Research Article
BibTex RIS Cite

Numerical and Experimental Investigation of Aerodynamics Characteristics of NACA 0015 Aerofoil

Year 2016, , 132 - 141, 20.04.2017
https://doi.org/10.19072/ijet.280499

Abstract

An aerofoil is stream line body. Symmetric aerofoil (NACA 0015) is used in many applications such as in aircraft submarine fins, rotary and some fixed wings. The ultimate objective of an aerofoil is to obtain the lift necessary to keep an airplane in the air. But construction of the blade with proper angle of attack and implementation has significant effect on lift force. Insufficient lift force might cause fail of airplane flying, especially at high speed. Modern technologist use different simulation techniques to avoid costly model testing. But simulation is based on some assumption. Thus practically results are not fully authentic and have a deviation. In this work numerical and experimental investigation of NACA 0015 is studied at different angle of attack (degree) at different velocity of air by determining the forces at every two degrees from 00 to 180. The experimental is conveyed in a low speed wind tunnel. The numerical analysis is conducted using ANSYS (combined with CFD and FLUENT FLOW). The use of the CFD technology greatly reduces the overall investment and efforts for aerofoil design. CFD method contributes to visualize the flow pattern inside aerofoil and takes less time and faster according to experimental methods. After completing the experimental and numerical data is compared. Therefore objective of this paper is to find the deviation and validation of aerodynamics characteristics of aerofoil NACA 0015 for experimental and numerical method.

