivity and PH Using Fuzzy Logic for Hydroponics System, 3rd International Conference on Digital Arts, Media and Technology, 65–70, doi.org/10.1109/ICDAMT.2018.8376497.
  • [13] A.L. Seyfferth, D.R. Parker, Determination of low levels of perchlorate in lettuce and spinach using ion chromatography-electrospray ionization mass spectrometry (IC-ESI-MS), J Agric Food Chem 54 (2006) 2012–2017. https://doi.org/10.1021/jf052897v.
  • [14] Öztürk, K., Şahin, M.E., (2018). A General View of Artificial Neural Networks and Artificial Intelligence. Takvim-i Vekayi, 6, 1, 25–36.
  • [15] Söylemez, S., Yıldız, A., (2017). Domates Meyvesinin Element İçeriği Üzerine Farklı Anaçların ve Besin Kaynaklı EC Seviyelerinin Etkisi. Turkısh Journal Of Agrıcultural And Natural Sciences, 4, 2, 155-161.
  • [16] Olesik, J.W., (1991). Elemental Analysis Using An Evaluation and assesment of Remaining Problems. Analytical Chemistry, 63, 1, 12-21, https://doi.org/10.1021/ac00001a711.
  • [17] Rowland, A.P., Haygarth, P.M., (1997). Determination of Total Dissolved Phosphorus in Soil Solutions, Journal of Environmental Quality. 26, 2, 410–415, doi.org/10.2134/jeq1997.00472425002600020011x.
  • [18] Cherevko, S., Mayrhofer, K.J.J., (2018). On-Line Inductively Coupled Plasma Spectrometry İn Electrochemistry: Basic Principles And Applications. Encyclopedia of Interfacial Chemistry: Surface Science and Electrochemistry, 1, 1, 326–335 https://doi.org/10.1016/B978-0-12-409547-2.13292-5.
  • [19] Altınel, Ö., (2009). PLCTabanlı Su İletkenlđk Ölçümü Ve Depolama Kontrolü. Sakarya Üniversitesi, Fen Bilimleri Enstitüsü, Elektrik Elektronik Mühendisliği Anabilim Dalı, Yüksek Lisans Tezi, 1-127.
  • [20] Taheri, R., (2015). Electrical conductivity of CuO nanofluids, Internatioanl Journal of Nano Dimension, 6, 1, 66-71.
  • [21] Bre, F., Gimenez, J.M., Fachinotti, V.D., (2018). Prediction Of Wind Pressure Coefficients On Building Surfaces Using Artificial Neural Networks. Energy Buildings, 158, 1, 1429-1441, https://doi.org/10.1016/j.enbuild.2017.11.045.
There are 21 citations in total.

Details

Primary Language English
Subjects Artificial Intelligence (Other)
Journal Section Research Articles
Authors

Celal Alp Yavru 0000-0003-4932-0382

İsmail Serkan Üncü 0000-0003-4345-761X

Project Number 2023-D3-0218.
Early Pub Date June 24, 2024
Publication Date July 14, 2024
Submission Date May 10, 2024
Acceptance Date June 24, 2024
Published in Issue Year 2024

Cite

APA Yavru, C. A., & Üncü, İ. S. (2024). Development Of A Distance Education Experiment Set That Allows The Ratio Of Chemical Components In Hydroponic Farming Nutrient Liquid To Be Estimated By Artificial Intelligence. International Journal of Engineering and Innovative Research, 6(2), 116-125. https://doi.org/10.47933/ijeir.1481594

88x31.png

This work is licensed under a Creative Commons Attribution 4.0 International License