Research Article
BibTex RIS Cite

ENHANCING REVERSE LOGISTICS EFFICIENCY THROUGH AI-SUPPORTED PARCEL DAMAGE CLASSIFICATION

Year 2025, Volume: 7 Issue: 2, 128 - 137, 08.12.2025
https://doi.org/10.47933/ijeir.1772209

Abstract

This study introduces an automated analysis method that uses AI and image processing to check the physical condition of boxes, aiming to support reverse logistics in cargo transport. The system processes images of cardboard boxes moving along a conveyor belt, using techniques like background removal, masking, and morphological operations to calculate damage scores. Based on these scores, it can accurately sort boxes into three categories: “Intact,” “Slightly Damaged,” and “Severely Damaged.” The low variance in the results shows the model is stable and consistent in its assessments. Compared to manual checks, this approach is faster, more reliable, and more structured—helping lower reverse logistics costs and improve customer satisfaction. Overall, the study shows how AI-driven image analysis can boost both efficiency and service quality in the logistics industry.

References

  • [1] D. S. Rogers and R. Tibben-Lembke, ‘An Examination Of Reverse Logistics Practices’, J. Bus. Logist., vol. 22, no. 2, pp. 129–148, Sep. 2001, doi: 10.1002/J.2158-1592.2001.TB00007.X.
  • [2] H. Richard, J. Davis, and H. Robert, ‘Reverse Logistics and Customer Satisfaction in E-Commerce: A Supply Chain Perspective on Returns Optimization’, 2025. Accessed: Aug. 24, 2025. [Online]. Available: https://www.researchgate.net/publication/392495594_Reverse_Logistics_and_Customer_Satisfaction_in_E-Commerce_A_Supply_Chain_Perspective_on_Returns_Optimization
  • [3] E. E. A. Jalil, ‘Customer satisfaction and reverse logistics in e-commerce: the case of klang valley’, in Proceedings of the 9th International Conference on Operations and Supply Chain Management, Ho Chi Minh City, Vietnam, 2019, pp. 15–18.
  • [4] A. Bhattacherjee, ‘Understanding information systems continuance: An expectation-confirmation model’, MIS Q. Manag. Inf. Syst., vol. 25, no. 3, pp. 351–370, 2001, doi: 10.2307/3250921.
  • [5] J. Huang, ‘Automated Logistics Packaging Inspection Based on Deep Learning and Computer Vision: A Two-Dimensional Flow Model Approach’, Trait. du Signal, vol. 42, no. 2, pp. 933–941, Apr. 2025, doi: 10.18280/TS.420228.
  • [6] L. Dörr, F. Brandt, M. Pouls, and A. Naumann, ‘Fully-Automated Packaging Structure Recognition in Logistics Environments’, Aug. 2020, Accessed: Aug. 24, 2025. [Online]. Available: https://arxiv.org/abs/2008.04620v1
  • [7] A. M. Roy and J. Bhaduri, ‘DenseSPH-YOLOv5: An automated damage detection model based on DenseNet and Swin-Transformer prediction head-enabled YOLOv5 with attention mechanism’, Adv. Eng. Informatics, vol. 56, p. 102007, Apr. 2023, doi: 10.1016/J.AEI.2023.102007.
  • [8] J. T. Mentzer et al., ‘Defining Supply Chain Management’, J. Bus. Logist., vol. 22, no. 2, pp. 1–25, Sep. 2001, doi: 10.1002/J.2158-1592.2001.TB00001.X.