References

  • K. S. Patel, S. B. Patel, U. B. Patel, and A. P. Ahuja, “CFD Analysis of an Aerofoil”, International Journal of Engineering Research, vol. 3, issue. 3, pp. 154-158, March 2014.
  • I. B. Llorca, “CFD Analysis and Assessment of the Stability and Control of a Supersonic Business Jet”, Royal Institute of Technology (KTH), Stockholm, Sweden, March 2015.
  • Y. T. Chuen, M. Z. Abdullah, and Z. Husain, “The Effects of Turbulence Intensity on the Performance Characteristics of NACA 0015 and Eagle 150 Airfoils”, Proc. NSF Seminar 2002.
  • W. L. Siauw, J. P. Bonnet, and J. Tensi, “Physics of Separated Flow Over a NACA 0015 Airfoil and Detection of Flow Separation”, 47th AIAA Aerospace Sciences Meeting Including The New Horizons Forum and Aerospace Exposition, 5 - 8 January 2009, Orlando, Florida.
  • M. R. Islam, M. A. Hossain, M. N. Uddin, and M. Mashud, “Experimental Evaluation of Aerodynamics Characteristics of a Baseline Aerofoil”, American Journal of Engineering Research, vol. 4, Issue. 1, pp. 91-96, 2015.
  • S. Kandwal, and S. Singh, “Computational Fluid Dynamics Study of Fluid Flow and Aerodynamic Forces on an Aerofoil”, International Journal of Engineering Research & Technology, vol. 1, Issue. 7, 2012.
  • Dr. R. K. Bansal, Fluid Mechanics and Hydraulic Mechunes, 9th ed., Laxmi Publication (P) Ltd, 2010, pp. 686- 687.
  • M. Morshed, S. B. Sayeed, S. A. A. Mamun, and J. Alam, “Investigation of Drag Analysis of Four Different Profiles Tested at Subsonic Wind Tunnel”, Journal of Modern Science and Technology, vol. 2, No. 2, pp. 113-126, 2014. (Article)
  • E. H. Lewitt, Hydraulics and Fluid Mechanics, 10th ed., Sir Isaac Pitman & Sons Ltd, 1963, pp. 382-383.
  • M. S. Selig, and J. J. Guglielmo, “High-Lift Low Reynolds Number Airfoil Design”, Journal of Aircraft, vol. 34, No. 1, 1997.
  • Z. Yang, H. Igarashi, M. Martin, and Hui Hu, “An Experimental Investigation on Aerodynamic Hysteresis of a Low-Reynolds Number Aerofoil”, American Institute of Aeronautics and Astronautics, AIAA-2008-0315, 2008.
  • G. R. Srinivasan, J. A. Ekaterinaris, and W. J. McCroskey, “Evaluation of Turbulence Model for Unsteady Flows of an Oscillating Aerofoil”, Elsevier Science Ltd., Computers & Fluids, vol. 24, No. 7, 1995, pp. 833-861.
  • L. B. Li, Y. W. Ma, and L. Liu, “Numerical Simulation on Aerodynamics Performance of Wind Turbine Aerofoil”, Conf. on World Automation Congress (WAC), Puerto Vallarta, Mexico, Publisher by IEEE, pp. 1-4, 2012.
  • M. Gaunaa, J. N. Sørensen, P. S. Larsen, “Unsteady Aerodynamic Forces on NACA 0015 Airfoil in Harmonic Translatory Motion”, Technical University of Denmark, (MEK-FM-PHD; No. 2002-02, 2002.
  • W. Bacha, and W. Ghaly. "Drag Prediction in Transitional Flow Over Two-Dimensional Airfoils", 44th AIAA Aerospace Sciences Meeting and Exhibit, Aerospace Sciences Meetings, Reno, Nevada, 2006.
  • A. G. Chervonenko, “Effect of attack Angle on the Nonstationary Aerodynamic Characteristics and Flutter Resistance of a Grid of Bent Vibrating Compressor Blades”, Ukrainian Academy of Sciences, Plenum Publishing Corporation, Ukraine, vol. 39, No. 10, pp. 78-81. 1991.
  • D. Ramdenee, H. Ibrahim, N. Barka, and A. Ilinca, “Modeling of Aerodynamic Flutter on A NACA 4412 Airfoil Wind Blade”, International Journal of Simulation and Process Modeling, Inderscience Publishers, Canada, vol. 8, No. 1, pp. 79-87, 2013.
  • J. Johansen, “Prediction of Laminar/Turbulent Transition in Airfoil Flows”, Journal of Aircraft, Aerospace Research Central, Denmark, vol. 36, No. 4, pp. 731-734, 1997.
  • B. E. Launder, and D. B. Spalding, “The Numerical Computation of Turbulent Flows”, Computer Methods in Applied Mechanics and Engineering, vol. 3, No. 2, pp. 269-289, 1974.
  • M. Kevadiya, H. A. Vadiya, “2D Analysis of NACA 4412 Airfoil”, International Journal of Innovative Research in Science Engineering and Technology, vol. 2, No. 5, pp. 168-1691, 2013.
  • A. K. Saraf, M. Singh, and A. Kumar, “Analysis of the Spalart-Allmaras and k-ω standard models for the simulation of the flow over a National Advisory Committee for Aeronautics (NACA) 4412 airfoil”, International Journal of Scientific & Engineering Research, vol. 3, Issue 8, pp. 1-7, August-2012.
  • S. S. B. Bensiger, and N. Prasanth, “Analysis of Bi-Convex Airfoil Using CFD Software at Supersonic and Hypersonic Speed”, Elixir International Journal, vol. 53, pp. 11695-11698, 2012.
  • D. C. Eleni, T. I. Athanasios, and M. P. Dionissios, “Evaluation of the Turbulence Models for the Simulation of the Flow over an Aerofoil”, Journal of Mechanical Engineering Research, vol. 4, No. 3, pp. 100-111, 2012.
  • I. Şahin, and A. Acir, “Numerical and Experimental Investigations of Lift and Drag Performances of NACA 0015 Wind Turbine Aerofoil”, International Journal of Materials, Mechanics and Manufacturing, vol. 3, No. 1, pp. 22-25, 2015.
  • S. Chandra, A. Lee, S. Gorrell, and C. G. Jensen, “CFD Analysis of PACE Formula-1 Car”, Computer-Aided Design & Applications, PACE (1), 2011, 1-14.
Year 2016, , 132 - 141, 20.04.2017
https://doi.org/10.19072/ijet.280499

