Research Article
BibTex RIS Cite

DESIGN, SIMULATION, AND EXPERIMENTAL EVALUATION OF ELECTRIC AND MAGNETIC FIELD GENERATORS FOR IN VITRO

Year 2025, Volume: 7 Issue: 2, 153 - 164, 08.12.2025
https://doi.org/10.47933/ijeir.1812747

Abstract

Electromagnetic exposures can modulate plant germination, growth, and metabolism, yet electric-field effects remain comparatively underexplored due to the scarcity of well-characterized exposure systems. This study presents the design and basic characterization of modular, benchtop sources that independently or jointly deliver controlled electric (E) and magnetic (B) fields for in vitro plant experiments. An electric-field module based on parallel plates (20 × 20 cm) with a 15 cm spacing provides approximately E ≈ 100 V/m using a 15 V supply, while a coil-based magnetic module (10 cm outer diameter, 250 turns, 0.5 mm enamelled wire) produces B ≈ 5 mT at the Petri-dish plane under 12 V excitation.

Magnetic-field distributions were obtained via ANSYS simulations on planes 15, 20, and 25 mm above the coil and verified qualitatively by laboratory measurements, confirming a practically homogeneous region at the target height. For the electric module, central-field measurements indicated good agreement with E = V/d, with fringing effects minimized by plate sizing and central placement of the sample. The setup demonstrated stable operation over typical exposure durations, with manageable thermal behavior of the coil.

The resulting platform enables reproducible E-only, B-only, and combined E + B exposures, supporting dose–response and mechanism-oriented studies on cultivar-dependent plant responses. The design is readily scalable (e.g., higher B via turns/current; improved homogeneity via Helmholtz pairs or guard electrodes) and amenable to closed-loop control. Overall, the system provides an accessible, well-defined electromagnetic exposure infrastructure to facilitate rigorous in vitro plant research.

