Research Article
BibTex RIS Cite

The Sonocatalytic Degradation of 2,4-Dichlorophenoxyacetic acid (2,4-D) Herbicide Using Taguchi Experimental Design

Year 2019, Volume: 2 Issue: 4, 186 - 195, 31.10.2019

Abstract

In recent times, the most commonly used herbicide for cleaning weeds in agricultural areas has been based on 2,4-Dichlorophenoxyacetic acid (2,4-D), and increases in its production is particularly alarming for the whole ecological system, especially in terms of human health, and it needs to be removed from sources of water. To achieve this, discrete 2,4-D removal by a sonocatalytic method (sonolysis with a TiO2 catalyst) has been investigated. In this study, the individual and synergic effects of a TiO2 dose, the pH, the time and initial 2,4-D concentration factors were investigated. In addition, a Taguchi statistical method was applied to optimize the effective parameters. As a result of the study, it was observed that pH was the most effective parameter for 2,4-D degradation. According to the results obtained from the Taguchi statistical method, the optimum conditions for 2,4-D removal are A (pH) with a value of 2 at level 1, B (TiO2 concentration) with a value of 0.5 g/L at level 2, C (initial 2,4-D concentration) with a value of 75 mg/L at level 4 and D (time) with a value of 60 minutes at level 1. The results presented by the theoretically predicted value for 100% degradation efficiency were confirmed by the experimental values.

Supporting Institution

Bolu Abant Izzet Baysal University Scientific Research Projects Coordination Unit

Project Number

2018.09.02.1346

Thanks

This study is supported by Bolu Abant Izzet Baysal University Scientific Research Projects Coordination Unit. Project Number: 2018.09.02.1346.

