Research Article
BibTex RIS Cite

TUNABLE RADIO FREQUENCY (RF) RECEIVER (RX) INTEGRATED CIRCUIT (IC)

Year 2023, Volume: 5 Issue: 2, 90 - 94, 30.06.2023
https://doi.org/10.47933/ijeir.1156769

Abstract

In this work tunable radio frequency (RF) receiver (Rx) integrated circuit (IC) was demonstrated. TSMC 65 nm technology node was selected to implement IC. RF technique has some advantages over biomedical optic molecule investigation methods since it is easy to design, implement. Experimental measurement on live tissue is much easier than optic methods. Nanoscopic creatures have specific binding structures. Their elements construct their shapes and neighborhood conformation between their own atoms. Based on this work differential RF waves will be used to investigate the nanoscopic creatures. Since the investigation of nanoscopic creatures will require to use electromagnetic wave phase shift and scan of different RF frequencies, ultra-wide band (UWB) tunable receiver circuit topology was designed and simulated. For this purpose, Rx block was designed, and simulation work was demonstrated here. In the circuit simulations, off-chip antenna was connected to the low-noise amplifier (LNA) circuit. Specific frequency was around 30 GHz. Frequency tuning was adjusted by changing the source and bias voltages at the active inductor voltage-controlled oscillator (VCO) circuit block. The same VCO block was also used at the Tx circuit before. Antenna signal was modeled by using 33 GHz alternative sinusoidal signal. Antenna signal and 30 GHz active-inductor VCO voltage output were mixed at the mixer circuit block, 3 GHz envelope signal was extracted in this work. Layout implementation of Rx receiver IC was demonstrated.

References

  • M. Al Ahmad and T. A. Rizvi, "Virus detection by monitoring its radio frequency response versus temperature," Progress in Electromagnetic Research Symposium (PIERS), Shanghai, pp. 4649-4655, 2016.
  • H. O. Kazanci, “Differential photon waves imaging,” Int. J. Imaging Syst. Technol., 1–11, 2020.
  • B. Razavi, “The Active Inductor,” IEEE Solid-State Circuits Magazine, 7-11, 2020.
  • L-H. Lu, H-H. Hsieh, “A Wide Tuning-Range CMOS VCO With a Differential Tunable Active Inductor,” IEEE Transactions on Microwave Theory and Techniques, 54(9), 2006.
  • K-H. Cheng, C-L. Hung, C-S. A. Gong, J-C. Liu, B-Q. Jiang, and S-Y. Sun, “A 0.9–8 GHz VCO with a Differential Active Inductor for Multi standard Wireline SerDes,” 1549-7747, 2013.
  • M. Fillaud, H. Barthélemy, “Design of a wide tuning range VCO using an active inductor,” IEEE, Joint 6th International IEEE Northeast Workshop on Circuits and Systems and TAISA Conference, 2008.
  • M. M. Reja, I. M. Filanovsky and K. Moez, “Wide tunable CMOS active inductor,” Electronics Letters, 44(25), 2008.
  • H-L. Kao, P-C. Lee, and H-C. Chiu, “A Wide Tuning-Range CMOS VCO with a Tunable Active Inductor,” 2015.
  • J. Xu, N. Yan, Q. Chen, J. Gao and X. Zeng, "A 3.4dB NF k-band LNA in 65nm CMOS technology," 2013 IEEE International Symposium on Circuits and Systems (ISCAS), pp. 1123-1126, Beijing, 2013.
  • Y. Wu, J. Jin and K. El-Sankary, "A linearized wideband low noise amplifier in 65nm CMOS for multi-standard RF communication applications," 3rd IEEE International Conference on Computer and Communications (ICCC), pp. 812-815, Chengdu, 2017.
  • J. Zhou et al., "A 24–30 GHz CMOS LNA with 2.05dB NF and 0.6dB in-band gain ripple for 5G-applications," 2018 IEEE MTT-S International Wireless Symposium (IWS), Chengdu, pp. 1-3, 2018.
  • Y. Feng, G. Takemura, S Kawaguchi, P. Kinget, “A High Performance 2-GHz Direct-Conversion Front-End with a Single-Ended RF Input in 0.13 mu m CMOS,” IEEE Radio Frequency Integrated Circuits Symposium (RFIC), IEEE Journal of Solid-State Circuits, Vol. 44, issue: 5, pp. 1380-1390, May 2009.
  • M. O. Bekkaoui, "Gilbert cell Mixer design in 65nm CMOS technology," 2017 4th International Conference on Electrical and Electronic Engineering (ICEEE), pp. 67-72, Ankara, 2017. 1, Initials, Surname 2, Initials (year). Title. Journal, volume, number, pages, DOI code. Journal titles should not be abbreviated. Note that Journal Title is set in italics.

