Review
BibTex RIS Cite
Year 2023, , 139 - 161, 30.08.2023
https://doi.org/10.33457/ijhsrp.1298068

Abstract

References

  • Erdem, R., Sarı, B, “Digital transformation in Healthcare in the context of Industry 4.0 and Society 5.0. In Eke E (ed) Current Discussions in Health Management”, Nobel Publishing House, Ankara, pp.1-20, 2020.
  • Koştı, G., Burmaoğlu, S., Kıdak, L.B, “Health 4.0: Reflections of the development envisaged in the industry on the health sector”. Hacettepe Journal of Health Administration, 24(3), 483-506, 2021.
  • Slusarczyk, B., “Industry 4.0 – Are we ready?”, Polish Journal of Management Studies, 17(1), 232-248, 2018.
  • Özkan, M., Al, A., Yavuz, S., “The effects of the fourth industrial-industrial revolution in terms of international political economy and Turkey”, International Journal of Political Science & Urban Studies, 1(1), 1-30, 2018.
  • Davutoğlu, N.A., Akgül, B., Yıldız, E., “Ensuring change effectively by creating awareness with the concept of industry 4.0 in business management”, Academic Journal of Social Research, 5(52), 544-567, 2017.
  • Soylu, A., “Industry 4.0 and new approaches in entrepreneurship”. Pamukkale University Journal of Social Sciences Institute, 1(32), 43-57,2018.
  • Chen, C., Loh, E.W., Kuo, K.N., Tam, K.W., “The times they are a- changing' healthcare 4.0 is coming.” Journal of Medical Systems, 44(2), 1-4,2020.
  • Thuemmler, C., The case for health 4.0. In: Thuemmler, C, Bai, C, (Eds.), Health 4.0: How virtualization and big data are revolutionizing healthcare, Springer, Germany, pp. 1-22, 2017.
  • Hardy, M., Harvey, H., “Artificial intelligence in diagnostic imaging: Impact on the radiography profession,” The British Journal of Radiology, 93(1108), 1-7, 2010.
  • Lillehaug, S.I., Lajoie, S.P., “AI in medical education—another grand challenge for medical informatics”. Artificial Intelligence in Medicine, 12(3), 197-22, 2000.
  • Elmas, Ç., “Artificial Intelligence Applications, (4th Edition)”, Seçkin Publishing, Ankara, 2018.
  • Akalın, B., Veranyurt, Ü., Artificial intelligence in health services and management, Acta Infologica, 5(1), 231-240, 2021.
  • Thinktech STM. (2023, Feb.25). Technological Thinking Center Research Report [Online]. Available: https://thinktech.stm.com.tr/tr/ileri-saglik-teknolojileri-i-akilli- saglik-uygulamalari-ve-veri-analizi-ile-saglik-sorunlarini- define
  • PWC.(2023, Feb.24). Health transforming [Online]. Available: https://www.pwc.com/gx/en/industries/healthcare/publications/ai-robotics-new-health/transforming-healthcare.html
  • Premuzic, T.C, Ahmetoglu., G, “The pros and cons of robot managers”. Harvard Business Review, 2016.
  • Büyükgöze, S., & Dereli, E., “Artificial intelligence in digital health applications”. VI. International Scientific and Professional Studies Congress-Science and Health, 07-10, 2019.
  • Mesquita, A.C, Zamirimle, C.M, DeCarvalho, E.C, Theuseofrobots in nursing care practices: An exploratory descriptive study, Online Brazilian Journal of Nursing, 2016, 15(3), 404-413.
  • Turkish Language Association. (2022, June.29). Current Turkish Dictionary. [Online]. Available: https://sozluk.gov.tr/
  • Russell SJ., Norvig P., “Artificial Intelligence: A Modern Approach. 3rd edition”. New Jersey: Prentice Hall; 2009.
  • Bishop, C., “Pattern Recognition and Machine Learning”. New York: SpringerVerlag; 2006.
  • Schmidhuber, J.,” Deep learning in neural networks: An overview.” Neural Networks. 61, 85–117, 2015.
  • Houssami, N., Lee, CI., “Buist DSM, Tao D. Artificial intelligence for breast cancer screening: Opportunity or hype? breast.” December 36, 31–3, 2017.
