BibTex RIS Cite

H2-Anion Interactions and Energy Calculations for Imidazolium-based Ionic Liquids as Hydrogen Storage Materials

Year 2016, Volume: 2 Issue: 1, 1 - 7, 23.03.2016
https://doi.org/10.19072/ijet.56145

Abstract

The aims of this study are to explore the molecular hydrogen-anion interactions and assess the energy calculations in imidazolium-based compounds. The stable modes were structurally discussed after the achieving optimizations by density functional theory. It is concluded that the interaction energies were very weak against the strong interaction lengths. The impacts of the loaded molecular hydrogen to the imidazolium-based structure were discussed by the frontier molecular orbital analysis. While the amounts of H2 involved to the interaction increased, the changes in the energy gap were calculated. The bonding interactions on the cation–anion and molecular nH2–anion were compared.

References

  • V. Balema, “Hydrogen Storage Materials”, Material Matters, vol. 2, pp. 1-31, 2007.
  • L. Liu, G. Wu, W. Chen, Z Xiong, T He, P Chen, “Synthesis and hydrogen storage properties oflithium borohydride urea complex”, Int. J. Hydrogen Energ., vol. 40, pp. 429-434, 2015.
  • P.S. Marcelo, G. Ebeling, R. Cataluña, J. Dupont, “Hydrogen-Storage Materials Based on Imidazolium Ionic Liquids”, Energ. Fuel, vol. 21, pp. 1695-1698, 2007.
  • D.M. Liu, C. Gao, Z.X. Qian, T.Z. Si, Q.A. Zhang, “Reversible hydrogen storage in LiBH4/Ca(AlH4)2 systems”, Int. J. Hydrogen Energ., vol.38, pp. 3291-3296, 2013.
  • L.H. Rude, T.K. Nielsen, D.B. Ravnsbæk, U. Bösenberg, M.B. Ley, B. Richter et al., “Tailoring properties of borohydrides for hydrogen storage: a review”, Phys. Status Solidi A, vol. 208, pp. 1754-73, 2011.
  • H.W. Li, Y.G. Yan, S. Orimo, Z. Züttel, C.M. Jensen, “Recent progress in metal borohydrides for hydrogen storage”, Energy, vol. 4, pp. 185-214, 2011.
  • M.H.G. Prechtl, S. Sahler, “Hydrogen Storage Using Ionic Liquid Media”, Curr. Org. Chem., vol. 17, pp. 220-228, 2013.
  • S.A. Dharaskar, K.L. Wasewar, M.N. Varma, D.Z. Shende, C.K. Yoo, “Synthesis characterization and application of 1-butyl-3-methylimidazolium tetrafluoroborate for extractive desulfurization of liquid fuel”, Arab. J. Chem., 2013, http://dx.doi.org/10.1016/j.arabjc.2013.09.034
  • Y. Geng, S. Chen, T. Wang, D. Yu, C. Peng, H. Liu, Y. Hu, “Density, viscosity and electrical conductivity of 1-butyl-3-methylimidazolium hexafluorophosphate +monoethanolamine and +N, N-dimethylethanolamine”, J. Mol. Liq., vol. 143, pp. 100–108, 2008.
  • M. Ue, M. Takeda, A. Toriumi, A. Kominato, R. Hagiwara, Y. Ito, “Application of low-viscosity ionic liquid to the electrolyte of double-Layer capacitors”, J. Electrochem. Soc., vol. 150, pp. A499-A502, 2003.