Abstract

References

  • K. S. Patel, S. B. Patel, U. B. Patel, and A. P. Ahuja, “CFD Analysis of an Aerofoil”, International Journal of Engineering Research, vol. 3, issue. 3, pp. 154-158, March 2014.
  • I. B. Llorca, “CFD Analysis and Assessment of the Stability and Control of a Supersonic Business Jet”, Royal Institute of Technology (KTH), Stockholm, Sweden, March 2015.
  • Y. T. Chuen, M. Z. Abdullah, and Z. Husain, “The Effects of Turbulence Intensity on the Performance Characteristics of NACA 0015 and Eagle 150 Airfoils”, Proc. NSF Seminar 2002.
  • W. L. Siauw, J. P. Bonnet, and J. Tensi, “Physics of Separated Flow Over a NACA 0015 Airfoil and Detection of Flow Separation”, 47th AIAA Aerospace Sciences Meeting Including The New Horizons Forum and Aerospace Exposition, 5 - 8 January 2009, Orlando, Florida.
  • M. R. Islam, M. A. Hossain, M. N. Uddin, and M. Mashud, “Experimental Evaluation of Aerodynamics Characteristics of a Baseline Aerofoil”, American Journal of Engineering Research, vol. 4, Issue. 1, pp. 91-96, 2015.
  • S. Kandwal, and S. Singh, “Computational Fluid Dynamics Study of Fluid Flow and Aerodynamic Forces on an Aerofoil”, International Journal of Engineering Research & Technology, vol. 1, Issue. 7, 2012.
  • Dr. R. K. Bansal, Fluid Mechanics and Hydraulic Mechunes, 9th ed., Laxmi Publication (P) Ltd, 2010, pp. 686- 687.
  • M. Morshed, S. B. Sayeed, S. A. A. Mamun, and J. Alam, “Investigation of Drag Analysis of Four Different Profiles Tested at Subsonic Wind Tunnel”, Journal of Modern Science and Technology, vol. 2, No. 2, pp. 113-126, 2014. (Article)
  • E. H. Lewitt, Hydraulics and Fluid Mechanics, 10th ed., Sir Isaac Pitman & Sons Ltd, 1963, pp. 382-383.
  • M. S. Selig, and J. J. Guglielmo, “High-Lift Low Reynolds Number Airfoil Design”, Journal of Aircraft, vol. 34, No. 1, 1997.
  • Z. Yang, H. Igarashi, M. Martin, and Hui Hu, “An Experimental Investigation on Aerodynamic Hysteresis of a Low-Reynolds Number Aerofoil”, American Institute of Aeronautics and Astronautics, AIAA-2008-0315, 2008.
  • G. R. Srinivasan, J. A. Ekaterinaris, and W. J. McCroskey, “Evaluation of Turbulence Model for Unsteady Flows of an Oscillating Aerofoil”, Elsevier Science Ltd., Computers & Fluids, vol. 24, No. 7, 1995, pp. 833-861.
  • L. B. Li, Y. W. Ma, and L. Liu, “Numerical Simulation on Aerodynamics Performance of Wind Turbine Aerofoil”, Conf. on World Automation Congress (WAC), Puerto Vallarta, Mexico, Publisher by IEEE, pp. 1-4, 2012.
  • M. Gaunaa, J. N. Sørensen, P. S. Larsen, “Unsteady Aerodynamic Forces on NACA 0015 Airfoil in Harmonic Translatory Motion”, Technical University of Denmark, (MEK-FM-PHD; No. 2002-02, 2002.
  • W. Bacha, and W. Ghaly. "Drag Prediction in Transitional Flow Over Two-Dimensional Airfoils", 44th AIAA Aerospace Sciences Meeting and Exhibit, Aerospace Sciences Meetings, Reno, Nevada, 2006.
  • A. G. Chervonenko, “Effect of attack Angle on the Nonstationary Aerodynamic Characteristics and Flutter Resistance of a Grid of Bent Vibrating Compressor Blades”, Ukrainian Academy of Sciences, Plenum Publishing Corporation, Ukraine, vol. 39, No. 10, pp. 78-81. 1991.
  • D. Ramdenee, H. Ibrahim, N. Barka, and A. Ilinca, “Modeling of Aerodynamic Flutter on A NACA 4412 Airfoil Wind Blade”, International Journal of Simulation and Process Modeling, Inderscience Publishers, Canada, vol. 8, No. 1, pp. 79-87, 2013.
  • J. Johansen, “Prediction of Laminar/Turbulent Transition in Airfoil Flows”, Journal of Aircraft, Aerospace Research Central, Denmark, vol. 36, No. 4, pp. 731-734, 1997.
  • B. E. Launder, and D. B. Spalding, “The Numerical Computation of Turbulent Flows”, Computer Methods in Applied Mechanics and Engineering, vol. 3, No. 2, pp. 269-289, 1974.
  • M. Kevadiya, H. A. Vadiya, “2D Analysis of NACA 4412 Airfoil”, International Journal of Innovative Research in Science Engineering and Technology, vol. 2, No. 5, pp. 168-1691, 2013.
  • A. K. Saraf, M. Singh, and A. Kumar, “Analysis of the Spalart-Allmaras and k-ω standard models for the simulation of the flow over a National Advisory Committee for Aeronautics (NACA) 4412 airfoil”, International Journal of Scientific & Engineering Research, vol. 3, Issue 8, pp. 1-7, August-2012.
  • S. S. B. Bensiger, and N. Prasanth, “Analysis of Bi-Convex Airfoil Using CFD Software at Supersonic and Hypersonic Speed”, Elixir International Journal, vol. 53, pp. 11695-11698, 2012.
  • D. C. Eleni, T. I. Athanasios, and M. P. Dionissios, “Evaluation of the Turbulence Models for the Simulation of the Flow over an Aerofoil”, Journal of Mechanical Engineering Research, vol. 4, No. 3, pp. 100-111, 2012.
  • I. Şahin, and A. Acir, “Numerical and Experimental Investigations of Lift and Drag Performances of NACA 0015 Wind Turbine Aerofoil”, International Journal of Materials, Mechanics and Manufacturing, vol. 3, No. 1, pp. 22-25, 2015.
  • S. Chandra, A. Lee, S. Gorrell, and C. G. Jensen, “CFD Analysis of PACE Formula-1 Car”, Computer-Aided Design & Applications, PACE (1), 2011, 1-14.
There are 25 citations in total.