  • [9] Z. Chen et al., ‘Efficient Parcel Damage Detection via Faster R-CNN: A Deep Learning Approach for Logistical Parcels’ Automated Inspection’, Lect. Notes Inst. Comput. Sci. Soc. Telecommun. Eng. LNICST, vol. 594 LNICST, pp. 268–279, 2024, doi: 10.1007/978-3-031-63992-0_18/FIGURES/4.
  • [10] S. Kim and S. D. Lee, ‘YOLO-Based Damage Detection with StyleGAN3 Data Augmentation for Parcel Information-Recognition System’, Comput. Mater. Contin., vol. 80, no. 1, pp. 195–215, Jul. 2024, doi: 10.32604/CMC.2024.052070.
  • [11] N. T. Van Nga, ‘The Impact of Reverse Logistics and Delivery on Customer Satisfaction in the supply chain in Vietnam’, J. Inf. Syst. Eng. Manag., vol. 10, no. 13s, pp. 233–239, Feb. 2025, doi: 10.52783/JISEM.V10I13S.2026.
  • [12] O. Ronneberger, P. Fischer, and T. Brox, ‘U-Net: Convolutional Networks for Biomedical Image Segmentation’, Lect. Notes Comput. Sci. (including Subser. Lect. Notes Artif. Intell. Lect. Notes Bioinformatics), vol. 9351, pp. 234–241, 2015, doi: 10.1007/978-3-319-24574-4_28.
  • [13] P. Cimili, J. Voegl, P. Hirsch, and M. Gronalt, ‘Ensemble Deep Learning for Automated Damage Detection of Trailers at Intermodal Terminals’, Sustain. 2024, Vol. 16, Page 1218, vol. 16, no. 3, p. 1218, Jan. 2024, doi: 10.3390/SU16031218.
  • [14] K. Govindan, H. Soleimani, and D. Kannan, ‘Reverse logistics and closed-loop supply chain: A comprehensive review to explore the future’, Eur. J. Oper. Res., vol. 240, no. 3, pp. 603–626, Feb. 2015, doi: 10.1016/J.EJOR.2014.07.012.
  • [15] T. Adebayo, ‘An evaluation of reverse logistics responsiveness and customer satisfaction in retailing’, Int. J. Res. Bus. Soc. Sci. (2147- 4478), vol. 11, no. 1, pp. 93–98, Feb. 2022, doi: 10.20525/IJRBS.V11I1.1570.
  • [16] A. Rodoplu and İ. Yıldız, ‘Damaged Parcel Detection in the Logistics Sector Using the Yolov12 Model with Roboflow 3.0’, J. Data Anal. Artif. Intell. Appl., vol. 0, no. 0, pp. 0–0, Jul. 2025, doi: 10.26650/D3AI.1714220.
  • [17] L. Kakkar and P. (Dr. . V. K. Sharma, ‘Deep Learning Approaches For Damage Detection In E-Commerce Packaging’, Int. J. Adv. Res. Innov. Ideas Educ., vol. 11, no. 2, pp. 2698–2702, 2025.
  • [18] V. Anca, ‘Lojistik ve tedarik zinciri yönetimi: genel bir bakış’, İşletme ve Ekon. Çalışmaları, vol. 14, no. 2, pp. 209–215, 2019.
  • [19] A. Deni̇z and L. Gödekmerdan, ‘Müşterilerin Kargo Firmalarının Sunduğu Hizmetlere Yönelik Tutum ve Düşünceleri Üzerine Bir Araştırma’, J. Grad. Sch. Soc. Sci., vol. 15, no. 2, pp. 379–396, May 2012, Accessed: Aug. 24, 2025. [Online]. Available: https://dergipark.org.tr/en/pub/ataunisosbil/issue/2828/38343
  • [20] İ. F. Gülenç and B. Karagöz, ‘E-Lojistik ve Türkiye’de E-Lojistik Uygulamaları’, Kocaeli Üniversitesi Sos. Bilim. Derg., vol. 1, no. 15, pp. 73–91, Jun. 2008, Accessed: Aug. 24, 2025. [Online]. Available: https://dergipark.org.tr/tr/pub/kosbed/issue/25705/271243
  • [21] E. Bi̇lgi̇ç, M. Ali TÜRKMENOĞLU, and A. Koçak, ‘Dijitalleşmenin Lojistik Yönetimi Bağlamında İncelenmesi’, Akad. İzdüşüm Derg., vol. 5, no. 1, pp. 56–69, Mar. 2020, doi: 10.18070/ERCIYESIIBD.510774.