  • M. Shukla, N. Srivastava, S. Saha, “Theoretical and spectroscopic studies of 1-butyl-3-methylimidazolium iodide room temperature ionic liquid: Its differences with chloride and bromide derivatives”, J. Mol. Struct., vol. 975, pp. 349–356, 2010.
  • J. Dupont, “On the solid, liquid and solution structural organization of imidazolium ionic liquids”, J. Braz. Chem. Soc., vol. 15, pp. 341-350, 2004.
  • S. Saha, H. Hamaguchi, “Effect of water on the molecular structure and arrangement of nitrile-functionalized ionic liquids”, J. Phys. Chem. B, vol. 110, pp. 2777-2781, 2006.
  • S. Saha, S. Hayashi, A. Kobayashi, H. Hamaguchi, Chem. Lett., vol. 32, pp. 740-741, 2003.
  • S. Sahler, S. Sturm, M.T. Kessler, M.H.G. Prechtl, “The role of ionic liquids in hydrogen storage”, Chem. Eur. J., vol. 20, pp. 8934-8941, 2014.
  • S. Sahler, H. Konnerth, N. Knoblauch, M.H.G. Prechtl, “Hydrogen storage in amine boranes: ionic liquid supported thermal dehydrogenation of ethylene diamine bisborane”, Int. J. Hydrogen Energ., vol. 38, pp. 3283-3290, 2013.
  • M.E. Bluhm, M.G. Bradley, R. Butterick, U. Kusari, L.G. Sneddon, “Amine borane-Based chemical hydrogen storage: Enhanced ammonia borane dehydrogenation in ionic liquids”, J. Am. Chem. Soc., vol. 128, pp. 7748-7749, 2006.
  • M. Bešter-Rogač, J. Hunger, A. Stoppa, R. Buchner, “Molar conductivities and association constants of 1-butyl-3-methylimidazolium chloride and 1-butyl-3-methylimidazolium tetrafluoroborate in methanol and DMSO”, J. Chem. Eng. Data, vol. 55, pp. 1799–1803, 2010.
  • G.H. Min, T. Yim, H.Y. Lee, D.H. Huh, E. Lee, J. Mun, S.M. Oh, Y.G. Kim, “Synthesis and properties of ionic liquids: imidazolium tetrafluoroborates with unsaturated side chains”, Bull. Korean Chem. Soc., vol. 27, pp. 847-852, 2006.
  • S.V. Dzyuba, K.D. Kollar, S.S. Sabnis, “Synthesis of imidazolium room-temperature ionic liquids”, J. Chem. Edu., vol. 86, pp. 856-858, 2009.
  • Z. Zhang, A.A.M. Salih, M. Li, B. Yang, “Synthesis and characterization of functionalized ionic liquids for thermal storage”, Energ. Fuel., vol. 28, pp. 2802−2810, 2014.
  • V. Kempter, B. Kirchner, “The role of hydrogen atoms in interactions involving imidazolium-based ionic liquids”, J. Mol. Struct., vol. 972, pp. 22–34, 2010.
  • A. Wulf, K. Fumino, R. Ludwig, “Spectroscopic evidence for an enhanced anion–cation interaction from hydrogen bonding in pure imidazolium ionic liquids”, Angew. Chem. Int. Ed., Vol. 49, pp. 449-453, 2010.
  • N. Hatano, M. Watanabe, T. Takekiyo, H. Abe, Y. Yoshimura, “Anomalous conformational change in 1-butyl-3-methylimidazolium tetrafluoroborate−D2O mixtures”, J. Phys. Chem. A, vol. 116, pp. 1208-1212, 2012.
  • J. Andzelm, E. Wimmer, “Density functional Gaussian-type-orbital approach to molecular geometries, vibrations, and reaction energies”, J. Chem. Phys., vol. 96, pp. 1280-303,1992.
  • A.D. Becke, “Density-functional exchange-energy approximation with correct asymptotic behavior”, Phys. Rev. A, vol. 38, pp. 3098-3100, 1988.
