İnceleme Makalesi
BibTex RIS Kaynak Göster
Yıl 2024, Cilt: 6 Sayı: 2, 179 - 193, 31.08.2024

Öz

Kaynakça

  • Agunleti, Y.S., Jaiyeola, G.B., 2015. Application of electrical resistivity techniques to decipher granitic dyke within sedimentary terrain for quarry purpose. International Journal of Emerging Technology and Innovative Engineering I(6), 38-44.
  • Chambers, J.E., Kuras, O., Meldrum, P.I., Ogilvy, R.D., Hollands, J., 2006. Electrical resistivity tomography applied to geological, hydrogeological and engineering investigations at a former waste disposal site. Geophysics 71, B231-B239.
  • Friberg, N., 2023. Geological 3D Modelling of the File Hajdar Quarry, Slite. Degree Project at the Department of Earth Sciences, ISSN 1650-6553 Nr 617, 45 p.
  • Kayode, J.S., Arifin, M.H., Nawawi, M., 2019. Characterization of a proposed quarry site using multi-electrode electrical resistivity tomography. Sains Malaysiana 48 (5), 945-963, http://doi.org/10.17576/jsm-2019-4805-03.
  • Kozak, M., 2021. Demiryolu balastının ve özelliklerinin araştırılması. Demiryolu Mühendisliği, 13, 86-96, https://doi.org/10.47072/demiryolu.831684 (in Turkish).
  • Larsson, M., 2022. 3D Geological Modelling of the Subsurface Adjacent to Cementa’s Quarry in Skövde, Sweden. Degree Project at the Department of Earth Sciences ISSN 1650-6553 Nr 582, 40 p.
  • Martial, Y. A., Nicolas, K. L., Constantin, A. E. B. J., Celestin, S. B., 2023. 3D modeling and estimation of the tonnage of the granite quarry of Linguésso (North-West of Côte d’Ivoire) by electrical methods. Journal of Geoscience and Environment Protection 11, 138-154. https://doi.org/10.4236/gep.2023.113010.
  • Özdemir, A., Savaş, İ., 2009. Maden aramacılığında bir gelişim; çok-elektrotlu özdirenç görüntüleme. Madencilik Türkiye Dergisi 2, 24-29 (in Turkish).
  • Özdemir, A., Palabıyık, Y., 2019a. Yüksek sıcaklıklı ve derin jeotermal sahaların rezistivite ölçümlerinin jeolojik yorumlama yöntemleri: Batı Anadolu’dan bir çalışma. Avrupa Bilim ve Teknoloji Dergisi 17, 1075-1091 (in Turkish). https://doi.org/10.31590/ejosat.653203.
  • Özdemir, A., Palabıyık, Y., 2019b. Güney (Denizli) civarında jeotermal enerji arama: Derin düşey elektrik sondaj (DES) ölçümlerinin jeofizik ve jeolojik yorumu. Avrupa Bilim ve Teknoloji Dergisi 17, 1198-1214 (in Turkish). https://doi.org/10.31590/ejosat.653565.
  • Uhlemann, S., Chambers, J., Falck, W.E., Alonso, A.V., González, J.L.F., de Gea, A.E., 2018. Applying electrical resistivity tomography in ornamental stone mining: Challenges and solutions. Minerals 8, 491, https://doi.org/10.3390/min8110491.
  • Yi, M., Kim, J., Song, Y., 2006. Application of 3D resistivity tomography to delineate subsurface structures. Exploration Geophysics, 37, 268-27, https://doi.org/10.1071/EG06268.

3D Geophysical Subsurface Modelling in Quarry Site Research

Yıl 2024, Cilt: 6 Sayı: 2, 179 - 193, 31.08.2024

Öz

This study aims to investigate the presence, thickness, and vertical and lateral extension of limestone and basalt in quarry sites by geophysical methods and to perform 3D geophysical subsurface modeling. Within the scope of the study, firstly, regional gravity and airborne magnetic data were obtained, and maps were prepared and interpreted to estimate the presence, thickness, and vertical and lateral extent of limestone and basalt in the areas selected as quarries by geophysical methods. In the second stage, in-situ geological observations were made to examine the geological characteristics and to guide the geophysical measurements to be made in these areas. In the third stage, geophysical measurements were carried out at suitable locations determined by geological observations. In the last stage, computer-aided 3D subsurface modeling of the study areas was carried out in light of the geophysical data obtained. As a result of the studies, areas that are suitable and unsuitable for quarrying were identified. This study demonstrates that geophysical methods (especially resistivity method) can be fast, reliable and cost-effective methods for quarry site research.