  • [22] D. S. Rogers and R. S. Tibben-Lembke, Going backwards: reverse logistics trends and practices. No Title, 1999.
  • [23] A. A. Sayın and M. Özcan, ‘Karamanoğlu Mehmetbey Üniversitesinde Bilgi Teknolojileri Kullanılarak Tersine Tedarik Zinciri Yönetimi Uygulanması’, Kesit Akad. Derg., vol. 21, pp. 361–385, 2024.
  • [24] A. Coşkun and M. Ş. Akdoğan, ‘Üreticilerin tersine lojistik faaliyetlerini etkileyen faktörler: Beyaz eşya sektöründe bir uygulama’, Jun. 2011, Accessed: Aug. 24, 2025. [Online]. Available: http://acikerisim.nevsehir.edu.tr/xmlui/handle/20.500.11787/888
  • [25] M. P. de Brito and R. Dekker, ‘Modelling product returns in inventory control—exploring the validity of general assumptions’, Int. J. Prod. Econ., vol. 81–82, no. 82, pp. 225–241, Jan. 2003, doi: 10.1016/S0925-5273(02)00275-X.
  • [26] K. Türkoğlu, ‘Lojistik Ve Ters Lojistik Maliyetleri’, Int. J. Soc. Humanit. Sci. Res., vol. 9, no. 82, pp. 866–873, Apr. 2022, doi: 10.26450/JSHSR.3086.
  • [27] R. Erturgut and H. E. Gürler, ‘Tersine Lojistik Teori Ve Uygulamalarinin Son 10 Yili: Bibliyometrik Bir Analiz’, Uluslararası İktisadi ve İdari İncelemeler Derg., no. 28, pp. 25–46, Jun. 2020, doi: 10.18092/ULIKIDINCE.594396.
  • [28] U. Kazancı and E. B. Bayarçelik, ‘E-Ticaret Lojistiğinin Müşteri Memnuniyeti ve Yeniden Satın Alma Niyeti Üzerindeki Etkileri: Covid-19 Küresel Salgın Dönemi’, Yaşar Üniversitesi E-Dergisi, vol. 17, no. 67, pp. 800–820, Jul. 2022, doi: 10.19168/JYASAR.1075232.
  • [29] K. K. Göncü and D. Küçükaltan, ‘Lojistik Sektöründe Kargo Taşımacılığında uzak Nokta Çözümleri’, in Trakya Üniversitesi Sosyal Bilimler Enstitüsü İşletme Anabilim Dalı, Yüksek Lisans Proje Çalışması, Edirne, 2010.
  • [30] S. Chang, Y. Dong, and X. Wang, ‘Optimal shipping policy in retail competition and its effect on customers’, Electron. Commer. Res. Appl., vol. 45, p. 101020, 2021, doi: 10.1016/j.elerap.2020.101020.
  • [31] E. Temel, ‘Siparişiniz kargoya verilmiştir: Online alışverişte tüketicilerin kargo deneyimleri’, Biga İktisadi ve İdari Bilim. Fakültesi Derg., vol. 5, no. 2, pp. 59–83, Sep. 2024, Accessed: Aug. 24, 2025. [Online]. Available: https://dergipark.org.tr/tr/pub/biibfd/issue/84968/1460225
  • [32] P. Dutta, A. Mishra, S. Khandelwal, and I. Katthawala, ‘A multiobjective optimization model for sustainable reverse logistics in Indian E-commerce market’, J. Clean. Prod., vol. 249, p. 119348, Mar. 2020, doi: 10.1016/J.JCLEPRO.2019.119348.
  • [33] H. Güven, ‘Covid-19 Sürecinde E-Ticaret Sitelerine Yöneltilen Müşteri Şikâyetlerinin İncelenmesi’, J. Turkish Stud., vol. null, no. Volume 15 Issue 4, pp. 511–530, Aug. 2024, doi: 10.7827/TURKISHSTUDIES.44354.
  • [34] T. Gajewska, D. Zimon, G. Kaczor, and P. Madzík, ‘The impact of the level of customer satisfaction on the quality of e-commerce services’, Int. J. Product. Perform. Manag., vol. 69, no. 4, pp. 666–684, Apr. 2020, doi: 10.1108/IJPPM-01-2019-0018.