  • J.P. Perdew, K. Burke, Y. Wang, “Generalized gradient approximation for the exchange-correlation hole of a many-electron system”, Phys. Rev. B, vol. 54, pp.16533-39, 1996.
  • A. Datta, S.K. Pati, “Computational design of high hydrogen adsorption efficiency in molecular, sulflower”, J. Phys. Chem. C, Vol. 111, pp. 4487-4490, 2007.
  • R. Dennington, T. Keith, J. Millam, GaussView, Version 5.0.9, Semichem Inc., Shawnee Mission, KS, 2009.
  • M.J. Frisch, G.W. Trucks, H.B. Schlegel, G.E. Scuseria, M.A. Robb, J.R. Cheeseman et al., Gaussian 09, Revision D.01,Gaussian, Inc., Wallingford CT, 2009.
  • S.F. Boys, F. Bernardi, “The calculation of small molecular interactions by the differences of separate total energies. Some procedures with reduced errors”, Mol. Phys., vol. 19, pp. 553-566, 1970.
  • N.M. O'Boyle, A.L. Tenderholt, K.M. Langner, “Cclib: a library for package‐independent computational chemistry algorithms”, J. Comp. Chem., vol. 29, pp. 839-845, 2008.
  • V. Kalamse, N. Wadnerkar, A. Chaudhari, “Multi-functionalized naphthalene complexes for hydrogen storage”, Energy, vol. 49, pp. 469-474, 2013.
  • S. Dag, Y. Ozturk, S. Ciraci, T. Yildirim, “Adsorption and dissociation of hydrogen molecules on bare and functionalized carbon nanotubes”, Phys. Rev. B, vol. 72, pp. 155404-155412, 2005.
  • I. Fleming, “Frontier orbitals and organic chemical reactions, Wiley, London, 1976.
  • M. Govindarajan, M. Karabacak, A. Suvitha, S. Periandy, Spectrochim. Acta A, vol. 89, pp. 137-148, 2012.
  • M.M. El-Nahass, M.A. Kamel, E.F. El-deeb, A.A. Atta, S.Y. Huthaily, Spectrochim. Acta A, vol. 79, pp. 443-450, 2011.
  • S. Armaković, S.J. Armaković, J.P. Šetrajćić, “Hydrogen storage properties of sumanene”, Int. J. Hydrogen Energ., vol. 38, pp. 12190-12198, 2013.
  • Y. Zheng, N. Wang, J. Luo, Y. Zhoua, Z. Yu, “Hydrogen-bonding interactions between [BMIM][BF4] and acetonitrile”, Phys. Chem. Chem. Phys., vol. 15, pp. 18055-18064, 2013.
  • T. Sivaranjini, S. Periandy, M. Govindarajan, M. Karabacak, A.M. Asiri, “Spectroscopic (FT-IR, FT-Raman and NMR) and computational studies on 3-methoxyaniline”, J. Mol. Struct., vol. 1056–1057, pp. 176-188, 2014.
  • M. Chen, U.V. Waghmare, C.M. Friend, E. Kaxiras, J. Chem. Phys., vol. 109, pp. 6680-6854, 1998.
  • M. Karabacak, E. Kose, A. Atac, A.M. Asiri, M. Kurt, “Monomeric and dimeric structures analysis and spectroscopic characterization of 3,5-difluorophenylboronic acid with experimental (FT-IR, FT-Raman, 1H and 13C NMR, UV) techniques and quantum chemical calculations”, J. Mol. Struct., vol. 1058, pp. 79-96, 2014.
  • Y.Z. Zheng, H.Y. He, Y. Zhou, Z.W Yu, “Hydrogen-bonding interactions between [BMIM][BF4] and dimethyl sulfoxide”, J. Mol. Struct., vol. 1069, pp. 140–146, 2014.
Year 2016, Volume: 2 Issue: 1, 1 - 7, 23.03.2016
https://doi.org/10.19072/ijet.56145