  • Kantarjian, H., Yu, PP., “Artificial Intelligence, Big Data, and Cancer”. JAMA Health Insurance for Turkey, Journal of Society and Physicians, 18(2), 115-119, 2003.
  • Thomassin-Naggara, I., Balleyguier, C., Ceugnart, L., Heid, P., Lenczner, G., Maire, A., et al. “Artificial intelligence and breast screening: French Radiology Community position paper”. Diagn Interv Imaging. October,100(10), 553–66, 2019.
  • Egger, K., Strecker, C., Kellner, E., Urbach H.” Imaging in acute ischemic stroke using automated analysis algorithms. Nervenarzt”. 89(8), 885–94, 2018.
  • Bhattacharya, S,, Pradhan, KB., Bashar, MA., Tripathi, S., Semwal, J., Marzo, RR., et al. “Artificial intelligence enabled healthcare: A hype, hope or harm”. J Fam Med Premium care. 8(11), 3461–4, 2019.
  • Khorrami, M., Prasanna, P., Gupta, A., Patil, P., Velu, PD., Thawani, R., et al. “Changes in CT Radiomic Features Associated with Lymphocyte Distribution Predict Overall Survival and Response to Immunotherapy in Non-Small Cell Lung Cancer”. Cancer Immunol Res. 8(1):108–19, 2020.
  • Tutun, S,, Irgil, S., Yeşilkaya, I., Aykaç, A., Aras, N., “WeCureX Intelligent Psychiatric Assistant”. Informs 2018 Annual Meeting. Phoenix; 2018.
  • Binaco, R., Calzaretto, N., Epifano, J., McGuire, S., Umer, M., Emrani, S., et al. “Machine Learning Analysis of Digital Clock Drawing Test Performance for Differential Classification of Mild Cognitive Impairment Subtypes Versus Alzheimer's Disease”. J Int Neuropsychol Soc.1–11, 2020.
  • Haenssle, HA., Fink, C., Schneiderbauer, R., Toberer, F., Buhl, T., Blum, A., et al. “Man against machine: diagnostic performance of a deep learning convolutional neural network for dermoscopic melanoma recognition in comparison to 58 dermatologists”. Ann Oncol Off J Eur Soc Med Oncol. 29(8):1836–42, 2018.
  • Jiang, F., Jiang, Y., Zhi, H., et al. “Artificial intelligence in healthcare: past, present and future”. Stroke and Vascular Neurology;2: e000101. doi:10.1136/ svn-2017-000101.
  • OECD. Organization for Economic Co-operation and Development Health at a Glance 2019: OECD Indicators. Paris: OECD Publishing; 2019. doi:10.1787/4dd50c09-en.
  • TURKSTAT. (2022, Nov. 11). Turkish Statistical Institute. [Online]. Available: https://www.tuik.gov.tr/
  • Republic of Turkey Ministry of Health .(2022, Nov. 11). Health Statistics Yearbook [Online]. Available: https://dosyasb.saglik.gov.tr/Eklenti/36134,siy2018trpdf.pdf?0
  • World Health Organization (WHO). (2022, Agus.7) Ten threats to global health in 2019 [Online]. Available: https://www.who.int/emergencies/ten-threats-to-global-health-in-2019
  • Gavin, B., Hayden, J., Adamis, D., & McNicholas, F. “Caring for the psychological well-being of healthcare professionals in the Covid-19 pandemic crisis”. Ir Med J, 113(4), 51, 2020.
  • Intel.(2023,Jan.11).HealthTransformation.[Online].Available: https://www.intel.com.tr/content/www/tr/tr/healthcare-it/healthcare-overview.html
  • T.C. Ministry of Health. (2023, Jan.11). General Directorate of Health Information Systems, FİTAS (Filiation and Isolation Tracking System). [Online]. Available: https://sbsgm.saglik.gov.tr/TR,73584/ fitas.html
  • Yan, Y., “MCI progression classification for early diagnosis of Alzheimer's disease using machine learning and deep learning methods”. pic. Biomed. (36):311–331, 2021.
  • Larson, D.B., Chen, M.C., Lungren, M.P., Halabi, S.S., Stence, N.V., Langlotz, C.P., “Performance of a deep-learning neuralnetwork model in assessing skeletal maturity on pediatric hand radiographs”. Radiology 287, 313–322, 2018.