AI DESTEKLİ PAKET HASAR SINIFLANDIRMASI İLE TERSİNE LOJİSTİK VERİMLİLİĞİNİ ARTIRMA

Year 2025, Volume: 7 Issue: 2, 128 - 137, 08.12.2025
https://doi.org/10.47933/ijeir.1772209

Abstract

Bu çalışma, kargo taşımacılığında tersine lojistiği desteklemek amacıyla, kutuların fiziksel durumunu kontrol etmek için yapay zeka ve görüntü işleme teknolojilerini kullanan otomatik bir analiz yöntemi sunmaktadır. Sistem, konveyör bandı üzerinde hareket eden karton kutuların görüntülerini işleyerek, arka plan kaldırma, maskeleme ve morfolojik işlemler gibi teknikleri kullanarak hasar puanlarını hesaplamaktadır. Bu puanlara göre, kutuları “Hasarsız”, “Hafif Hasarlı” ve “Ağır Hasarlı” olmak üzere üç kategoriye doğru bir şekilde ayırmaktadır. Sonuçlardaki düşük varyans, modelin değerlendirmelerinde istikrarlı ve tutarlı olduğunu göstermektedir. Manuel kontrollere kıyasla, bu yaklaşım daha hızlı, daha güvenilir ve daha yapılandırılmış olup, tersine lojistik maliyetlerini düşürmeye ve müşteri memnuniyetini artırmaya yardımcı olmaktadır. Genel olarak, çalışma, yapay zeka destekli görüntü analizinin lojistik sektöründe hem verimliliği hem de hizmet kalitesini nasıl artırabileceğini göstermektedir.