Abstract

References

  • V. Balema, “Hydrogen Storage Materials”, Material Matters, vol. 2, pp. 1-31, 2007.
  • L. Liu, G. Wu, W. Chen, Z Xiong, T He, P Chen, “Synthesis and hydrogen storage properties oflithium borohydride urea complex”, Int. J. Hydrogen Energ., vol. 40, pp. 429-434, 2015.
  • P.S. Marcelo, G. Ebeling, R. Cataluña, J. Dupont, “Hydrogen-Storage Materials Based on Imidazolium Ionic Liquids”, Energ. Fuel, vol. 21, pp. 1695-1698, 2007.
  • D.M. Liu, C. Gao, Z.X. Qian, T.Z. Si, Q.A. Zhang, “Reversible hydrogen storage in LiBH4/Ca(AlH4)2 systems”, Int. J. Hydrogen Energ., vol.38, pp. 3291-3296, 2013.
  • L.H. Rude, T.K. Nielsen, D.B. Ravnsbæk, U. Bösenberg, M.B. Ley, B. Richter et al., “Tailoring properties of borohydrides for hydrogen storage: a review”, Phys. Status Solidi A, vol. 208, pp. 1754-73, 2011.
  • H.W. Li, Y.G. Yan, S. Orimo, Z. Züttel, C.M. Jensen, “Recent progress in metal borohydrides for hydrogen storage”, Energy, vol. 4, pp. 185-214, 2011.
  • M.H.G. Prechtl, S. Sahler, “Hydrogen Storage Using Ionic Liquid Media”, Curr. Org. Chem., vol. 17, pp. 220-228, 2013.
  • S.A. Dharaskar, K.L. Wasewar, M.N. Varma, D.Z. Shende, C.K. Yoo, “Synthesis characterization and application of 1-butyl-3-methylimidazolium tetrafluoroborate for extractive desulfurization of liquid fuel”, Arab. J. Chem., 2013, http://dx.doi.org/10.1016/j.arabjc.2013.09.034
  • Y. Geng, S. Chen, T. Wang, D. Yu, C. Peng, H. Liu, Y. Hu, “Density, viscosity and electrical conductivity of 1-butyl-3-methylimidazolium hexafluorophosphate +monoethanolamine and +N, N-dimethylethanolamine”, J. Mol. Liq., vol. 143, pp. 100–108, 2008.
  • M. Ue, M. Takeda, A. Toriumi, A. Kominato, R. Hagiwara, Y. Ito, “Application of low-viscosity ionic liquid to the electrolyte of double-Layer capacitors”, J. Electrochem. Soc., vol. 150, pp. A499-A502, 2003.
  • M. Shukla, N. Srivastava, S. Saha, “Theoretical and spectroscopic studies of 1-butyl-3-methylimidazolium iodide room temperature ionic liquid: Its differences with chloride and bromide derivatives”, J. Mol. Struct., vol. 975, pp. 349–356, 2010.
  • J. Dupont, “On the solid, liquid and solution structural organization of imidazolium ionic liquids”, J. Braz. Chem. Soc., vol. 15, pp. 341-350, 2004.
  • S. Saha, H. Hamaguchi, “Effect of water on the molecular structure and arrangement of nitrile-functionalized ionic liquids”, J. Phys. Chem. B, vol. 110, pp. 2777-2781, 2006.
  • S. Saha, S. Hayashi, A. Kobayashi, H. Hamaguchi, Chem. Lett., vol. 32, pp. 740-741, 2003.
  • S. Sahler, S. Sturm, M.T. Kessler, M.H.G. Prechtl, “The role of ionic liquids in hydrogen storage”, Chem. Eur. J., vol. 20, pp. 8934-8941, 2014.
  • S. Sahler, H. Konnerth, N. Knoblauch, M.H.G. Prechtl, “Hydrogen storage in amine boranes: ionic liquid supported thermal dehydrogenation of ethylene diamine bisborane”, Int. J. Hydrogen Energ., vol. 38, pp. 3283-3290, 2013.
  • M.E. Bluhm, M.G. Bradley, R. Butterick, U. Kusari, L.G. Sneddon, “Amine borane-Based chemical hydrogen storage: Enhanced ammonia borane dehydrogenation in ionic liquids”, J. Am. Chem. Soc., vol. 128, pp. 7748-7749, 2006.
  • M. Bešter-Rogač, J. Hunger, A. Stoppa, R. Buchner, “Molar conductivities and association constants of 1-butyl-3-methylimidazolium chloride and 1-butyl-3-methylimidazolium tetrafluoroborate in methanol and DMSO”, J. Chem. Eng. Data, vol. 55, pp. 1799–1803, 2010.
  • G.H. Min, T. Yim, H.Y. Lee, D.H. Huh, E. Lee, J. Mun, S.M. Oh, Y.G. Kim, “Synthesis and properties of ionic liquids: imidazolium tetrafluoroborates with unsaturated side chains”, Bull. Korean Chem. Soc., vol. 27, pp. 847-852, 2006.
  • S.V. Dzyuba, K.D. Kollar, S.S. Sabnis, “Synthesis of imidazolium room-temperature ionic liquids”, J. Chem. Edu., vol. 86, pp. 856-858, 2009.