  • Gerke, S., Babic, B., Evgeniou, T., Cohen, I. G., “The need for a system view to regulate artificial intelligence/machine learning- based software as a medical device”. NPJ Digital Medicine, 3(1), 1-4, 2020.
  • Adler Jr, J. R., Chang, S. D., Murphy, M. J., Doty, J., Geis, P, Hancock., S. L., “The Cyberknife: A frameless robotic system for radiosurgery”. Stereotactic and Functional Neurosurgery, 69(1-4), 124-128, 2000.
  • Clipper, B., Batcheller, J., Thomaz, A. L., Rozga, A. “, Artificial intelligence and robotics: A nurse leader'sprimer”. Nurse Leader, 16(6), 379-384, 2018.
  • Somashekhar, S.P., Sepulveda, M.J., Puglielli, S., Norden, A.D., Shortliffe, E.H., Rohit Kumar, C., Rauthan, A., Arun Kumar, N., Patil, P., Rhee, K., Ramya, Y., “Watson for Oncology and breast cancer treatment recommendations: agreement with an expert multidisciplinary tumor board”. Ann. Oncol. 29, 418–423, 2018.
  • Long, E., Lin, H., Liu, Z., et al. “An artificial intelligence platform for the multihospital collaborative management of congenital cataracts”. Nat Biomed Eng; 1. Article number 2, 2017.
  • Ting, D. S. W., Pasquale, L. R., Peng, L., Campbell, J. P., Lee, A. Y., Raman, R., Wong, T. Y., “Artificial intelligence and deep learning in ophthalmology”. British Journal of Ophthalmology, 103(2), 167-175, 2019.
  • Thadatritharntip, W., & Vongurai, R. “Artificial Intelligence Healthcare: An Empirical Study on Users' Attitude and Intention to Use toward a Personal Home Healthcare Robot to Improve Health and Wellness Conditions in Bangkok”, Thailand. UTCC International Journal of Business & Economics, 12(1), 3–25, 2020.
  • Guo, J., Li, B., “The application of medical artificial intelligence technology in rural areas of developing countries”, Health Equity, 2(1), 174–181, 2018.
  • Zheng, L., Lin, F., Zhu, C., Liu, G., Wu, X., Wu, Z., Zheng, J., Xia, H., Cai, Y., & Liang, H. “Machine Learning Algorithms Identify Pathogen-Specific Biomarkers of Clinical and Metabolomic Characteristics in Septic Patients with BacterialInfections”. BioMed Research International, 1–11, 2020.
  • Pedrosa, T. Í., Vasconcelos, F. F., Medeiros, L., Silva, D., “Machine Learning Application to Quantify the TremorLevel for Parkinson's Disease Patients.” Procedia Computer Science, 138, 215–220, 2018.
  • Muraro, C., Polato, M., Bortoli, M., Aiolli, F., Orian, L., “Radical scavenging activity of natural antioxidants and drugs: Development of a combined machine learning and quantum chemistry protocol”. Journal of Chemical Physics, 153(11), 1, 2020.
  • Strickland, E., “IBM Watson, heal thyself: How IBM overpromised and underdelivered on AI health care”. IEEE Spectrum, 56(4), 24-31, 2019.
  • Hall, A., Mitchell, A. R. J., Wood, L. & Holland, C., “Effectiveness of a single lead Alive Cor electrocardiogram application for the screening of atrial fibrillation: A systematic review”. Medicine , 99(30), e21388, 2020.
  • Porter, P., Abeyratne, U., Swarnkar, V., Tan, J., Ng, T.W., Brisbane, J. M., . . .& Kosasih, K. “A prospective multicentre study testing the diagnostic accuracy of an automated cough sound centered analytic system for the identification of common respiratory disorders in children.” Respiratory Research, 20(1), 1-10, 2019.
  • Kalil, A. J., Dias, V. M. D. C. H., Rocha, C. D. C., Morales, H. M. P., Fressatto, J. L. & Faria, R. A. D., “Sepsis risk assessment: A retrospective analysis after a cognitive risk management robot (Robot Laura®) implementation ina clinical-surgical unit”. Research on Biomedical Engineering,34(4), 310-316, 2018.
  • Ward, N., “Technology in the fight against COVID-19: Implications on human rights and recommendations (Thesis)”. Fordham University, New York.2020.