References

  • [1]. Dehghani, M. H., Kamalian, S., Shayeghi, M., Yousefi, M., Heidarinejad, Z., Agarwal, S., & Gupta, V. K., 2019, High-performance removal of diazinon pesticide from water using multi-walled carbon nanotubes. Microchemical Journal, Vol. 145, 486–491.
  • [2]. Saeidi, M., Naeimi, A., & Komeili, M., 2016, Magnetite nanoparticles coated with methoxy polyethylene glycol as an efficient adsorbent of diazinon pesticide from water. Vol. 1, 25–31.
  • [3]. Marien, C. B. D., Le Pivert, M., Azaïs, A., M’Bra, I. C., Drogui, P., Dirany, A., & Robert, D., 2018., Kinetics and mechanism of Paraquat’s degradation: UV-C photolysis vs UV-C photocatalysis with TiO2/SiC foams. Journal of Hazardous Materials, Vol. 370, 164–171.
  • [4]. Cai, J., Zhou, M., Liu, Y., Savall, A., & Groenen Serrano, K., 2018, Indirect electrochemical oxidation of 2,4-dichlorophenoxyacetic acid using electrochemically-generated persulfate. Vol. 204, 163-169.
  • [5]. Lee, H., Hoon, S., Park, Y., Kim, S., Seo, S., Jin, S., & Jung, S., 2014, Photocatalytic reactions of 2 , 4-dichlorophenoxyacetic acid using a microwave-assisted photocatalysis system. CHEMICAL ENGINEERING JOURNAL.Vol. 278, 259-264.
  • [6]. Islam, F., Wang, J., Farooq, M. A., Khan, M. S. S., & Xu, L., 2017, Potential impact of the herbicide 2 , 4-dichlorophenoxyacetic acid on human and ecosystems. Vol. 111, 332-351.
  • [7]. Chair, K., Bedoui, A., Bensalah, N., Fernández-Morales, F. J., Sáez, C., Cañizares, P., & Rodrigo, M. A., 2017, Combining bioadsorption and photoelectrochemical oxidation for the treatment of soil-washing effluents polluted with herbicide 2,4-D. Journal of Chemical Technology and Biotechnology, Vol. 92, 83–89.
  • [8]. Chen, H., Zhang, Z., Feng, M., Liu, W., Wang, W., Yang, Q., & Hu, Y., 2017, Degradation of 2,4-dichlorophenoxyacetic acid in water by persulfate activated with FeS (mackinawite). Chemical Engineering Journal, Vol. 313, 498–507.
  • [9]. Qiu, P., Thokchom, B., Choi, J., Cui, M., Kim, H.D., Han, Z., Kim, D., 2016, Mesoporous TiO2 encapsulating a visible-light responsive upconversion agent for enhanced sonocatalytic degradation of bisphenol-A, RSC Adv. Vol, 44, 37434–37442.
  • [10]. Chave, T., Navarro, N. M., Pochon, P., Perkas, N., Gedanken, A., & Nikitenko, S. I., 2015, Sonocatalytic degradation of oxalic acid in the presence of oxygenand Pt/TiO2. Catalysis Today, Vol. 241, 55–62.
  • [11]. Cheng, Z., Quan, X., Xiong, Y., Yang, L., & Huang, Y., 2012, Synergistic degradation of methyl orange in an ultrasound intensified photocatalytic reactor. Ultrasonics Sonochemistry, Vol. 19, 1027–1032.
  • [12]. Verma, A., Kaur, H., & Dixit, D., 2013, Photocatalytic, sonolytic and sonophotocatalytic degradation of 4-chloro-2-nitro phenol. Archives of Environmental Protection, 39(2), 17–28.
  • [13]. Wang, C., Zhao, J., Wang, X., Mai, B., Sheng, G., Peng, P., & Fu, J., 2002, Preparation , characterization and photocatalytic activity of nano-sized ZnO/SnO2 coupled photocatalysts. Applied Catalysis B: Environmental, 39(3), 269–279.
  • [14]. Chakma, S., & Moholkar, V. S., 2015, Investigation in mechanistic issues of sonocatalysis and sonophotocatalysis using pure and doped photocatalysts. Ultrasonics Sonochemistry, Vol. 22, 287–299.
  • [15]. Dinesh, G.K., Anandan, S., Sivasankar, T., 2015, Sonophotocatalytic treatment of Bismarck Brown G dye and real textile effluent using synthesized novel Fe (0)-doped TiO2 catalyst, RSC Adv.Vol. 5,10440–10451.
  • [16]. Benito, A., Penadés, A., Lliberia, J. L., & Gonzalez-Olmos, R., 2017, Degradation pathways of aniline in aqueous solutions during electro-oxidation with BDD electrodes and UV/H2O2 treatment. Chemosphere,Vol. 166, 230–237.
  • [17]. Mahamuni, N. N., & Adewuyi, Y. G., 2009, Advanced oxidation processes (AOPs) involving ultrasound for waste water treatment: A review with emphasis on cost estimation. Ultrasonics - Sonochemistry,Vol. 17, 990–1003.
  • [18]. Khataee, S., Saadi, Safarpour M., Joo S.W., 2015, Sonocatalytic performance of Er- doped ZnO for degradation of a textile dye, Ultrason. Sonochem.Vol. 27, 379–388.
  • [19]. Stylidi, M., Kondarides, D. I., & Verykios, X. E., 2004, Visible light-induced photocatalytic degradation of Acid Orange 7 in aqueous TiO2 suspensions. Applied Catalysis B: Environmental, 47(3), 189–201.
