Research Article
BibTex RIS Cite

MOBILE-BASED INTELLIGENT ELECTRONIC IDENTIFICATION SYSTEM: INTEGRATED OCR, COLOR-CODED RESISTOR VALUE DETECTION, AND YOLOV8-ASSISTED COMPONENT CLASSIFICATION

Year 2025, Volume: 7 Issue: 2, 100 - 119, 08.12.2025
https://doi.org/10.47933/ijeir.1725387

Abstract

In this study, a set of modules was developed to automatically recognize electronic components and retrieve related data. The developed system consists of three main modules. The first module detects texts on integrated circuit images using Optical Character Recognition (OCR) and retrieves the corresponding datasheet information of the identified component from a Firebase database. This module is designed with a user-friendly interface in a Flutter application, allowing users to upload images and view results. The second module includes an algorithm that automatically calculates resistor values by recognizing color bands from uploaded resistor images. This process is carried out using image processing techniques and color recognition algorithms. The third module automatically identifies components in motherboard images and detects various elements such as capacitors, diodes, ICs, inductors, oscillators, resistors, and transistors, also determining their quantities. This module sends the image to a server, where a machine learning-based model processes and classifies the components. This project not only provides users with significant ease and accuracy in electronic circuit analysis and quick information retrieval but is also designed for educational purposes. The application can be used as a supplementary tool for electronics education in schools and universities, while also possessing commercial potential by appealing to a broad user base.

References

  • [1] Bernacki, M. L., Greene, J. A., & Crompton, H. (2020). Mobile technology, learning, and achievement: Advances in understanding and measuring the role of mobile technology in education. Contemporary Educational Psychology, 60, 101827.
  • [2] Feisel, L. D., & Rosa, A. J. (2005). The role of the laboratory in undergraduate engineering education. Journal of engineering Education, 94(1), 121-130.
  • [3] Tuksanova, Z., & Nazarov, E. (2020). Effective use of innovative technologies in the education system. Интернаука, (16-3), 30-32.
  • [4] Ghoulam, K., Bouikhalene, B., Babori, A., & Falih, N. (2024). Exploring the impact of mobile devices in electronics e-learning: A case study evaluating the effectiveness of mobile learning applications in the field of electronics and sensors. Advances in Mobile Learning Educational Research, 4(2), 1058-1072.
  • [5] Gómez-García, G., Hinojo-Lucena, F. J., Alonso-García, S., & Romero-Rodríguez, J. M. (2021). Mobile learning in pre-service teacher education: perceived usefulness of AR technology in primary education. Education Sciences, 11(6), 275.
  • [6] Hendra, J. (2021). The Use of Mobile Apps to Enhance Student Learning in Digital Electronics Through Remote Laboratory.
  • [7] Xu, Y., Yang, G., Luo, J., & He, J. (2020). An electronic component recognition algorithm based on deep learning with a faster SqueezeNet. Mathematical Problems in Engineering, 2020(1), 2940286.
  • [8] Alhalabi, M., Ghazal, M., Haneefa, F., Yousaf, J., & El-Baz, A. (2021). Smartphone handwritten circuits solver using augmented reality and capsule deep networks for engineering education. Education Sciences, 11(11), 661.
  • [9] Abd Al Rahman, M., & Mousavi, A. (2020). A review and analysis of automatic optical inspection and quality monitoring methods in electronics industry. IEEE Access, 8, 183192-183271.
  • [10] Turhan, S., Bozkurt, M., & Şahin, D. Ö. (2023). Görüntü İşleme Tekniklerini Kullanarak Mobil Uygulama Tabanlı Optik Okuyucu Sisteminin Geliştirilmesi. Karamanoğlu Mehmetbey Üniversitesi Mühendislik ve Doğa Bilimleri Dergisi, 5(2), 169-190.
  • [11] Hatipoğlu, R. S. (2018). Elektronik malzeme montajı yapan al ve yerleştir makineleri için görüntü işleme yazılımının geliştirilmesi (Doctoral dissertation, Selçuk Üniversitesi Fen Bilimleri Enstitüsü).
  • [12] Mittal, R., & Garg, A. (2020, July). Text extraction using OCR: a systematic review. In 2020 second international conference on inventive research in computing applications (ICIRCA) (pp. 357-362). IEEE.
  • [13] Google Developers. (2024). Text recognition with ML Kit on Android. Google. https://developers. google.com/ml-kit/vision/text-recognition/v2
  • [14] Panigrahi, B. S., Royappa, A., Monga, S., Geetha, H., & Shaik, B. (2024, April). Deep Learning-Based Image Recognition for Electronic Components Identification. In 2024 5th International Conference on Recent Trends in Computer Science and Technology (ICRTCST) (pp. 215-220). IEEE.
  • [15] Ultralytics. (2025). YOLOv8 Models. Ultralytics Documentation. https://docs.ultralytics.com/models/ yolov8/, 10.05.2025.
  • [16] Bradski, G. The OpenCV Library. Dr. Dobb’s Journal of Software Tools. https://opencv.org/about/, 10.04.2025.

