Research Article
BibTex RIS Cite

30 EKİM 2020 İZMİR DEPREMİ SIRASINDA KARMA YAPILARDA DETAYLI BİR GÖZLEM VE SAHA ARAŞTIRMASI

Year 2025, Volume: 7 Issue: 2, 62 - 83, 08.12.2025
https://doi.org/10.47933/ijeir.1638553

Abstract

30 Ekim 2020 İzmir Depremi (Mw = 6,9), özellikle Türkiye'nin İzmir ili Karaburun bölgesindeki yığma yapıları etkileyerek önemli yapısal hasara ve can kaybına neden olmuştur. Bu çalışma, deprem sonrasında yığma yapılarda gözlemlenen hasar desenleri, hasar mekanizmaları ve yapısal eksikliklerin ayrıntılı bir saha araştırmasını sunmaktadır. Bulgular, ciddi hasar ve çökmelere katkıda bulunan önemli bir faktörün, özellikle geleneksel inşaat tekniklerinin geçerli olduğu kırsal alanlarda, modern deprem kodlarına ve mühendislik standartlarına uyulmaması olduğunu vurgulamaktadır. Hasar seviyelerinin sistematik bir sınıflandırması yapılmış ve yığma binaların yapısal kırılganlıkları malzeme özellikleri, işçilik kalitesi ve inşaat yöntemleri açısından analiz edilmiştir. Kötü harç kalitesinin, duvarlar arasındaki yetersiz bağlantının, ağır toprak çatıların ve yanal donatı eksikliğinin bu yapıların sismik kırılganlığını önemli ölçüde artırdığı gözlemlenmiştir. Ayrıca, depremin COVID-19 salgını sırasında meydana gelmesi, acil müdahale ve afet sonrası iyileştirme zorluklarını daha da artırmıştır. Çalışma, kırsal ve kentsel duvarcılık yapılarında sismik risk azaltma stratejilerine acil ihtiyaç olduğunun altını çizerek deprem dayanıklılığını artırmak için güçlendirme, uygun malzeme seçimi ve iyileştirilmiş mühendislik uygulamalarının önemini vurgulamaktadır. Bu depremden alınan dersler, sismik olarak aktif bölgelerdeki tarihi ve yerel duvarcılık yapıları için gelecekteki sismik tehlike hazırlığı ve politika iyileştirmeleri için değerli içgörüler sunmaktadır.