  • [20]. Gorji, A. H., Simchi, A., & Kokabi, A. H., 2015, Development of composite silver/nickel nanopastes for low temperature Joining of yttria-stabilized zirconia to stainless steels. Ceramics International, Vol. 41, 1815–1822.
  • [21]. Ranjit, K.; Roy, A. Primer on the Taguchi Method, 1st ed., Society of Manufacturing Engineers; 1990; pp. 146
  • [22]. Aber, S., Khataee, A., & Sheydaei, M., 2009, Optimization of activated carbon fiber preparation from Kenaf using K2HPO4 as chemical activator for adsorption of phenolic compounds. Bioresource Technology,Vol. 100, 6586–6591.
  • [23]. Narenderan, S. T., Meyyanathan, S. N., & Reddy Karri, V. V. S., 2019, Experimental design in pesticide extraction methods: A review. In Food Chemistry.
  • [24]. Sohrabi, M. R., Khavaran, A., Shariati, S., & Shariati, S., 2017, Removal of Carmoisine edible dye by Fenton and photo Fenton processes using Taguchi orthogonal array design. Arabian Journal of Chemistry, 10, 3523–3531.
  • [25]. Taguchi, G. Introduction to quality engineering: designing quality into products and processes, 7nd ed.; The organization; California University; 2011; pp. 47
  • [26]. Mohapatra, S., Jyotsna, S., & Thatoi, H., 2016, Physicochemical characterization , modelling and optimization of ultrasono-assisted acid pretreatment of two Pennisetum sp . using Taguchi and artificial neural networking for enhanced deligni fi cation. Journal of Environmental Management,Vol. 187,537-549 .
  • [27]. Aliofkhazraee, M., & Sabour Rouhaghdam, A., 2008, Pulsed nanocrystalline plasma electrolytic carburising for corrosion protection of a γ-TiAl alloy. Part 2. Constant frequency and duty cycle. Journal of Alloys and Compounds,Vol. 462, 421–427.
  • [28]. Sreeja, P. H., & Sosamony, K. J., 2016, A Comparative Study of Homogeneous and Heterogeneous Photo-fenton Process for Textile Wastewater Treatment. Procedia Technology, 24, 217–223.
  • [29]. Ozdamar, A.; Paket Programlar ile İstatistiksel Veri Analizi, 10nd ed.; Sözkesen Matbaacılık; Ankara; 2015; pp. 299-300
  • [30]. Piscopo, A., Robert, D., & Weber, J., 2001, Influence of pH and chloride anion on the photocatalytic degradation of organic compounds: part I. Effect on the benzamide and para-hydroxybenzoic acid in TiO2 aqueous solution. Applied Catalysis B: Environmental, 35, 117–124. Retrieved from
  • [31]. Prieto, O., Fermoso, J., Nuñez, Y., Del Valle, J. L., & Irusta, R. (2005). Decolouration of textile dyes in wastewaters by photocatalysis with TiO2. Solar Energy, 79(4), 376–383.
  • [32]. Bazrafshan, E., Mostafapour, F. K., Faridi, H., Farzadkia, M., & Sohrabi, A., 2013, Removal of 2 , 4-Dichlorophenoxyacetic Acid ( 2 , 4-D ) From Aqueous Environ- ments Using Single-Walled Carbon Nanotubes. Vol. 2, 39–46.
  • [33]. Cai, J., Zhou, M., Liu, Y., Savall, A., Groenen Serrano, K. 2018, Indirect electrochemical oxidation of 2,4-dichlorophenoxyacetic acid using electrochemically-generated persulfate. Chemosphere Vol. 204, 163-169
  • [34]. Yu, C. H., Wu, C. H., Ho, T. H., & Andy Hong, P. K., 2010, Decolorization of C.I. Reactive Black 5 in UV/TiO2 , UV/oxidant and UV/TiO2 /oxidant systems: A comparative study. Chemical Engineering Journal, 158(3), 578–583.
  • [35]. Bouafıa-Cherguı, S., Zemmourı, H., Chabanı, M., & Bensmaılı, A., 2016, TiO2-photocatalyzed degradation of tetracycline: kinetic study, adsorption isotherms, mineralization and toxicity reduction. Desalination and Water Treatment,Vol. 57, 16670–16677.
  • [36]. Dogdu Okcu, G., Eser Okten, H., Yalcuk, A., 2019, Heterogeneous photocatalytic degradation and mineralization of 2,4-dichlorophenoxy acetic acid (2,4-D): its performance, kinetics, and economic analysis. Desalin. Water Treat. Vol. 137, 312–327
  • [37]. Rong, G.Z., 2016, Sonocatalytic degradation of organic dye in the presence of TiO2 particles, J. Econ. Financ. Vol. 3, 56.
  • [38]. Bian, X., Chen, J., & Ji, R., 2013, Degradation of 2,4-dichlorophenoxyacetic acid (2,4-D) by novel photocatalytic material of tourmaline-coated TiO2 nanoparticles: Kinetic study and model. Materials,Vol. 6, 1530–1542.
  • [39]. Musterman, M., Placeholder, P., Tio, F., & Musterman, M., 2018, Sonocatalytic degradation of Different methyl orange in aqueous solution using nanoparticles under mechanical agitation What Is So Different About Was ist so anders am Neuroenhancement Vol. 2, 122–135.
Year 2019, Volume: 2 Issue: 4, 186 - 195, 31.10.2019