  • Vaishya, R., Javaid, M., Khan, IH., Haleem, A., “Artificial Intelligence (AI) applications for COVID-19 pandemic. Diabetes” Metab Syndr. 14(4):337–9, 2020.
  • Google . (2022, June. 06). See how your community is acting differently due to COVID-19. 2020 [Online]. Available: https://www.google.com/covid19/mobility/
  • Pan X-B. “Application of personal-oriented digital technology in preventing transmission of COVID-19”, China. Ir J Med Sci. March 27, 1–2, 2020.
  • Lu, Wang L., Lo, K., Chandrasekhar, Y., Reas, R., Yang, J., Eide, D., et al. CORD-19: The Covid-19 Open Research Dataset. ArXiv. 2020.
  • World Health Organization. (2022, June. 28). WHO Health Alert brings COVID-19 facts to billions via [Online]. Available: https://www.who.int/news-room/feature-stories/detail/who-health-alert-brings-covid-19-facts-to-billions-via-whatsap.
  • Gozes, O., Frid-Adar, M., Greenspan, H., Browning, PD., Zhang, H., Ji, W., et al. “Rapid ai development cycle for the coronavirus (covid-19) pandemic: Initial results for automated detection & patient monitoring using deep learning ct image analysis”. arXiv Prepr arXiv200305037. 2020.
  • Wang, Y., Hu, M., Zhou, Y., Li, Q., Yao, N., Zhai, G., et al. “Unobtrusive and Automatic Classification of Multiple People's Abnormal Respiratory Patterns in Real Time Using Deep “ Neural Network and Depth Camera. IEEE Internet Things J. 7(9):8559–71, 2020.
  • Alimadadi, A., Aryal, S., Manandhar, I., Munroe, PB., Joe, B., Cheng. X., “Artificial intelligence and machine learning to fight COVID-19 19”. Physiol Genomics, 52(4):200–2, 2020
  • Itkonen, P., “Artificial Intelligence in Home Care Settings in South Karelia Social and Healthcare District in Finland”. 2019IEEE World Congress on Services , 2642–939X, 238–239, 2019.
  • Thomas, C.,” Artificial intelligence and nursing: The future is now.” The Journal of Nursing Administration, 50(3), 125-127, 2020.
  • Amunts, K., Ebell, C., Muller, J., Telefont, M., Knoll, A, Lippert., “The human brain project: Creating a European research infrastructure to decode the human brain”. Neuron, 92(3), 574-581, 2016.
  • Kulshreshth, A., Anand, A., Lakanpal, A., “Neuralink-an Elon Musk start-up achieve symbiosis with artificial intelligence (Conference paper, pp. 105-109)”. International Conference on Computing, Communication, and Intelligent Systems, India. 2018.
  • Contreras, I., Vehi, J., “Artificial intelligence for diabetes management and decision support: A literature review”. Journal of Medical Internet Research, 20(5), e10775, 2018.
  • GoogleDeepmind. (2023, Jan. 12), Artificial Intelligence, [Online]. Available: https://www.deepmind.com/blog/announcing-google-deepmind
  • IBM Watson Health. (2023, Jan. 12). How ai is impacting healthcare, [Online]. Available: https://www.ibm.com/watson-health
  • CareSkore. (2023, Jan. 12). Hospital Reports and Ratings [Online]. Available: https://www.careskore.com/hospital-ratings/
  • Zephyr Health. (2023, Jan. 12). Bussineswiew anju software harnesses the power of line sciences data through the acquisition of zephyr health [Online]. Available: https://twitter.com/zephyrhealth
  • Oncora Medicine. (2023, Jan. 12). We strive to hare our work with the scientific and academic communities. Check out some of our recent research below [Online]. Available: https://www.oncora.ai/research
  • Enlitic. (2023, Jan. 12). Comprehensively impact your medical imaging data with the enlitic curie framework, [Online]. Available: https://enlitic.com/solutions/
  • Butterfly Network. (2023, Jan. 12). Tient assessment, transformed [Online]. Available: https://www.butterflynetwork.com/
  • Lunit. (2023, Jan. 12). How our al products help conquer cancer [Online]. Available: https://www.lunit.io/en/products
  • Arteries. (2023, Jan. 12). The future of precision medicine that only humans + al can achieve [Online]. Available: https://www.arterys.com/
  • Caption Health. (2023, Jan. 12). Smart technology to inform human decisions [Online]. Available: https://captionhealth.com/technology
  • Sensu, S., Erdogan, N., Gurbuz, YS., “The Digital Age and Artificial Intelligence in Pathology:” Fundamentals. Turkiye Klinikleri J Med Sci., 40(1),104-12, 2020.