References

  • [1] Uva G, Sangiorgio V, Ruggieri S, Fatiguso F. “Structural vulnerability assessment of masonry churches supported by user-reported data and modern Internet of Things (IoT)”, Measurement 131; 183-192, 2019
  • [2] Borri A, Sisti R, Castori G, Corradi M, De Maria A. “Analysis of the Collapse mechanisms of three churches in Valnerina struck by the 2016 Italian Earthquake”. in: Proc. of the XVII ANIDIS Conference L’ingegneria sismica in Italia, Pistoia, 17-21 September, 2017.
  • [3] Kouskouna V, Ganas A, Kleanthi M, Kassaras I, Sakellariou N, Sakkas G, Valkaniotis S, Manousou E, Bozionelos G, Tsironi V, Karamitros I, Tavoularis N, Papaioannou C, Bossu R. “Evaluation of macroseismic intensity, strong ground motion pattern and fault model of the 19 July 2019 Mw5.1 earthquake west of Athens”. J Seismol 25:747–769, 2021.
  • [4] Karakostas V, Tan O, Kostoglou A, Papadimitriou E, Bonatis P. “Seismotectonic implications of the 2020 Samos, Greece, Mw 7.0 mainshock based on high-resolution aftershock relocation and source slip model”. Acta Geophysica,1-18, 2021.
  • [5] Celep Z, Erken A, Taskin, B, Ilki A. “Failures of masonry and concrete buildings during the March 8, 2010 Kovancılar and Palu (Elazığ) earthquakes in Turkey”. Engineering Failure Analysis, 18(3), 868-889, 2011.
  • [6] Akkar S, Aldemir A, Askan A, Bakır S, Canbay E, Demirel İO, Erberik MA, Gülerce Z, Gülkan P, Kalkan E, Prakash S, Sandıkkaya MA, Sevilgen V, Ugurhan B, Yenier E. “8 March 2010 Elazıg-Kovancılar (Turkey) Earthquake: Observations on Ground Motions and Building Damage” Seismological Research Letters, Vol 82, No. 1, pp.42-58, 2011.
  • [7] Calayır Y, Sayın E, Yon B. “Performance of structures in the rural area during the March 8, 2010 Elazıg˘-Kovancılar earthquake” Natural Hazards, 61:703–717, 2012.
  • [8] Sayin E, Yon B, Calayir Y, Gor M. "Construction failures of masonry and adobe buildings during the 2011 Van earthquakes in Turkey", Structural engineering and mechanics: An international journal, 51(3), 503-518, 2014
  • [9] Temür R, Damcı, Davas SÖ, Öser C, Sarğın S, Şekerci Ç, “Structural and geotechnical investigations on Sivrice earthquake (Mw = 6.8), January 24, 2020” Natural Hazards, 106:401–434, 2021.
  • [10] Stepinac M, Lourenco PB, Atalić J, Kišiček T, Uroš M, Baniček M, Šavor NM. “Damage classification of residential buildings in historical downtown after the ML5.5 earthquake in Zagreb, Croatia in 2020”, International Journal of Disaster Risk Reduction 56(11):102140, 2021
  • [11] Mavroulis S, Mavrouli M, Lekkas E. “A Geological and hydrometeorological hazards and related disasters amid COVID-19 pandemic in Greece: Post-disaster trends and factors affecting the COVID-19 evolution in affected areas” Safety Science 138 105236, 2021.
  • [12] Mavroulis S, Triantafyllou I, Karavias A, Gogou M, Katsetsiadou KN, Lekkas E, Parcharidis I. “Primary and secondary environmental effects triggered by the 30 October 2020, Mw= 7.0, Samos (Eastern Aegean Sea, Greece) earthquake based on post-event field surveys and InSAR analysis”, Applied Sciences, 11(7), 3281, 2021.
  • [13] Vadaloukas G, Vintzilaiou E, Ganas A, Giarlelis C, Ziotopoulou K, Theodoulidis N, Karasante E, Margaris V, Mylonakis G, Papachristidis A. “Samos Earthquake, 30 October 2020—Preliminary Report”, Hellenic Association of Earthquake Engineering: Athens, Greece, 65p, 2020.
  • [14] Roche V, Jolivet L, Papanikolaou D, Bozkurtf E, Menant A, Rimmelé G. “Slab fragmentation beneath the Aegean/Anatolia transition zone: Insights from the tectonic and metamorphic evolution of the Eastern Aegean region”, Tectonophysics 2019, 754, 101–129, 2019.
  • [15] Selvitopu F. “Seismic Hazard and Countermeasures in Izmir, Urban Settlements and Natural Disasters, Edited by A. Özlem”, UIAChamber of Architects of Turkey, p.p.: 180-186, 1999.
  • [16] Kalogeras I, Melis NS, Kalligeris N. “The earthquake of October 30th, 2020 at Samos, Eastern Aegean Sea”, Greece. Report published at EMSC, 2020.
  • [17] Kutluca AK. “The Izmir City and Natural Hazard Risks”, 46th Congress of the European Regional Science Association: "Enlargement, Southern Europe and the Mediterranean", August 30th - September 3rd, 2006, Volos, Greece, 2006.
  • [18] Usta P. “A new approximate method for earthquake behaviour and seismic risk assessment of historical buildings in Izmir historical city center”, (Phd Thesis), ISUBÜ, Isparta, Turkey, 2016.
  • [19] Sopacı E, Özacar AA, Gülerce Z, Askan GA. “The october 30, 2020 izmir-seferihisar offshore (samos) earthquake (mw= 6.6) reconnaissance observations and findings”, (report no: METU/EERC 2020-03.
  • [20] Şimşek Ç. “Rural Masonry Buildings and Social and Institutional Factors for Earthquake Safety, YDGA2005 - Workshop on Increasing the Earthquake Safety of Masonry Buildings”, Middle East Technical University, Ankara, 49-63, 2005.
  • [21] Çırak İF. “Yığma Yapılarda Oluşan Hasarlar, Nedenleri ve Öneriler”, SDU İnternational Technologic Science, Vol.3, No 2, 55-60, 2011.
  • [22] Bayülke N. “Earthquake Behavior and Safety of Masonry Buildings”, 1st Turkey Earthquake Engineering and Seismology Conference, 11- 14 October, ODTÜ, Ankara, 23-36, 2011.
  • [23] Batur N, Kaplan SA. Masonry Design and Analysis, Final Thesis, Istanbul University, 13-15, 2006.
  • [24] Republic of Turkey Ministry of Environment and Urbanization, “TMEU”, https://csb.gov.tr/en (05.07.2021).
  • [25] Celep Z, Kumbasar N. Deprem Mühendisliğine Giriş ve Depreme Dayanıklı Yapı Tasarımı, Istanbul, Türkiye, Beta, 2004.