Project Number

SDU-BAP FDK-2024-9438

References

  • [1] H. Ginzo and E. Décima, "Weak static magnetic fields increase the speed of circumnutation in cucumber (Cucumis sativus L.) tendrils," Experientia, vol. 51, no. 11, pp. 1090–1093, 1995.
  • [2] N. Belyavskaya, "Biological effects due to weak magnetic field on plants," Advances in space Research, vol. 34, no. 7, pp. 1566–1574, 2004.
  • [3] A. Eşitken and M. Turan, "Alternating magnetic field effects on yield and plant nutrient element composition of strawberry (Fragaria x ananassa cv. Camarosa)," Acta Agriculturae Scandinavica, Section B-Soil & Plant Science, vol. 54, no. 3, pp. 135–139, 2004.
  • [4] M. Racuciu, G. Galugaru, and D. Creanga, "Static magnetic field influence on some plant growth," Romanian Journal of Physics, vol. 51, no. 1/2, p. 245, 2006.
  • [5] M. Florez, M. V. Carbonell, and E. Martínez, "Exposure of maize seeds to stationary magnetic fields: Effects on germination and early growth," Environmental and experimental botany, vol. 59, no. 1, pp. 68–75, 2007.
  • [6] S. Neamţu and V. Morariu, "Plant growth in experimental space flight magnetic field conditions," Romanian Journal of Biophysics, vol. 15, pp. 41–46, 2005.
  • [7] Y. Yao, Y. Li, Y. Yang, and C. Li, "Effect of seed pretreatment by magnetic field on the sensitivity of cucumber (Cucumis sativus) seedlings to ultraviolet-B radiation," Environmental and Experimental Botany, vol. 54, no. 3, pp. 286–294, 2005.
  • [8] F. Ghanati, P. Abdolmaleki, M. Vaezzadeh, E. Rajabbeigi, and M. Yazdani, "Application of magnetic field and iron in order to change medicinal products of Ocimum basilicum," The Environmentalist, vol. 27, no. 4, pp. 429–434, 2007.
  • [9] A. Shabrangi and A. Majd, "Effect of magnetic fields on growth and antioxidant systems in agricultural plants," PIERS Proceedings, Beijing, China, March, pp. 23–27, 2009.
  • [10] S. SHARAFI, A. GHOLAMI, and H. Abbasdokht, "Effect of magnetic field on seed germination of two wheat cultivars," 2010.
  • [11] E. Elbeshehy, "Effect of weak electro magnetic field on grain germination and seedling growth of different wheat (Triticum aestivum L.) cultivars," Life Science Journal, 2012.
  • [12] S. Yalçın and Ş. Tayyar, "Oğulotu tohumlarının çimlenmesi ve fide gelişimi üzerine manyetik alanın etkisi," Yuzuncu Yıl University Journal of Agricultural Sciences, vol. 21, no. 3, pp. 190–197, 2011.
  • [13] L. Kubisz, R. Hołubowicz, M. Gauza, H. Li, D. Hojan-Jezierska, and F. Jaroszyk, "Effect of low frequency magnetic field on germination of onion (Allium cepa L.) seeds," Acta Physica Polonica A, vol. 121, no. 1A, 2012.
  • [14] P. Latifeh and H. Sepideh, "Exposure of Satureia hortensis L seeds to magnetic fields: effect on germination, growth characteristics and activity of some enzymes," Journal of Stress Physiology & Biochemistry, vol. 8, no. 4, pp. 191–198, 2012.
  • [15] A. Matwijczuk, K. Kornarzynski, and S. Pietruszewski, "Effect of magnetic field on seed germination and seedling growth of sunflower," International Agrophysics, vol. 26, no. 3, 2012.
  • [16] M. Ahamed, A. Elzaawely, and Y. Bayoumi, "Effect of magnetic field on seed germination, growth and yield of sweet pepper (Capsicum annuum L.)," 2013.
  • [17] D. J. Bilalis, N. Katsenios, A. Efthimiadou, A. Karkanis, E. M. Khah, and T. Mitsis, "Magnetic field pre-sowing treatment as an organic friendly technique to promote plant growth and chemical elements accumulation in early stages of cotton," Australian Journal of Crop Science, vol. 7, no. 1, pp. 46–50, 2013.
  • [18] A. S. García, F. G. Reina, Y. P. Franco, and D. D. Páez, "Stimulation of germination and growth in soybean seeds by stationary magnetic field treatment," Asian J. Agric. Biol, vol. 1, no. 2, pp. 85–90, 2013.
  • [19] M. A. Samani, L. Pourakbar, and N. Azimi, "Magnetic field effects on seed germination and activities of some enzymes in cumin," Life Science Journal, vol. 10, no. 1, pp. 323–328, 2013.
  • [20] G. Yakupoğlu, "Effects of magnetic field and ultrasound applications on endogenous melatonin content and drought stress tolerance of pepper seedlings," Horticulturae, vol. 9, no. 6, p. 704, 2023.
  • [21] A. I. Kaya, A. Cifci, F. KIRDIOĞULLARI, M. Kahriman, and O. Cerezci, "Design and manufacture of electromagnetic absorber composed of boricacid-incorporated wastepaper composites," Turkish Journal of Electrical Engineering and Computer Sciences, vol. 30, no. 3, pp. 839–854, 2022.
  • [22] M. Gözel, Ö. Kasar, and M. Kahriman, "868 MHz UHF bandında H-şeklinde katlanmış implant mikroşerit dipol anten tasarımı," Dicle Üniversitesi Mühendislik Fakültesi Mühendislik Dergisi, vol. 10, no. 3, pp. 797–806, 2019.
  • [23] A. O. Kizilçay, B. Tütüncü, M. Koçarslan, and M. A. Gözel, "Effects of 1800 MHz and 2100 MHz mobile phone radiation on the blood–brain barrier of New Zealand rabbits," Medical & Biological Engineering & Computing, vol. 63, no. 3, pp. 915–932, 2025.
  • [24] A. Cildir et al., "An efficient broadband metasurface design for smart health care and future communication applications," Results in Optics, vol. 19, p. 100772, 2025.
  • [25] Ö. Kasar, M. Geçin, and M. A. Gözel, "Açısal Olarak Değiştirilebilir Dikdörtgen Yamalı Frekans Seçici Yüzeylerle, Ayarlanabilir Bant Geçiren Filtre Tasarımı," El-Cezeri, vol. 5, no. 3, pp. 756–762, 2018.
  • [26] A. Eriş, Bahçe bitkileri fizyolojisi. Uludağ Üniversitesi Ziraat Fakültesi, 1995.
  • [27] H. Karakurt, R. Aslantaş, and A. Eşitken, "Tohum çimlenmesi ve bitki büyümesi üzerinde etkili olan çevresel faktörler ve bazı ön uygulamalar," Uludağ Üniversitesi Ziraat Fakültesi Dergisi, vol. 24, no. 2, pp. 115–128, 2010.
  • [28] D. K. Cheng, Field and wave electromagnetics. Pearson Education India, 1989.
  • [29] A. Cildir, "Multifunctional reflective metasurface with wideband linear-to-circular and linear-to-linear polarization conversion," Optical and Quantum Electronics, vol. 57, no. 10, p. 548, 2025.
  • [30] A. I. Kaya, A. Cifci, M. A. Gözel, and M. Kahriman, "Electromagnetic absorption efficiency of aluminum doped composite materials recycled from waste Tetra Pak packages in the frequency range 1.8 GHz to 5 GHz," Materials Research Express, vol. 7, no. 12, p. 126103, 2020.
  • [31] A. Cildir, F. A. Tahir, M. Farooq, A. Zahid, M. Imran, and Q. H. Abbasi, "A highly efficient and broadband metasurface for linear-to-linear and linear-to-circular polarization conversion in reflection mode," Photonics and Nanostructures-Fundamentals and Applications, vol. 64, p. 101382, 2025.