MOBİL TABANLI AKILLI ELEKTRONİK TANIMLAMA SİSTEMİ: ENTEGRE OCR, RENK KODLU DİRENÇ DEĞERİ TESPİTİ VE YOLOV8 DESTEKLİ BİLEŞEN SINIFLANDIRMASI

Year 2025, Volume: 7 Issue: 2, 100 - 119, 08.12.2025
https://doi.org/10.47933/ijeir.1725387

Abstract

Bu çalışmada, elektronik bileşenleri otomatik olarak tanıyıp ilgili verileri geri getiren bir dizi modül geliştirilmiştir. Geliştirilen sistem üç ana modülden oluşmaktadır. İlk modül, Optik Karakter Tanıma (OCR) kullanarak entegre devre görüntülerindeki metinleri algılar ve tanımlanan bileşenin ilgili veri sayfası bilgilerini Firebase veritabanından geri getirir. Bu modül, kullanıcıların görüntüleri yükleyip sonuçları görüntüleyebilmelerini sağlayan Flutter uygulamasında kullanıcı dostu bir arayüzle tasarlanmıştır. İkinci modül, yüklenen direnç görüntülerinden renk bantlarını tanıyarak direnç değerlerini otomatik olarak hesaplayan bir algoritma içerir. Bu işlem, görüntü işleme teknikleri ve renk tanıma algoritmaları kullanılarak gerçekleştirilir. Üçüncü modül, anakart görüntülerindeki bileşenleri otomatik olarak tanımlar ve kondansatörler, diyotlar, IC'ler, indüktörler, osilatörler, dirençler ve transistörler gibi çeşitli elemanları algılar ve bunların miktarlarını da belirler. Bu modül, görüntüyü bir sunucuya gönderir ve burada makine öğrenimi tabanlı bir model bileşenleri işler ve sınıflandırır. Bu proje, kullanıcılara elektronik devre analizi ve hızlı bilgi erişiminde önemli kolaylık ve doğruluk sağlamakla kalmaz, aynı zamanda eğitim amaçlı da tasarlanmıştır. Uygulama, okullarda ve üniversitelerde elektronik eğitimi için tamamlayıcı bir araç olarak kullanılabilirken, geniş bir kullanıcı kitlesine hitap ederek ticari potansiyele de sahiptir.