  • Önder, M., & Uzun, M. “Artificial intelligence strategies and Türkiye”. Ankara Yıldırım Beyazıt University International Relations and Strategic Research Institute, 12(2), 1-10, 2020.
  • Tamer, H. Y., Övgün, B., “Office of digital transformation in the context of artificial intelligence”. Ankara University Journal of SBF, 75(2), 775-803, 2020.
  • A First in Turkey: Turkish Brain Project Implemented with the Cooperation of Presidency Digital Transformation Office and Gazi University https://mf.gazi.edu.tr/view/news/255338/turkiye-de-bir-ilk-turk -brain-project-presidential-digital-transformation-office-ve-gazi-university-i
  • Akgün, B., D, Aktaç., A, Yorulmaz, O., “Mobile applications in mental health: A systematic review of efficacy”, Current Approaches in Psychiatry, 11(4), 519-531, 2019

USE OF ARTIFICIAL INTELLIGENCE IN HEALTH SERVICES MANAGEMENT IN TÜRKİYE

Year 2023, , 139 - 161, 30.08.2023
https://doi.org/10.33457/ijhsrp.1298068

Abstract

With the inclusion of technological developments in the health sector, the importance given to artificial intelligence in the field of medicine is increasing. For the future, the application possibilities of artificial intelligence and especially the potential of big data are quite large. There are many uses for artificial intelligence applications in health services, such as surveillance systems, epidemiological analysis, detection of health risks, early diagnosis of diseases, epidemic management and vaccine studies. In addition, there are some potential positive and negative consequences of integrating artificial intelligence into modern medicine. The purpose of this review is to provide information about the concept of artificial intelligence and to evaluate the usage areas, potential benefits and aspects of artificial intelligence in Health Services from a perspective perspective through various application examples.

References

  • Erdem, R., Sarı, B, “Digital transformation in Healthcare in the context of Industry 4.0 and Society 5.0. In Eke E (ed) Current Discussions in Health Management”, Nobel Publishing House, Ankara, pp.1-20, 2020.
  • Koştı, G., Burmaoğlu, S., Kıdak, L.B, “Health 4.0: Reflections of the development envisaged in the industry on the health sector”. Hacettepe Journal of Health Administration, 24(3), 483-506, 2021.
  • Slusarczyk, B., “Industry 4.0 – Are we ready?”, Polish Journal of Management Studies, 17(1), 232-248, 2018.
  • Özkan, M., Al, A., Yavuz, S., “The effects of the fourth industrial-industrial revolution in terms of international political economy and Turkey”, International Journal of Political Science & Urban Studies, 1(1), 1-30, 2018.
  • Davutoğlu, N.A., Akgül, B., Yıldız, E., “Ensuring change effectively by creating awareness with the concept of industry 4.0 in business management”, Academic Journal of Social Research, 5(52), 544-567, 2017.
  • Soylu, A., “Industry 4.0 and new approaches in entrepreneurship”. Pamukkale University Journal of Social Sciences Institute, 1(32), 43-57,2018.
  • Chen, C., Loh, E.W., Kuo, K.N., Tam, K.W., “The times they are a- changing' healthcare 4.0 is coming.” Journal of Medical Systems, 44(2), 1-4,2020.
  • Thuemmler, C., The case for health 4.0. In: Thuemmler, C, Bai, C, (Eds.), Health 4.0: How virtualization and big data are revolutionizing healthcare, Springer, Germany, pp. 1-22, 2017.
  • Hardy, M., Harvey, H., “Artificial intelligence in diagnostic imaging: Impact on the radiography profession,” The British Journal of Radiology, 93(1108), 1-7, 2010.
  • Lillehaug, S.I., Lajoie, S.P., “AI in medical education—another grand challenge for medical informatics”. Artificial Intelligence in Medicine, 12(3), 197-22, 2000.
  • Elmas, Ç., “Artificial Intelligence Applications, (4th Edition)”, Seçkin Publishing, Ankara, 2018.