IN VITRO ELEKTRİK VE MANYETİK ALAN JENERATÖRLERİNİN TASARIMI, SİMÜLASYONU VE DENEYSEL DEĞERLENDİRMESİ

Year 2025, Volume: 7 Issue: 2, 153 - 164, 08.12.2025
https://doi.org/10.47933/ijeir.1812747

Abstract

Elektromanyetik maruziyetler bitki çimlenmesini, büyümesini ve metabolizmasını etkileyebilir; ancak iyi karakterize edilmiş maruziyet sistemlerinin azlığı nedeniyle elektrik alanı etkileri görece daha az incelenmiştir. Bu çalışma, in vitro bitki deneyleri için kontrollü elektrik (E) ve manyetik (B) alanları bağımsız ya da birlikte uygulayabilen modüler, masaüstü kaynakların tasarımını ve temel karakterizasyonunu sunmaktadır. Paralel plakalara (20 × 20 cm) ve 15 cm plaka aralığına dayalı bir elektrik alan modülü, 15 V besleme ile yaklaşık E ≈ 100 V/m üretirken; bobin tabanlı manyetik modül (10 cm dış çap, 250 sarım, 0,5 mm emaye kaplı tel) 12 V uyarım altında Petri kabı düzleminde B ≈ 5 mT üretmektedir.

Manyetik alan dağılımları, bobinin 15, 20 ve 25 mm üzerindeki düzlemlerde ANSYS simülasyonlarıyla elde edilmiş ve laboratuvar ölçümleriyle nitel olarak doğrulanmıştır; hedef yükseklikte pratik olarak homojen bir bölge sağlandığı görülmüştür. Elektrik modülü için merkez bölgedeki alan ölçümleri E = V/d ile iyi uyum göstermiş; plaka boyutlandırması ve örneğin merkezde konumlandırılmasıyla saçaklanma etkileri en aza indirilmiştir. Düzeneğin tipik maruziyet sürelerinde kararlı çalıştığı ve bobinin ısıl davranışının yönetilebilir olduğu gösterilmiştir.

Ortaya konan platform, yalnız E, yalnız B ve birleşik E + B maruziyetlerinin tekrarlanabilir biçimde uygulanmasını sağlar; böylece çeşide bağlı bitki yanıtlarında doz–yanıt ve mekanizma odaklı çalışmaları destekler. Tasarım kolayca ölçeklenebilir (ör. sarım/akım artırılarak daha yüksek B; Helmholtz çifti veya koruma elektrotlarıyla homojenliğin iyileştirilmesi) ve kapalı çevrim kontrole uygundur. Genel olarak sistem, titiz in vitro bitki araştırmalarını kolaylaştıracak erişilebilir ve iyi tanımlanmış bir elektromanyetik maruziyet altyapısı sunmaktadır.