  • Z. Zhang, A.A.M. Salih, M. Li, B. Yang, “Synthesis and characterization of functionalized ionic liquids for thermal storage”, Energ. Fuel., vol. 28, pp. 2802−2810, 2014.
  • V. Kempter, B. Kirchner, “The role of hydrogen atoms in interactions involving imidazolium-based ionic liquids”, J. Mol. Struct., vol. 972, pp. 22–34, 2010.
  • A. Wulf, K. Fumino, R. Ludwig, “Spectroscopic evidence for an enhanced anion–cation interaction from hydrogen bonding in pure imidazolium ionic liquids”, Angew. Chem. Int. Ed., Vol. 49, pp. 449-453, 2010.
  • N. Hatano, M. Watanabe, T. Takekiyo, H. Abe, Y. Yoshimura, “Anomalous conformational change in 1-butyl-3-methylimidazolium tetrafluoroborate−D2O mixtures”, J. Phys. Chem. A, vol. 116, pp. 1208-1212, 2012.
  • J. Andzelm, E. Wimmer, “Density functional Gaussian-type-orbital approach to molecular geometries, vibrations, and reaction energies”, J. Chem. Phys., vol. 96, pp. 1280-303,1992.
  • A.D. Becke, “Density-functional exchange-energy approximation with correct asymptotic behavior”, Phys. Rev. A, vol. 38, pp. 3098-3100, 1988.
  • J.P. Perdew, K. Burke, Y. Wang, “Generalized gradient approximation for the exchange-correlation hole of a many-electron system”, Phys. Rev. B, vol. 54, pp.16533-39, 1996.
  • A. Datta, S.K. Pati, “Computational design of high hydrogen adsorption efficiency in molecular, sulflower”, J. Phys. Chem. C, Vol. 111, pp. 4487-4490, 2007.
  • R. Dennington, T. Keith, J. Millam, GaussView, Version 5.0.9, Semichem Inc., Shawnee Mission, KS, 2009.
  • M.J. Frisch, G.W. Trucks, H.B. Schlegel, G.E. Scuseria, M.A. Robb, J.R. Cheeseman et al., Gaussian 09, Revision D.01,Gaussian, Inc., Wallingford CT, 2009.
  • S.F. Boys, F. Bernardi, “The calculation of small molecular interactions by the differences of separate total energies. Some procedures with reduced errors”, Mol. Phys., vol. 19, pp. 553-566, 1970.
  • N.M. O'Boyle, A.L. Tenderholt, K.M. Langner, “Cclib: a library for package‐independent computational chemistry algorithms”, J. Comp. Chem., vol. 29, pp. 839-845, 2008.
  • V. Kalamse, N. Wadnerkar, A. Chaudhari, “Multi-functionalized naphthalene complexes for hydrogen storage”, Energy, vol. 49, pp. 469-474, 2013.
  • S. Dag, Y. Ozturk, S. Ciraci, T. Yildirim, “Adsorption and dissociation of hydrogen molecules on bare and functionalized carbon nanotubes”, Phys. Rev. B, vol. 72, pp. 155404-155412, 2005.
  • I. Fleming, “Frontier orbitals and organic chemical reactions, Wiley, London, 1976.
  • M. Govindarajan, M. Karabacak, A. Suvitha, S. Periandy, Spectrochim. Acta A, vol. 89, pp. 137-148, 2012.
  • M.M. El-Nahass, M.A. Kamel, E.F. El-deeb, A.A. Atta, S.Y. Huthaily, Spectrochim. Acta A, vol. 79, pp. 443-450, 2011.
  • S. Armaković, S.J. Armaković, J.P. Šetrajćić, “Hydrogen storage properties of sumanene”, Int. J. Hydrogen Energ., vol. 38, pp. 12190-12198, 2013.
  • Y. Zheng, N. Wang, J. Luo, Y. Zhoua, Z. Yu, “Hydrogen-bonding interactions between [BMIM][BF4] and acetonitrile”, Phys. Chem. Chem. Phys., vol. 15, pp. 18055-18064, 2013.
  • T. Sivaranjini, S. Periandy, M. Govindarajan, M. Karabacak, A.M. Asiri, “Spectroscopic (FT-IR, FT-Raman and NMR) and computational studies on 3-methoxyaniline”, J. Mol. Struct., vol. 1056–1057, pp. 176-188, 2014.
  • M. Chen, U.V. Waghmare, C.M. Friend, E. Kaxiras, J. Chem. Phys., vol. 109, pp. 6680-6854, 1998.
  • M. Karabacak, E. Kose, A. Atac, A.M. Asiri, M. Kurt, “Monomeric and dimeric structures analysis and spectroscopic characterization of 3,5-difluorophenylboronic acid with experimental (FT-IR, FT-Raman, 1H and 13C NMR, UV) techniques and quantum chemical calculations”, J. Mol. Struct., vol. 1058, pp. 79-96, 2014.
  • Y.Z. Zheng, H.Y. He, Y. Zhou, Z.W Yu, “Hydrogen-bonding interactions between [BMIM][BF4] and dimethyl sulfoxide”, J. Mol. Struct., vol. 1069, pp. 140–146, 2014.
There are 43 citations in total.