Abstract

Project Number

2018.09.02.1346

References

  • [1]. Dehghani, M. H., Kamalian, S., Shayeghi, M., Yousefi, M., Heidarinejad, Z., Agarwal, S., & Gupta, V. K., 2019, High-performance removal of diazinon pesticide from water using multi-walled carbon nanotubes. Microchemical Journal, Vol. 145, 486–491.
  • [2]. Saeidi, M., Naeimi, A., & Komeili, M., 2016, Magnetite nanoparticles coated with methoxy polyethylene glycol as an efficient adsorbent of diazinon pesticide from water. Vol. 1, 25–31.
  • [3]. Marien, C. B. D., Le Pivert, M., Azaïs, A., M’Bra, I. C., Drogui, P., Dirany, A., & Robert, D., 2018., Kinetics and mechanism of Paraquat’s degradation: UV-C photolysis vs UV-C photocatalysis with TiO2/SiC foams. Journal of Hazardous Materials, Vol. 370, 164–171.
  • [4]. Cai, J., Zhou, M., Liu, Y., Savall, A., & Groenen Serrano, K., 2018, Indirect electrochemical oxidation of 2,4-dichlorophenoxyacetic acid using electrochemically-generated persulfate. Vol. 204, 163-169.
  • [5]. Lee, H., Hoon, S., Park, Y., Kim, S., Seo, S., Jin, S., & Jung, S., 2014, Photocatalytic reactions of 2 , 4-dichlorophenoxyacetic acid using a microwave-assisted photocatalysis system. CHEMICAL ENGINEERING JOURNAL.Vol. 278, 259-264.
  • [6]. Islam, F., Wang, J., Farooq, M. A., Khan, M. S. S., & Xu, L., 2017, Potential impact of the herbicide 2 , 4-dichlorophenoxyacetic acid on human and ecosystems. Vol. 111, 332-351.
  • [7]. Chair, K., Bedoui, A., Bensalah, N., Fernández-Morales, F. J., Sáez, C., Cañizares, P., & Rodrigo, M. A., 2017, Combining bioadsorption and photoelectrochemical oxidation for the treatment of soil-washing effluents polluted with herbicide 2,4-D. Journal of Chemical Technology and Biotechnology, Vol. 92, 83–89.
  • [8]. Chen, H., Zhang, Z., Feng, M., Liu, W., Wang, W., Yang, Q., & Hu, Y., 2017, Degradation of 2,4-dichlorophenoxyacetic acid in water by persulfate activated with FeS (mackinawite). Chemical Engineering Journal, Vol. 313, 498–507.
  • [9]. Qiu, P., Thokchom, B., Choi, J., Cui, M., Kim, H.D., Han, Z., Kim, D., 2016, Mesoporous TiO2 encapsulating a visible-light responsive upconversion agent for enhanced sonocatalytic degradation of bisphenol-A, RSC Adv. Vol, 44, 37434–37442.
  • [10]. Chave, T., Navarro, N. M., Pochon, P., Perkas, N., Gedanken, A., & Nikitenko, S. I., 2015, Sonocatalytic degradation of oxalic acid in the presence of oxygenand Pt/TiO2. Catalysis Today, Vol. 241, 55–62.
  • [11]. Cheng, Z., Quan, X., Xiong, Y., Yang, L., & Huang, Y., 2012, Synergistic degradation of methyl orange in an ultrasound intensified photocatalytic reactor. Ultrasonics Sonochemistry, Vol. 19, 1027–1032.
  • [12]. Verma, A., Kaur, H., & Dixit, D., 2013, Photocatalytic, sonolytic and sonophotocatalytic degradation of 4-chloro-2-nitro phenol. Archives of Environmental Protection, 39(2), 17–28.
  • [13]. Wang, C., Zhao, J., Wang, X., Mai, B., Sheng, G., Peng, P., & Fu, J., 2002, Preparation , characterization and photocatalytic activity of nano-sized ZnO/SnO2 coupled photocatalysts. Applied Catalysis B: Environmental, 39(3), 269–279.
  • [14]. Chakma, S., & Moholkar, V. S., 2015, Investigation in mechanistic issues of sonocatalysis and sonophotocatalysis using pure and doped photocatalysts. Ultrasonics Sonochemistry, Vol. 22, 287–299.
  • [15]. Dinesh, G.K., Anandan, S., Sivasankar, T., 2015, Sonophotocatalytic treatment of Bismarck Brown G dye and real textile effluent using synthesized novel Fe (0)-doped TiO2 catalyst, RSC Adv.Vol. 5,10440–10451.
  • [16]. Benito, A., Penadés, A., Lliberia, J. L., & Gonzalez-Olmos, R., 2017, Degradation pathways of aniline in aqueous solutions during electro-oxidation with BDD electrodes and UV/H2O2 treatment. Chemosphere,Vol. 166, 230–237.
  • [17]. Mahamuni, N. N., & Adewuyi, Y. G., 2009, Advanced oxidation processes (AOPs) involving ultrasound for waste water treatment: A review with emphasis on cost estimation. Ultrasonics - Sonochemistry,Vol. 17, 990–1003.
  • [18]. Khataee, S., Saadi, Safarpour M., Joo S.W., 2015, Sonocatalytic performance of Er- doped ZnO for degradation of a textile dye, Ultrason. Sonochem.Vol. 27, 379–388.
  • [19]. Stylidi, M., Kondarides, D. I., & Verykios, X. E., 2004, Visible light-induced photocatalytic degradation of Acid Orange 7 in aqueous TiO2 suspensions. Applied Catalysis B: Environmental, 47(3), 189–201.