Kaynakça

  • Agunleti, Y.S., Jaiyeola, G.B., 2015. Application of electrical resistivity techniques to decipher granitic dyke within sedimentary terrain for quarry purpose. International Journal of Emerging Technology and Innovative Engineering I(6), 38-44.
  • Chambers, J.E., Kuras, O., Meldrum, P.I., Ogilvy, R.D., Hollands, J., 2006. Electrical resistivity tomography applied to geological, hydrogeological and engineering investigations at a former waste disposal site. Geophysics 71, B231-B239.
  • Friberg, N., 2023. Geological 3D Modelling of the File Hajdar Quarry, Slite. Degree Project at the Department of Earth Sciences, ISSN 1650-6553 Nr 617, 45 p.
  • Kayode, J.S., Arifin, M.H., Nawawi, M., 2019. Characterization of a proposed quarry site using multi-electrode electrical resistivity tomography. Sains Malaysiana 48 (5), 945-963, http://doi.org/10.17576/jsm-2019-4805-03.
  • Kozak, M., 2021. Demiryolu balastının ve özelliklerinin araştırılması. Demiryolu Mühendisliği, 13, 86-96, https://doi.org/10.47072/demiryolu.831684 (in Turkish).
  • Larsson, M., 2022. 3D Geological Modelling of the Subsurface Adjacent to Cementa’s Quarry in Skövde, Sweden. Degree Project at the Department of Earth Sciences ISSN 1650-6553 Nr 582, 40 p.
  • Martial, Y. A., Nicolas, K. L., Constantin, A. E. B. J., Celestin, S. B., 2023. 3D modeling and estimation of the tonnage of the granite quarry of Linguésso (North-West of Côte d’Ivoire) by electrical methods. Journal of Geoscience and Environment Protection 11, 138-154. https://doi.org/10.4236/gep.2023.113010.
  • Özdemir, A., Savaş, İ., 2009. Maden aramacılığında bir gelişim; çok-elektrotlu özdirenç görüntüleme. Madencilik Türkiye Dergisi 2, 24-29 (in Turkish).
  • Özdemir, A., Palabıyık, Y., 2019a. Yüksek sıcaklıklı ve derin jeotermal sahaların rezistivite ölçümlerinin jeolojik yorumlama yöntemleri: Batı Anadolu’dan bir çalışma. Avrupa Bilim ve Teknoloji Dergisi 17, 1075-1091 (in Turkish). https://doi.org/10.31590/ejosat.653203.
  • Özdemir, A., Palabıyık, Y., 2019b. Güney (Denizli) civarında jeotermal enerji arama: Derin düşey elektrik sondaj (DES) ölçümlerinin jeofizik ve jeolojik yorumu. Avrupa Bilim ve Teknoloji Dergisi 17, 1198-1214 (in Turkish). https://doi.org/10.31590/ejosat.653565.
  • Uhlemann, S., Chambers, J., Falck, W.E., Alonso, A.V., González, J.L.F., de Gea, A.E., 2018. Applying electrical resistivity tomography in ornamental stone mining: Challenges and solutions. Minerals 8, 491, https://doi.org/10.3390/min8110491.
  • Yi, M., Kim, J., Song, Y., 2006. Application of 3D resistivity tomography to delineate subsurface structures. Exploration Geophysics, 37, 268-27, https://doi.org/10.1071/EG06268.
Toplam 12 adet kaynakça vardır.

Ayrıntılar

Birincil Dil İngilizce
Konular Deniz Jeolojisi ve Jeofiziği
Bölüm Research Articles
Yazarlar

Duygu Turhan

Ekrem Kalkan

Dr. Adil Özdemir

Yayımlanma Tarihi 31 Ağustos 2024
Gönderilme Tarihi 26 Temmuz 2024
Kabul Tarihi 20 Ağustos 2024
Yayımlandığı Sayı Yıl 2024 Cilt: 6 Sayı: 2

Kaynak Göster

AMA Turhan D, Kalkan E, Özdemir DA. 3D Geophysical Subsurface Modelling in Quarry Site Research. IJESKA. Ağustos 2024;6(2):179-193.