References

  • [1] D. S. Rogers and R. Tibben-Lembke, ‘An Examination Of Reverse Logistics Practices’, J. Bus. Logist., vol. 22, no. 2, pp. 129–148, Sep. 2001, doi: 10.1002/J.2158-1592.2001.TB00007.X.
  • [2] H. Richard, J. Davis, and H. Robert, ‘Reverse Logistics and Customer Satisfaction in E-Commerce: A Supply Chain Perspective on Returns Optimization’, 2025. Accessed: Aug. 24, 2025. [Online]. Available: https://www.researchgate.net/publication/392495594_Reverse_Logistics_and_Customer_Satisfaction_in_E-Commerce_A_Supply_Chain_Perspective_on_Returns_Optimization
  • [3] E. E. A. Jalil, ‘Customer satisfaction and reverse logistics in e-commerce: the case of klang valley’, in Proceedings of the 9th International Conference on Operations and Supply Chain Management, Ho Chi Minh City, Vietnam, 2019, pp. 15–18.
  • [4] A. Bhattacherjee, ‘Understanding information systems continuance: An expectation-confirmation model’, MIS Q. Manag. Inf. Syst., vol. 25, no. 3, pp. 351–370, 2001, doi: 10.2307/3250921.
  • [5] J. Huang, ‘Automated Logistics Packaging Inspection Based on Deep Learning and Computer Vision: A Two-Dimensional Flow Model Approach’, Trait. du Signal, vol. 42, no. 2, pp. 933–941, Apr. 2025, doi: 10.18280/TS.420228.
  • [6] L. Dörr, F. Brandt, M. Pouls, and A. Naumann, ‘Fully-Automated Packaging Structure Recognition in Logistics Environments’, Aug. 2020, Accessed: Aug. 24, 2025. [Online]. Available: https://arxiv.org/abs/2008.04620v1
  • [7] A. M. Roy and J. Bhaduri, ‘DenseSPH-YOLOv5: An automated damage detection model based on DenseNet and Swin-Transformer prediction head-enabled YOLOv5 with attention mechanism’, Adv. Eng. Informatics, vol. 56, p. 102007, Apr. 2023, doi: 10.1016/J.AEI.2023.102007.
  • [8] J. T. Mentzer et al., ‘Defining Supply Chain Management’, J. Bus. Logist., vol. 22, no. 2, pp. 1–25, Sep. 2001, doi: 10.1002/J.2158-1592.2001.TB00001.X.
  • [9] Z. Chen et al., ‘Efficient Parcel Damage Detection via Faster R-CNN: A Deep Learning Approach for Logistical Parcels’ Automated Inspection’, Lect. Notes Inst. Comput. Sci. Soc. Telecommun. Eng. LNICST, vol. 594 LNICST, pp. 268–279, 2024, doi: 10.1007/978-3-031-63992-0_18/FIGURES/4.
  • [10] S. Kim and S. D. Lee, ‘YOLO-Based Damage Detection with StyleGAN3 Data Augmentation for Parcel Information-Recognition System’, Comput. Mater. Contin., vol. 80, no. 1, pp. 195–215, Jul. 2024, doi: 10.32604/CMC.2024.052070.
  • [11] N. T. Van Nga, ‘The Impact of Reverse Logistics and Delivery on Customer Satisfaction in the supply chain in Vietnam’, J. Inf. Syst. Eng. Manag., vol. 10, no. 13s, pp. 233–239, Feb. 2025, doi: 10.52783/JISEM.V10I13S.2026.
  • [12] O. Ronneberger, P. Fischer, and T. Brox, ‘U-Net: Convolutional Networks for Biomedical Image Segmentation’, Lect. Notes Comput. Sci. (including Subser. Lect. Notes Artif. Intell. Lect. Notes Bioinformatics), vol. 9351, pp. 234–241, 2015, doi: 10.1007/978-3-319-24574-4_28.
  • [13] P. Cimili, J. Voegl, P. Hirsch, and M. Gronalt, ‘Ensemble Deep Learning for Automated Damage Detection of Trailers at Intermodal Terminals’, Sustain. 2024, Vol. 16, Page 1218, vol. 16, no. 3, p. 1218, Jan. 2024, doi: 10.3390/SU16031218.
  • [14] K. Govindan, H. Soleimani, and D. Kannan, ‘Reverse logistics and closed-loop supply chain: A comprehensive review to explore the future’, Eur. J. Oper. Res., vol. 240, no. 3, pp. 603–626, Feb. 2015, doi: 10.1016/J.EJOR.2014.07.012.
  • [15] T. Adebayo, ‘An evaluation of reverse logistics responsiveness and customer satisfaction in retailing’, Int. J. Res. Bus. Soc. Sci. (2147- 4478), vol. 11, no. 1, pp. 93–98, Feb. 2022, doi: 10.20525/IJRBS.V11I1.1570.
  • [16] A. Rodoplu and İ. Yıldız, ‘Damaged Parcel Detection in the Logistics Sector Using the Yolov12 Model with Roboflow 3.0’, J. Data Anal. Artif. Intell. Appl., vol. 0, no. 0, pp. 0–0, Jul. 2025, doi: 10.26650/D3AI.1714220.
  • [17] L. Kakkar and P. (Dr. . V. K. Sharma, ‘Deep Learning Approaches For Damage Detection In E-Commerce Packaging’, Int. J. Adv. Res. Innov. Ideas Educ., vol. 11, no. 2, pp. 2698–2702, 2025.
  • [18] V. Anca, ‘Lojistik ve tedarik zinciri yönetimi: genel bir bakış’, İşletme ve Ekon. Çalışmaları, vol. 14, no. 2, pp. 209–215, 2019.
  • [19] A. Deni̇z and L. Gödekmerdan, ‘Müşterilerin Kargo Firmalarının Sunduğu Hizmetlere Yönelik Tutum ve Düşünceleri Üzerine Bir Araştırma’, J. Grad. Sch. Soc. Sci., vol. 15, no. 2, pp. 379–396, May 2012, Accessed: Aug. 24, 2025. [Online]. Available: https://dergipark.org.tr/en/pub/ataunisosbil/issue/2828/38343