Details

Subjects Engineering
Journal Section Articles
Authors

Robiul Islam Rubel

Md. Kamal Uddin This is me

Md. Zahidul Islam

Md. Rokunuzzaman

Publication Date April 20, 2017
Acceptance Date March 7, 2017
Published in Issue Year 2016

Cite

APA Islam Rubel, R., Kamal Uddin, M., Zahidul Islam, M., Rokunuzzaman, M. (2017). Numerical and Experimental Investigation of Aerodynamics Characteristics of NACA 0015 Aerofoil. International Journal of Engineering Technologies IJET, 2(4), 132-141. https://doi.org/10.19072/ijet.280499
AMA Islam Rubel R, Kamal Uddin M, Zahidul Islam M, Rokunuzzaman M. Numerical and Experimental Investigation of Aerodynamics Characteristics of NACA 0015 Aerofoil. IJET. April 2017;2(4):132-141. doi:10.19072/ijet.280499
Chicago Islam Rubel, Robiul, Md. Kamal Uddin, Md. Zahidul Islam, and Md. Rokunuzzaman. “Numerical and Experimental Investigation of Aerodynamics Characteristics of NACA 0015 Aerofoil”. International Journal of Engineering Technologies IJET 2, no. 4 (April 2017): 132-41. https://doi.org/10.19072/ijet.280499.
EndNote Islam Rubel R, Kamal Uddin M, Zahidul Islam M, Rokunuzzaman M (April 1, 2017) Numerical and Experimental Investigation of Aerodynamics Characteristics of NACA 0015 Aerofoil. International Journal of Engineering Technologies IJET 2 4 132–141.
IEEE R. Islam Rubel, M. Kamal Uddin, M. Zahidul Islam, and M. Rokunuzzaman, “Numerical and Experimental Investigation of Aerodynamics Characteristics of NACA 0015 Aerofoil”, IJET, vol. 2, no. 4, pp. 132–141, 2017, doi: 10.19072/ijet.280499.
ISNAD Islam Rubel, Robiul et al. “Numerical and Experimental Investigation of Aerodynamics Characteristics of NACA 0015 Aerofoil”. International Journal of Engineering Technologies IJET 2/4 (April 2017), 132-141. https://doi.org/10.19072/ijet.280499.
JAMA Islam Rubel R, Kamal Uddin M, Zahidul Islam M, Rokunuzzaman M. Numerical and Experimental Investigation of Aerodynamics Characteristics of NACA 0015 Aerofoil. IJET. 2017;2:132–141.
MLA Islam Rubel, Robiul et al. “Numerical and Experimental Investigation of Aerodynamics Characteristics of NACA 0015 Aerofoil”. International Journal of Engineering Technologies IJET, vol. 2, no. 4, 2017, pp. 132-41, doi:10.19072/ijet.280499.
Vancouver Islam Rubel R, Kamal Uddin M, Zahidul Islam M, Rokunuzzaman M. Numerical and Experimental Investigation of Aerodynamics Characteristics of NACA 0015 Aerofoil. IJET. 2017;2(4):132-41.

88x31.png Attribution-NonCommercial-NoDerivatives 4.0 International (CC BY-NC-ND 4.0)