AYARLANABİLİR RADYO FREKANS (RF) ALICI (RX) ENTEGRE DEVRE (IC)

Year 2023, Volume: 5 Issue: 2, 90 - 94, 30.06.2023
https://doi.org/10.47933/ijeir.1156769

Abstract

Bu çalışmada ayarlanabilir radyo frekansı (RF) alıcısı (Rx) entegre devresi (IC) yapılmıştır. Entegre devreyi tasarlamak için TSMC 65 nm teknoloji düğümü seçildi. RF tekniği, tasarımı ve uygulaması kolay olduğu için biyomedikal optik moleküler araştırma yöntemlerine göre bazı avantajlara sahiptir. Canlı doku üzerinde deneysel ölçüm, optik yöntemlere göre çok daha kolaydır. Nanoskopik canlıların kendine özgü bağlayıcı yapıları vardır. Elementleri, kendi atomları arasında şekillerini ve komşuluk uyumunu oluşturur. Bu çalışmaya dayanarak, nanoskopik molekülleri araştırmak için diferansiyel RF dalgaları kullanılacaktır. Nanoskopik canlıların araştırılması, elektromanyetik dalga faz kayması ve farklı RF frekanslarının taranmasını gerektireceğinden, ultra geniş bant (UGB) ayarlanabilir alıcı devre topolojisi tasarlanmış ve simüle edilmiştir. Bu amaçla Rx bloğu tasarlanmış ve simülasyon çalışması burada gösterilmiştir. Devre simülasyonlarında, düşük gürültülü amplifikatör (LNA) devresine tümdevre dışı anten bağlanmıştır. Spesifik frekans yaklaşık 30 GHz idi. Frekans ayarı, aktif indüktör voltaj kontrollü osilatör (VCO) devre bloğundaki kaynak ve öngerilim voltajları değiştirilerek ayarlandı. Aynı VCO bloğu daha önce Tx devresinde de kullanılmıştı. Anten sinyali 33 GHz alternatif sinüzoidal sinyal kullanılarak modellenmiştir. Bu çalışmada, karıştırıcı devre bloğunda anten sinyali ve 30 GHz aktif indüktör VCO voltaj çıkışı karıştırılmış, 3 GHz zarf sinyali çıkarılmıştır. Rx alıcı IC'nin serim devresi de gösterildi.

References

  • M. Al Ahmad and T. A. Rizvi, "Virus detection by monitoring its radio frequency response versus temperature," Progress in Electromagnetic Research Symposium (PIERS), Shanghai, pp. 4649-4655, 2016.
  • H. O. Kazanci, “Differential photon waves imaging,” Int. J. Imaging Syst. Technol., 1–11, 2020.
  • B. Razavi, “The Active Inductor,” IEEE Solid-State Circuits Magazine, 7-11, 2020.
  • L-H. Lu, H-H. Hsieh, “A Wide Tuning-Range CMOS VCO With a Differential Tunable Active Inductor,” IEEE Transactions on Microwave Theory and Techniques, 54(9), 2006.
  • K-H. Cheng, C-L. Hung, C-S. A. Gong, J-C. Liu, B-Q. Jiang, and S-Y. Sun, “A 0.9–8 GHz VCO with a Differential Active Inductor for Multi standard Wireline SerDes,” 1549-7747, 2013.
  • M. Fillaud, H. Barthélemy, “Design of a wide tuning range VCO using an active inductor,” IEEE, Joint 6th International IEEE Northeast Workshop on Circuits and Systems and TAISA Conference, 2008.
  • M. M. Reja, I. M. Filanovsky and K. Moez, “Wide tunable CMOS active inductor,” Electronics Letters, 44(25), 2008.
  • H-L. Kao, P-C. Lee, and H-C. Chiu, “A Wide Tuning-Range CMOS VCO with a Tunable Active Inductor,” 2015.
  • J. Xu, N. Yan, Q. Chen, J. Gao and X. Zeng, "A 3.4dB NF k-band LNA in 65nm CMOS technology," 2013 IEEE International Symposium on Circuits and Systems (ISCAS), pp. 1123-1126, Beijing, 2013.
  • Y. Wu, J. Jin and K. El-Sankary, "A linearized wideband low noise amplifier in 65nm CMOS for multi-standard RF communication applications," 3rd IEEE International Conference on Computer and Communications (ICCC), pp. 812-815, Chengdu, 2017.
  • J. Zhou et al., "A 24–30 GHz CMOS LNA with 2.05dB NF and 0.6dB in-band gain ripple for 5G-applications," 2018 IEEE MTT-S International Wireless Symposium (IWS), Chengdu, pp. 1-3, 2018.
  • Y. Feng, G. Takemura, S Kawaguchi, P. Kinget, “A High Performance 2-GHz Direct-Conversion Front-End with a Single-Ended RF Input in 0.13 mu m CMOS,” IEEE Radio Frequency Integrated Circuits Symposium (RFIC), IEEE Journal of Solid-State Circuits, Vol. 44, issue: 5, pp. 1380-1390, May 2009.
  • M. O. Bekkaoui, "Gilbert cell Mixer design in 65nm CMOS technology," 2017 4th International Conference on Electrical and Electronic Engineering (ICEEE), pp. 67-72, Ankara, 2017. 1, Initials, Surname 2, Initials (year). Title. Journal, volume, number, pages, DOI code. Journal titles should not be abbreviated. Note that Journal Title is set in italics.
There are 13 citations in total.

Details

Primary Language English
Subjects Engineering
Journal Section Research Articles
Authors

Hüseyin Kazancı 0000-0003-0036-7657

Okan Oral 0000-0002-6302-4574

Early Pub Date June 6, 2023
Publication Date June 30, 2023
Acceptance Date February 7, 2023
Published in Issue Year 2023 Volume: 5 Issue: 2

Cite

APA Kazancı, H., & Oral, O. (2023). TUNABLE RADIO FREQUENCY (RF) RECEIVER (RX) INTEGRATED CIRCUIT (IC). International Journal of Engineering and Innovative Research, 5(2), 90-94. https://doi.org/10.47933/ijeir.1156769

88x31.png

This work is licensed under a Creative Commons Attribution 4.0 International License