  • [20] İ. F. Gülenç and B. Karagöz, ‘E-Lojistik ve Türkiye’de E-Lojistik Uygulamaları’, Kocaeli Üniversitesi Sos. Bilim. Derg., vol. 1, no. 15, pp. 73–91, Jun. 2008, Accessed: Aug. 24, 2025. [Online]. Available: https://dergipark.org.tr/tr/pub/kosbed/issue/25705/271243
  • [21] E. Bi̇lgi̇ç, M. Ali TÜRKMENOĞLU, and A. Koçak, ‘Dijitalleşmenin Lojistik Yönetimi Bağlamında İncelenmesi’, Akad. İzdüşüm Derg., vol. 5, no. 1, pp. 56–69, Mar. 2020, doi: 10.18070/ERCIYESIIBD.510774.
  • [22] D. S. Rogers and R. S. Tibben-Lembke, Going backwards: reverse logistics trends and practices. No Title, 1999.
  • [23] A. A. Sayın and M. Özcan, ‘Karamanoğlu Mehmetbey Üniversitesinde Bilgi Teknolojileri Kullanılarak Tersine Tedarik Zinciri Yönetimi Uygulanması’, Kesit Akad. Derg., vol. 21, pp. 361–385, 2024.
  • [24] A. Coşkun and M. Ş. Akdoğan, ‘Üreticilerin tersine lojistik faaliyetlerini etkileyen faktörler: Beyaz eşya sektöründe bir uygulama’, Jun. 2011, Accessed: Aug. 24, 2025. [Online]. Available: http://acikerisim.nevsehir.edu.tr/xmlui/handle/20.500.11787/888
  • [25] M. P. de Brito and R. Dekker, ‘Modelling product returns in inventory control—exploring the validity of general assumptions’, Int. J. Prod. Econ., vol. 81–82, no. 82, pp. 225–241, Jan. 2003, doi: 10.1016/S0925-5273(02)00275-X.
  • [26] K. Türkoğlu, ‘Lojistik Ve Ters Lojistik Maliyetleri’, Int. J. Soc. Humanit. Sci. Res., vol. 9, no. 82, pp. 866–873, Apr. 2022, doi: 10.26450/JSHSR.3086.
  • [27] R. Erturgut and H. E. Gürler, ‘Tersine Lojistik Teori Ve Uygulamalarinin Son 10 Yili: Bibliyometrik Bir Analiz’, Uluslararası İktisadi ve İdari İncelemeler Derg., no. 28, pp. 25–46, Jun. 2020, doi: 10.18092/ULIKIDINCE.594396.
  • [28] U. Kazancı and E. B. Bayarçelik, ‘E-Ticaret Lojistiğinin Müşteri Memnuniyeti ve Yeniden Satın Alma Niyeti Üzerindeki Etkileri: Covid-19 Küresel Salgın Dönemi’, Yaşar Üniversitesi E-Dergisi, vol. 17, no. 67, pp. 800–820, Jul. 2022, doi: 10.19168/JYASAR.1075232.
  • [29] K. K. Göncü and D. Küçükaltan, ‘Lojistik Sektöründe Kargo Taşımacılığında uzak Nokta Çözümleri’, in Trakya Üniversitesi Sosyal Bilimler Enstitüsü İşletme Anabilim Dalı, Yüksek Lisans Proje Çalışması, Edirne, 2010.
  • [30] S. Chang, Y. Dong, and X. Wang, ‘Optimal shipping policy in retail competition and its effect on customers’, Electron. Commer. Res. Appl., vol. 45, p. 101020, 2021, doi: 10.1016/j.elerap.2020.101020.
  • [31] E. Temel, ‘Siparişiniz kargoya verilmiştir: Online alışverişte tüketicilerin kargo deneyimleri’, Biga İktisadi ve İdari Bilim. Fakültesi Derg., vol. 5, no. 2, pp. 59–83, Sep. 2024, Accessed: Aug. 24, 2025. [Online]. Available: https://dergipark.org.tr/tr/pub/biibfd/issue/84968/1460225
  • [32] P. Dutta, A. Mishra, S. Khandelwal, and I. Katthawala, ‘A multiobjective optimization model for sustainable reverse logistics in Indian E-commerce market’, J. Clean. Prod., vol. 249, p. 119348, Mar. 2020, doi: 10.1016/J.JCLEPRO.2019.119348.
  • [33] H. Güven, ‘Covid-19 Sürecinde E-Ticaret Sitelerine Yöneltilen Müşteri Şikâyetlerinin İncelenmesi’, J. Turkish Stud., vol. null, no. Volume 15 Issue 4, pp. 511–530, Aug. 2024, doi: 10.7827/TURKISHSTUDIES.44354.
  • [34] T. Gajewska, D. Zimon, G. Kaczor, and P. Madzík, ‘The impact of the level of customer satisfaction on the quality of e-commerce services’, Int. J. Product. Perform. Manag., vol. 69, no. 4, pp. 666–684, Apr. 2020, doi: 10.1108/IJPPM-01-2019-0018.
There are 34 citations in total.

Details

Primary Language English
Subjects Artificial Intelligence (Other)
Journal Section Research Article
Authors

Bora Öçal 0000-0003-0654-0131

Fahrettin Aka 0000-0003-1449-2969

Enes Açıkgözoğlu 0000-0001-7293-883X

Submission Date August 26, 2025
Acceptance Date October 19, 2025
Early Pub Date December 3, 2025
Publication Date December 8, 2025
Published in Issue Year 2025 Volume: 7 Issue: 2

Cite

APA Öçal, B., Aka, F., & Açıkgözoğlu, E. (2025). ENHANCING REVERSE LOGISTICS EFFICIENCY THROUGH AI-SUPPORTED PARCEL DAMAGE CLASSIFICATION. International Journal of Engineering and Innovative Research, 7(2), 128-137. https://doi.org/10.47933/ijeir.1772209

88x31.png

This work is licensed under a Creative Commons Attribution 4.0 International License