References

  • [1] Bernacki, M. L., Greene, J. A., & Crompton, H. (2020). Mobile technology, learning, and achievement: Advances in understanding and measuring the role of mobile technology in education. Contemporary Educational Psychology, 60, 101827.
  • [2] Feisel, L. D., & Rosa, A. J. (2005). The role of the laboratory in undergraduate engineering education. Journal of engineering Education, 94(1), 121-130.
  • [3] Tuksanova, Z., & Nazarov, E. (2020). Effective use of innovative technologies in the education system. Интернаука, (16-3), 30-32.
  • [4] Ghoulam, K., Bouikhalene, B., Babori, A., & Falih, N. (2024). Exploring the impact of mobile devices in electronics e-learning: A case study evaluating the effectiveness of mobile learning applications in the field of electronics and sensors. Advances in Mobile Learning Educational Research, 4(2), 1058-1072.
  • [5] Gómez-García, G., Hinojo-Lucena, F. J., Alonso-García, S., & Romero-Rodríguez, J. M. (2021). Mobile learning in pre-service teacher education: perceived usefulness of AR technology in primary education. Education Sciences, 11(6), 275.
  • [6] Hendra, J. (2021). The Use of Mobile Apps to Enhance Student Learning in Digital Electronics Through Remote Laboratory.
  • [7] Xu, Y., Yang, G., Luo, J., & He, J. (2020). An electronic component recognition algorithm based on deep learning with a faster SqueezeNet. Mathematical Problems in Engineering, 2020(1), 2940286.
  • [8] Alhalabi, M., Ghazal, M., Haneefa, F., Yousaf, J., & El-Baz, A. (2021). Smartphone handwritten circuits solver using augmented reality and capsule deep networks for engineering education. Education Sciences, 11(11), 661.
  • [9] Abd Al Rahman, M., & Mousavi, A. (2020). A review and analysis of automatic optical inspection and quality monitoring methods in electronics industry. IEEE Access, 8, 183192-183271.
  • [10] Turhan, S., Bozkurt, M., & Şahin, D. Ö. (2023). Görüntü İşleme Tekniklerini Kullanarak Mobil Uygulama Tabanlı Optik Okuyucu Sisteminin Geliştirilmesi. Karamanoğlu Mehmetbey Üniversitesi Mühendislik ve Doğa Bilimleri Dergisi, 5(2), 169-190.
  • [11] Hatipoğlu, R. S. (2018). Elektronik malzeme montajı yapan al ve yerleştir makineleri için görüntü işleme yazılımının geliştirilmesi (Doctoral dissertation, Selçuk Üniversitesi Fen Bilimleri Enstitüsü).
  • [12] Mittal, R., & Garg, A. (2020, July). Text extraction using OCR: a systematic review. In 2020 second international conference on inventive research in computing applications (ICIRCA) (pp. 357-362). IEEE.
  • [13] Google Developers. (2024). Text recognition with ML Kit on Android. Google. https://developers. google.com/ml-kit/vision/text-recognition/v2
  • [14] Panigrahi, B. S., Royappa, A., Monga, S., Geetha, H., & Shaik, B. (2024, April). Deep Learning-Based Image Recognition for Electronic Components Identification. In 2024 5th International Conference on Recent Trends in Computer Science and Technology (ICRTCST) (pp. 215-220). IEEE.
  • [15] Ultralytics. (2025). YOLOv8 Models. Ultralytics Documentation. https://docs.ultralytics.com/models/ yolov8/, 10.05.2025.
  • [16] Bradski, G. The OpenCV Library. Dr. Dobb’s Journal of Software Tools. https://opencv.org/about/, 10.04.2025.
There are 16 citations in total.

Details

Primary Language English
Subjects Modelling and Simulation, Artificial Intelligence (Other)
Journal Section Research Article
Authors

Kıyas Kayaalp 0000-0002-6483-1124

Bayram Bayraktar 0009-0009-7094-6225

Submission Date June 23, 2025
Acceptance Date October 19, 2025
Early Pub Date December 3, 2025
Publication Date December 8, 2025
Published in Issue Year 2025 Volume: 7 Issue: 2

Cite

APA Kayaalp, K., & Bayraktar, B. (2025). MOBILE-BASED INTELLIGENT ELECTRONIC IDENTIFICATION SYSTEM: INTEGRATED OCR, COLOR-CODED RESISTOR VALUE DETECTION, AND YOLOV8-ASSISTED COMPONENT CLASSIFICATION. International Journal of Engineering and Innovative Research, 7(2), 100-119. https://doi.org/10.47933/ijeir.1725387

88x31.png

This work is licensed under a Creative Commons Attribution 4.0 International License