  • [20]. Gorji, A. H., Simchi, A., & Kokabi, A. H., 2015, Development of composite silver/nickel nanopastes for low temperature Joining of yttria-stabilized zirconia to stainless steels. Ceramics International, Vol. 41, 1815–1822.
  • [21]. Ranjit, K.; Roy, A. Primer on the Taguchi Method, 1st ed., Society of Manufacturing Engineers; 1990; pp. 146
  • [22]. Aber, S., Khataee, A., & Sheydaei, M., 2009, Optimization of activated carbon fiber preparation from Kenaf using K2HPO4 as chemical activator for adsorption of phenolic compounds. Bioresource Technology,Vol. 100, 6586–6591.
  • [23]. Narenderan, S. T., Meyyanathan, S. N., & Reddy Karri, V. V. S., 2019, Experimental design in pesticide extraction methods: A review. In Food Chemistry.
  • [24]. Sohrabi, M. R., Khavaran, A., Shariati, S., & Shariati, S., 2017, Removal of Carmoisine edible dye by Fenton and photo Fenton processes using Taguchi orthogonal array design. Arabian Journal of Chemistry, 10, 3523–3531.
  • [25]. Taguchi, G. Introduction to quality engineering: designing quality into products and processes, 7nd ed.; The organization; California University; 2011; pp. 47
  • [26]. Mohapatra, S., Jyotsna, S., & Thatoi, H., 2016, Physicochemical characterization , modelling and optimization of ultrasono-assisted acid pretreatment of two Pennisetum sp . using Taguchi and artificial neural networking for enhanced deligni fi cation. Journal of Environmental Management,Vol. 187,537-549 .
  • [27]. Aliofkhazraee, M., & Sabour Rouhaghdam, A., 2008, Pulsed nanocrystalline plasma electrolytic carburising for corrosion protection of a γ-TiAl alloy. Part 2. Constant frequency and duty cycle. Journal of Alloys and Compounds,Vol. 462, 421–427.
  • [28]. Sreeja, P. H., & Sosamony, K. J., 2016, A Comparative Study of Homogeneous and Heterogeneous Photo-fenton Process for Textile Wastewater Treatment. Procedia Technology, 24, 217–223.
  • [29]. Ozdamar, A.; Paket Programlar ile İstatistiksel Veri Analizi, 10nd ed.; Sözkesen Matbaacılık; Ankara; 2015; pp. 299-300
  • [30]. Piscopo, A., Robert, D., & Weber, J., 2001, Influence of pH and chloride anion on the photocatalytic degradation of organic compounds: part I. Effect on the benzamide and para-hydroxybenzoic acid in TiO2 aqueous solution. Applied Catalysis B: Environmental, 35, 117–124. Retrieved from
  • [31]. Prieto, O., Fermoso, J., Nuñez, Y., Del Valle, J. L., & Irusta, R. (2005). Decolouration of textile dyes in wastewaters by photocatalysis with TiO2. Solar Energy, 79(4), 376–383.
  • [32]. Bazrafshan, E., Mostafapour, F. K., Faridi, H., Farzadkia, M., & Sohrabi, A., 2013, Removal of 2 , 4-Dichlorophenoxyacetic Acid ( 2 , 4-D ) From Aqueous Environ- ments Using Single-Walled Carbon Nanotubes. Vol. 2, 39–46.
  • [33]. Cai, J., Zhou, M., Liu, Y., Savall, A., Groenen Serrano, K. 2018, Indirect electrochemical oxidation of 2,4-dichlorophenoxyacetic acid using electrochemically-generated persulfate. Chemosphere Vol. 204, 163-169
  • [34]. Yu, C. H., Wu, C. H., Ho, T. H., & Andy Hong, P. K., 2010, Decolorization of C.I. Reactive Black 5 in UV/TiO2 , UV/oxidant and UV/TiO2 /oxidant systems: A comparative study. Chemical Engineering Journal, 158(3), 578–583.
  • [35]. Bouafıa-Cherguı, S., Zemmourı, H., Chabanı, M., & Bensmaılı, A., 2016, TiO2-photocatalyzed degradation of tetracycline: kinetic study, adsorption isotherms, mineralization and toxicity reduction. Desalination and Water Treatment,Vol. 57, 16670–16677.
  • [36]. Dogdu Okcu, G., Eser Okten, H., Yalcuk, A., 2019, Heterogeneous photocatalytic degradation and mineralization of 2,4-dichlorophenoxy acetic acid (2,4-D): its performance, kinetics, and economic analysis. Desalin. Water Treat. Vol. 137, 312–327
  • [37]. Rong, G.Z., 2016, Sonocatalytic degradation of organic dye in the presence of TiO2 particles, J. Econ. Financ. Vol. 3, 56.
  • [38]. Bian, X., Chen, J., & Ji, R., 2013, Degradation of 2,4-dichlorophenoxyacetic acid (2,4-D) by novel photocatalytic material of tourmaline-coated TiO2 nanoparticles: Kinetic study and model. Materials,Vol. 6, 1530–1542.
  • [39]. Musterman, M., Placeholder, P., Tio, F., & Musterman, M., 2018, Sonocatalytic degradation of Different methyl orange in aqueous solution using nanoparticles under mechanical agitation What Is So Different About Was ist so anders am Neuroenhancement Vol. 2, 122–135.
There are 39 citations in total.