Project Number

SDU-BAP FDK-2024-9438

References

  • [1] H. Ginzo and E. Décima, "Weak static magnetic fields increase the speed of circumnutation in cucumber (Cucumis sativus L.) tendrils," Experientia, vol. 51, no. 11, pp. 1090–1093, 1995.
  • [2] N. Belyavskaya, "Biological effects due to weak magnetic field on plants," Advances in space Research, vol. 34, no. 7, pp. 1566–1574, 2004.
  • [3] A. Eşitken and M. Turan, "Alternating magnetic field effects on yield and plant nutrient element composition of strawberry (Fragaria x ananassa cv. Camarosa)," Acta Agriculturae Scandinavica, Section B-Soil & Plant Science, vol. 54, no. 3, pp. 135–139, 2004.
  • [4] M. Racuciu, G. Galugaru, and D. Creanga, "Static magnetic field influence on some plant growth," Romanian Journal of Physics, vol. 51, no. 1/2, p. 245, 2006.
  • [5] M. Florez, M. V. Carbonell, and E. Martínez, "Exposure of maize seeds to stationary magnetic fields: Effects on germination and early growth," Environmental and experimental botany, vol. 59, no. 1, pp. 68–75, 2007.
  • [6] S. Neamţu and V. Morariu, "Plant growth in experimental space flight magnetic field conditions," Romanian Journal of Biophysics, vol. 15, pp. 41–46, 2005.
  • [7] Y. Yao, Y. Li, Y. Yang, and C. Li, "Effect of seed pretreatment by magnetic field on the sensitivity of cucumber (Cucumis sativus) seedlings to ultraviolet-B radiation," Environmental and Experimental Botany, vol. 54, no. 3, pp. 286–294, 2005.
  • [8] F. Ghanati, P. Abdolmaleki, M. Vaezzadeh, E. Rajabbeigi, and M. Yazdani, "Application of magnetic field and iron in order to change medicinal products of Ocimum basilicum," The Environmentalist, vol. 27, no. 4, pp. 429–434, 2007.
  • [9] A. Shabrangi and A. Majd, "Effect of magnetic fields on growth and antioxidant systems in agricultural plants," PIERS Proceedings, Beijing, China, March, pp. 23–27, 2009.
  • [10] S. SHARAFI, A. GHOLAMI, and H. Abbasdokht, "Effect of magnetic field on seed germination of two wheat cultivars," 2010.
  • [11] E. Elbeshehy, "Effect of weak electro magnetic field on grain germination and seedling growth of different wheat (Triticum aestivum L.) cultivars," Life Science Journal, 2012.
  • [12] S. Yalçın and Ş. Tayyar, "Oğulotu tohumlarının çimlenmesi ve fide gelişimi üzerine manyetik alanın etkisi," Yuzuncu Yıl University Journal of Agricultural Sciences, vol. 21, no. 3, pp. 190–197, 2011.
  • [13] L. Kubisz, R. Hołubowicz, M. Gauza, H. Li, D. Hojan-Jezierska, and F. Jaroszyk, "Effect of low frequency magnetic field on germination of onion (Allium cepa L.) seeds," Acta Physica Polonica A, vol. 121, no. 1A, 2012.
  • [14] P. Latifeh and H. Sepideh, "Exposure of Satureia hortensis L seeds to magnetic fields: effect on germination, growth characteristics and activity of some enzymes," Journal of Stress Physiology & Biochemistry, vol. 8, no. 4, pp. 191–198, 2012.
  • [15] A. Matwijczuk, K. Kornarzynski, and S. Pietruszewski, "Effect of magnetic field on seed germination and seedling growth of sunflower," International Agrophysics, vol. 26, no. 3, 2012.
  • [16] M. Ahamed, A. Elzaawely, and Y. Bayoumi, "Effect of magnetic field on seed germination, growth and yield of sweet pepper (Capsicum annuum L.)," 2013.
  • [17] D. J. Bilalis, N. Katsenios, A. Efthimiadou, A. Karkanis, E. M. Khah, and T. Mitsis, "Magnetic field pre-sowing treatment as an organic friendly technique to promote plant growth and chemical elements accumulation in early stages of cotton," Australian Journal of Crop Science, vol. 7, no. 1, pp. 46–50, 2013.
  • [18] A. S. García, F. G. Reina, Y. P. Franco, and D. D. Páez, "Stimulation of germination and growth in soybean seeds by stationary magnetic field treatment," Asian J. Agric. Biol, vol. 1, no. 2, pp. 85–90, 2013.