SEISMIC PERFORMANCE AND FAILURE MECHANISMS OF MASONRY BUILDINGS DURING THE OCTOBER 30, 2020 İZMIR EARTHQUAKE

Year 2025, Volume: 7 Issue: 2, 62 - 83, 08.12.2025
https://doi.org/10.47933/ijeir.1638553

Abstract

The October 30, 2020, İzmir Earthquake (Mw = 6.9) caused significant structural damage and human casualties, particularly affecting masonry buildings in the Karaburun region of İzmir, Turkey. This study presents a detailed field investigation of the failure patterns, damage mechanisms, and structural deficiencies observed in masonry structures following the earthquake. The findings highlight that a major contributing factor to the severe damage and collapses was the lack of adherence to modern seismic codes and engineering standards, particularly in rural areas where traditional construction techniques prevail. A systematic classification of damage levels was conducted, and the structural vulnerabilities of masonry buildings were analyzed in terms of material properties, workmanship quality, and construction methods. It was observed that poor mortar quality, inadequate connection between walls, heavy earthen roofs, and lack of lateral reinforcement significantly increased the seismic vulnerability of these structures. Furthermore, the earthquake occurred during the COVID-19 pandemic, compounding the challenges in emergency response and post-disaster recovery. The study underscores the urgent need for seismic risk mitigation strategies in rural and urban masonry structures, emphasizing the importance of retrofitting, proper material selection, and improved engineering practices to enhance earthquake resilience. Lessons from this earthquake provide valuable insights for future seismic hazard preparedness and policy improvements for historical and vernacular masonry structures in seismically active regions.