Details

Primary Language English
Subjects Environmental Engineering
Journal Section Articles
Authors

Gamze Doğdu Okçu 0000-0002-0278-8503

Emre Dikmen This is me

Arda Yalçuk

Project Number 2018.09.02.1346
Publication Date October 31, 2019
Submission Date June 18, 2019
Published in Issue Year 2019 Volume: 2 Issue: 4

Cite

APA Doğdu Okçu, G., Dikmen, E., & Yalçuk, A. (2019). The Sonocatalytic Degradation of 2,4-Dichlorophenoxyacetic acid (2,4-D) Herbicide Using Taguchi Experimental Design. International Journal of Environmental Pollution and Environmental Modelling, 2(4), 186-195.
AMA Doğdu Okçu G, Dikmen E, Yalçuk A. The Sonocatalytic Degradation of 2,4-Dichlorophenoxyacetic acid (2,4-D) Herbicide Using Taguchi Experimental Design. Int. j. environ. pollut. environ. model. October 2019;2(4):186-195.
Chicago Doğdu Okçu, Gamze, Emre Dikmen, and Arda Yalçuk. “The Sonocatalytic Degradation of 2,4-Dichlorophenoxyacetic Acid (2,4-D) Herbicide Using Taguchi Experimental Design”. International Journal of Environmental Pollution and Environmental Modelling 2, no. 4 (October 2019): 186-95.
EndNote Doğdu Okçu G, Dikmen E, Yalçuk A (October 1, 2019) The Sonocatalytic Degradation of 2,4-Dichlorophenoxyacetic acid (2,4-D) Herbicide Using Taguchi Experimental Design. International Journal of Environmental Pollution and Environmental Modelling 2 4 186–195.
IEEE G. Doğdu Okçu, E. Dikmen, and A. Yalçuk, “The Sonocatalytic Degradation of 2,4-Dichlorophenoxyacetic acid (2,4-D) Herbicide Using Taguchi Experimental Design”, Int. j. environ. pollut. environ. model., vol. 2, no. 4, pp. 186–195, 2019.
ISNAD Doğdu Okçu, Gamze et al. “The Sonocatalytic Degradation of 2,4-Dichlorophenoxyacetic Acid (2,4-D) Herbicide Using Taguchi Experimental Design”. International Journal of Environmental Pollution and Environmental Modelling 2/4 (October 2019), 186-195.
JAMA Doğdu Okçu G, Dikmen E, Yalçuk A. The Sonocatalytic Degradation of 2,4-Dichlorophenoxyacetic acid (2,4-D) Herbicide Using Taguchi Experimental Design. Int. j. environ. pollut. environ. model. 2019;2:186–195.
MLA Doğdu Okçu, Gamze et al. “The Sonocatalytic Degradation of 2,4-Dichlorophenoxyacetic Acid (2,4-D) Herbicide Using Taguchi Experimental Design”. International Journal of Environmental Pollution and Environmental Modelling, vol. 2, no. 4, 2019, pp. 186-95.
Vancouver Doğdu Okçu G, Dikmen E, Yalçuk A. The Sonocatalytic Degradation of 2,4-Dichlorophenoxyacetic acid (2,4-D) Herbicide Using Taguchi Experimental Design. Int. j. environ. pollut. environ. model. 2019;2(4):186-95.
 ❤ IJEPEM.