Details

Journal Section Articles
Authors

Mustafa Karakaya This is me

Fatih Ucun

Publication Date March 23, 2016
Published in Issue Year 2016 Volume: 2 Issue: 1

Cite

APA Karakaya, M., & Ucun, F. (2016). H2-Anion Interactions and Energy Calculations for Imidazolium-based Ionic Liquids as Hydrogen Storage Materials. International Journal of Engineering Technologies IJET, 2(1), 1-7. https://doi.org/10.19072/ijet.56145
AMA Karakaya M, Ucun F. H2-Anion Interactions and Energy Calculations for Imidazolium-based Ionic Liquids as Hydrogen Storage Materials. IJET. March 2016;2(1):1-7. doi:10.19072/ijet.56145
Chicago Karakaya, Mustafa, and Fatih Ucun. “H2-Anion Interactions and Energy Calculations for Imidazolium-Based Ionic Liquids As Hydrogen Storage Materials”. International Journal of Engineering Technologies IJET 2, no. 1 (March 2016): 1-7. https://doi.org/10.19072/ijet.56145.
EndNote Karakaya M, Ucun F (March 1, 2016) H2-Anion Interactions and Energy Calculations for Imidazolium-based Ionic Liquids as Hydrogen Storage Materials. International Journal of Engineering Technologies IJET 2 1 1–7.
IEEE M. Karakaya and F. Ucun, “H2-Anion Interactions and Energy Calculations for Imidazolium-based Ionic Liquids as Hydrogen Storage Materials”, IJET, vol. 2, no. 1, pp. 1–7, 2016, doi: 10.19072/ijet.56145.
ISNAD Karakaya, Mustafa - Ucun, Fatih. “H2-Anion Interactions and Energy Calculations for Imidazolium-Based Ionic Liquids As Hydrogen Storage Materials”. International Journal of Engineering Technologies IJET 2/1 (March 2016), 1-7. https://doi.org/10.19072/ijet.56145.
JAMA Karakaya M, Ucun F. H2-Anion Interactions and Energy Calculations for Imidazolium-based Ionic Liquids as Hydrogen Storage Materials. IJET. 2016;2:1–7.
MLA Karakaya, Mustafa and Fatih Ucun. “H2-Anion Interactions and Energy Calculations for Imidazolium-Based Ionic Liquids As Hydrogen Storage Materials”. International Journal of Engineering Technologies IJET, vol. 2, no. 1, 2016, pp. 1-7, doi:10.19072/ijet.56145.
Vancouver Karakaya M, Ucun F. H2-Anion Interactions and Energy Calculations for Imidazolium-based Ionic Liquids as Hydrogen Storage Materials. IJET. 2016;2(1):1-7.

88x31.png Attribution-NonCommercial-NoDerivatives 4.0 International (CC BY-NC-ND 4.0)