  • [19] M. A. Samani, L. Pourakbar, and N. Azimi, "Magnetic field effects on seed germination and activities of some enzymes in cumin," Life Science Journal, vol. 10, no. 1, pp. 323–328, 2013.
  • [20] G. Yakupoğlu, "Effects of magnetic field and ultrasound applications on endogenous melatonin content and drought stress tolerance of pepper seedlings," Horticulturae, vol. 9, no. 6, p. 704, 2023.
  • [21] A. I. Kaya, A. Cifci, F. KIRDIOĞULLARI, M. Kahriman, and O. Cerezci, "Design and manufacture of electromagnetic absorber composed of boricacid-incorporated wastepaper composites," Turkish Journal of Electrical Engineering and Computer Sciences, vol. 30, no. 3, pp. 839–854, 2022.
  • [22] M. Gözel, Ö. Kasar, and M. Kahriman, "868 MHz UHF bandında H-şeklinde katlanmış implant mikroşerit dipol anten tasarımı," Dicle Üniversitesi Mühendislik Fakültesi Mühendislik Dergisi, vol. 10, no. 3, pp. 797–806, 2019.
  • [23] A. O. Kizilçay, B. Tütüncü, M. Koçarslan, and M. A. Gözel, "Effects of 1800 MHz and 2100 MHz mobile phone radiation on the blood–brain barrier of New Zealand rabbits," Medical & Biological Engineering & Computing, vol. 63, no. 3, pp. 915–932, 2025.
  • [24] A. Cildir et al., "An efficient broadband metasurface design for smart health care and future communication applications," Results in Optics, vol. 19, p. 100772, 2025.
  • [25] Ö. Kasar, M. Geçin, and M. A. Gözel, "Açısal Olarak Değiştirilebilir Dikdörtgen Yamalı Frekans Seçici Yüzeylerle, Ayarlanabilir Bant Geçiren Filtre Tasarımı," El-Cezeri, vol. 5, no. 3, pp. 756–762, 2018.
  • [26] A. Eriş, Bahçe bitkileri fizyolojisi. Uludağ Üniversitesi Ziraat Fakültesi, 1995.
  • [27] H. Karakurt, R. Aslantaş, and A. Eşitken, "Tohum çimlenmesi ve bitki büyümesi üzerinde etkili olan çevresel faktörler ve bazı ön uygulamalar," Uludağ Üniversitesi Ziraat Fakültesi Dergisi, vol. 24, no. 2, pp. 115–128, 2010.
  • [28] D. K. Cheng, Field and wave electromagnetics. Pearson Education India, 1989.
  • [29] A. Cildir, "Multifunctional reflective metasurface with wideband linear-to-circular and linear-to-linear polarization conversion," Optical and Quantum Electronics, vol. 57, no. 10, p. 548, 2025.
  • [30] A. I. Kaya, A. Cifci, M. A. Gözel, and M. Kahriman, "Electromagnetic absorption efficiency of aluminum doped composite materials recycled from waste Tetra Pak packages in the frequency range 1.8 GHz to 5 GHz," Materials Research Express, vol. 7, no. 12, p. 126103, 2020.
  • [31] A. Cildir, F. A. Tahir, M. Farooq, A. Zahid, M. Imran, and Q. H. Abbasi, "A highly efficient and broadband metasurface for linear-to-linear and linear-to-circular polarization conversion in reflection mode," Photonics and Nanostructures-Fundamentals and Applications, vol. 64, p. 101382, 2025.
There are 31 citations in total.

Details

Primary Language English
Subjects Engineering Electromagnetics
Journal Section Research Article
Authors

Hakan Çankaya 0000-0002-0544-6306

Mesud Kahriman 0000-0003-0731-0936

Özlem Coşkun 0000-0001-8800-4433

Project Number SDU-BAP FDK-2024-9438
Submission Date October 29, 2025
Acceptance Date November 30, 2025
Early Pub Date December 3, 2025
Publication Date December 8, 2025
Published in Issue Year 2025 Volume: 7 Issue: 2

Cite

APA Çankaya, H., Kahriman, M., & Coşkun, Ö. (2025). DESIGN, SIMULATION, AND EXPERIMENTAL EVALUATION OF ELECTRIC AND MAGNETIC FIELD GENERATORS FOR IN VITRO. International Journal of Engineering and Innovative Research, 7(2), 153-164. https://doi.org/10.47933/ijeir.1812747

88x31.png

This work is licensed under a Creative Commons Attribution 4.0 International License