References

  • [1] Uva G, Sangiorgio V, Ruggieri S, Fatiguso F. “Structural vulnerability assessment of masonry churches supported by user-reported data and modern Internet of Things (IoT)”, Measurement 131; 183-192, 2019
  • [2] Borri A, Sisti R, Castori G, Corradi M, De Maria A. “Analysis of the Collapse mechanisms of three churches in Valnerina struck by the 2016 Italian Earthquake”. in: Proc. of the XVII ANIDIS Conference L’ingegneria sismica in Italia, Pistoia, 17-21 September, 2017.
  • [3] Kouskouna V, Ganas A, Kleanthi M, Kassaras I, Sakellariou N, Sakkas G, Valkaniotis S, Manousou E, Bozionelos G, Tsironi V, Karamitros I, Tavoularis N, Papaioannou C, Bossu R. “Evaluation of macroseismic intensity, strong ground motion pattern and fault model of the 19 July 2019 Mw5.1 earthquake west of Athens”. J Seismol 25:747–769, 2021.
  • [4] Karakostas V, Tan O, Kostoglou A, Papadimitriou E, Bonatis P. “Seismotectonic implications of the 2020 Samos, Greece, Mw 7.0 mainshock based on high-resolution aftershock relocation and source slip model”. Acta Geophysica,1-18, 2021.
  • [5] Celep Z, Erken A, Taskin, B, Ilki A. “Failures of masonry and concrete buildings during the March 8, 2010 Kovancılar and Palu (Elazığ) earthquakes in Turkey”. Engineering Failure Analysis, 18(3), 868-889, 2011.
  • [6] Akkar S, Aldemir A, Askan A, Bakır S, Canbay E, Demirel İO, Erberik MA, Gülerce Z, Gülkan P, Kalkan E, Prakash S, Sandıkkaya MA, Sevilgen V, Ugurhan B, Yenier E. “8 March 2010 Elazıg-Kovancılar (Turkey) Earthquake: Observations on Ground Motions and Building Damage” Seismological Research Letters, Vol 82, No. 1, pp.42-58, 2011.
  • [7] Calayır Y, Sayın E, Yon B. “Performance of structures in the rural area during the March 8, 2010 Elazıg˘-Kovancılar earthquake” Natural Hazards, 61:703–717, 2012.
  • [8] Sayin E, Yon B, Calayir Y, Gor M. "Construction failures of masonry and adobe buildings during the 2011 Van earthquakes in Turkey", Structural engineering and mechanics: An international journal, 51(3), 503-518, 2014
  • [9] Temür R, Damcı, Davas SÖ, Öser C, Sarğın S, Şekerci Ç, “Structural and geotechnical investigations on Sivrice earthquake (Mw = 6.8), January 24, 2020” Natural Hazards, 106:401–434, 2021.
  • [10] Stepinac M, Lourenco PB, Atalić J, Kišiček T, Uroš M, Baniček M, Šavor NM. “Damage classification of residential buildings in historical downtown after the ML5.5 earthquake in Zagreb, Croatia in 2020”, International Journal of Disaster Risk Reduction 56(11):102140, 2021
  • [11] Mavroulis S, Mavrouli M, Lekkas E. “A Geological and hydrometeorological hazards and related disasters amid COVID-19 pandemic in Greece: Post-disaster trends and factors affecting the COVID-19 evolution in affected areas” Safety Science 138 105236, 2021.
  • [12] Mavroulis S, Triantafyllou I, Karavias A, Gogou M, Katsetsiadou KN, Lekkas E, Parcharidis I. “Primary and secondary environmental effects triggered by the 30 October 2020, Mw= 7.0, Samos (Eastern Aegean Sea, Greece) earthquake based on post-event field surveys and InSAR analysis”, Applied Sciences, 11(7), 3281, 2021.
  • [13] Vadaloukas G, Vintzilaiou E, Ganas A, Giarlelis C, Ziotopoulou K, Theodoulidis N, Karasante E, Margaris V, Mylonakis G, Papachristidis A. “Samos Earthquake, 30 October 2020—Preliminary Report”, Hellenic Association of Earthquake Engineering: Athens, Greece, 65p, 2020.
  • [14] Roche V, Jolivet L, Papanikolaou D, Bozkurtf E, Menant A, Rimmelé G. “Slab fragmentation beneath the Aegean/Anatolia transition zone: Insights from the tectonic and metamorphic evolution of the Eastern Aegean region”, Tectonophysics 2019, 754, 101–129, 2019.
  • [15] Selvitopu F. “Seismic Hazard and Countermeasures in Izmir, Urban Settlements and Natural Disasters, Edited by A. Özlem”, UIAChamber of Architects of Turkey, p.p.: 180-186, 1999.
  • [16] Kalogeras I, Melis NS, Kalligeris N. “The earthquake of October 30th, 2020 at Samos, Eastern Aegean Sea”, Greece. Report published at EMSC, 2020.
  • [17] Kutluca AK. “The Izmir City and Natural Hazard Risks”, 46th Congress of the European Regional Science Association: "Enlargement, Southern Europe and the Mediterranean", August 30th - September 3rd, 2006, Volos, Greece, 2006.
  • [18] Usta P. “A new approximate method for earthquake behaviour and seismic risk assessment of historical buildings in Izmir historical city center”, (Phd Thesis), ISUBÜ, Isparta, Turkey, 2016.
  • [19] Sopacı E, Özacar AA, Gülerce Z, Askan GA. “The october 30, 2020 izmir-seferihisar offshore (samos) earthquake (mw= 6.6) reconnaissance observations and findings”, (report no: METU/EERC 2020-03.
  • [20] Şimşek Ç. “Rural Masonry Buildings and Social and Institutional Factors for Earthquake Safety, YDGA2005 - Workshop on Increasing the Earthquake Safety of Masonry Buildings”, Middle East Technical University, Ankara, 49-63, 2005.
  • [21] Çırak İF. “Yığma Yapılarda Oluşan Hasarlar, Nedenleri ve Öneriler”, SDU İnternational Technologic Science, Vol.3, No 2, 55-60, 2011.
  • [22] Bayülke N. “Earthquake Behavior and Safety of Masonry Buildings”, 1st Turkey Earthquake Engineering and Seismology Conference, 11- 14 October, ODTÜ, Ankara, 23-36, 2011.
  • [23] Batur N, Kaplan SA. Masonry Design and Analysis, Final Thesis, Istanbul University, 13-15, 2006.
  • [24] Republic of Turkey Ministry of Environment and Urbanization, “TMEU”, https://csb.gov.tr/en (05.07.2021).
  • [25] Celep Z, Kumbasar N. Deprem Mühendisliğine Giriş ve Depreme Dayanıklı Yapı Tasarımı, Istanbul, Türkiye, Beta, 2004.
There are 25 citations in total.

Details

Primary Language English
Subjects Structural Engineering
Journal Section Research Article
Authors

Pınar Usta 0000-0001-9809-3855

Başak Zengin 0000-0003-3719-9423

Ali Ekber Sever 0000-0001-5314-5287

Elifnur Şakalak 0000-0002-8624-5337

Submission Date February 12, 2025
Acceptance Date June 18, 2025
Early Pub Date December 3, 2025
Publication Date December 8, 2025
Published in Issue Year 2025 Volume: 7 Issue: 2

Cite

APA Usta, P., Zengin, B., Sever, A. E., Şakalak, E. (2025). SEISMIC PERFORMANCE AND FAILURE MECHANISMS OF MASONRY BUILDINGS DURING THE OCTOBER 30, 2020 İZMIR EARTHQUAKE. International Journal of Engineering and Innovative Research, 7(2), 62-83. https://doi.org/10.47933/ijeir.1638553

88x31.png

This work is licensed under a Creative Commons Attribution 4.0 International License