  • Akalın, B., Veranyurt, Ü., Artificial intelligence in health services and management, Acta Infologica, 5(1), 231-240, 2021.
  • Thinktech STM. (2023, Feb.25). Technological Thinking Center Research Report [Online]. Available: https://thinktech.stm.com.tr/tr/ileri-saglik-teknolojileri-i-akilli- saglik-uygulamalari-ve-veri-analizi-ile-saglik-sorunlarini- define
  • PWC.(2023, Feb.24). Health transforming [Online]. Available: https://www.pwc.com/gx/en/industries/healthcare/publications/ai-robotics-new-health/transforming-healthcare.html
  • Premuzic, T.C, Ahmetoglu., G, “The pros and cons of robot managers”. Harvard Business Review, 2016.
  • Büyükgöze, S., & Dereli, E., “Artificial intelligence in digital health applications”. VI. International Scientific and Professional Studies Congress-Science and Health, 07-10, 2019.
  • Mesquita, A.C, Zamirimle, C.M, DeCarvalho, E.C, Theuseofrobots in nursing care practices: An exploratory descriptive study, Online Brazilian Journal of Nursing, 2016, 15(3), 404-413.
  • Turkish Language Association. (2022, June.29). Current Turkish Dictionary. [Online]. Available: https://sozluk.gov.tr/
  • Russell SJ., Norvig P., “Artificial Intelligence: A Modern Approach. 3rd edition”. New Jersey: Prentice Hall; 2009.
  • Bishop, C., “Pattern Recognition and Machine Learning”. New York: SpringerVerlag; 2006.
  • Schmidhuber, J.,” Deep learning in neural networks: An overview.” Neural Networks. 61, 85–117, 2015.
  • Houssami, N., Lee, CI., “Buist DSM, Tao D. Artificial intelligence for breast cancer screening: Opportunity or hype? breast.” December 36, 31–3, 2017.
  • Kantarjian, H., Yu, PP., “Artificial Intelligence, Big Data, and Cancer”. JAMA Health Insurance for Turkey, Journal of Society and Physicians, 18(2), 115-119, 2003.
  • Thomassin-Naggara, I., Balleyguier, C., Ceugnart, L., Heid, P., Lenczner, G., Maire, A., et al. “Artificial intelligence and breast screening: French Radiology Community position paper”. Diagn Interv Imaging. October,100(10), 553–66, 2019.
  • Egger, K., Strecker, C., Kellner, E., Urbach H.” Imaging in acute ischemic stroke using automated analysis algorithms. Nervenarzt”. 89(8), 885–94, 2018.
  • Bhattacharya, S,, Pradhan, KB., Bashar, MA., Tripathi, S., Semwal, J., Marzo, RR., et al. “Artificial intelligence enabled healthcare: A hype, hope or harm”. J Fam Med Premium care. 8(11), 3461–4, 2019.
  • Khorrami, M., Prasanna, P., Gupta, A., Patil, P., Velu, PD., Thawani, R., et al. “Changes in CT Radiomic Features Associated with Lymphocyte Distribution Predict Overall Survival and Response to Immunotherapy in Non-Small Cell Lung Cancer”. Cancer Immunol Res. 8(1):108–19, 2020.
  • Tutun, S,, Irgil, S., Yeşilkaya, I., Aykaç, A., Aras, N., “WeCureX Intelligent Psychiatric Assistant”. Informs 2018 Annual Meeting. Phoenix; 2018.
  • Binaco, R., Calzaretto, N., Epifano, J., McGuire, S., Umer, M., Emrani, S., et al. “Machine Learning Analysis of Digital Clock Drawing Test Performance for Differential Classification of Mild Cognitive Impairment Subtypes Versus Alzheimer's Disease”. J Int Neuropsychol Soc.1–11, 2020.
  • Haenssle, HA., Fink, C., Schneiderbauer, R., Toberer, F., Buhl, T., Blum, A., et al. “Man against machine: diagnostic performance of a deep learning convolutional neural network for dermoscopic melanoma recognition in comparison to 58 dermatologists”. Ann Oncol Off J Eur Soc Med Oncol. 29(8):1836–42, 2018.
  • Jiang, F., Jiang, Y., Zhi, H., et al. “Artificial intelligence in healthcare: past, present and future”. Stroke and Vascular Neurology;2: e000101. doi:10.1136/ svn-2017-000101.
  • OECD. Organization for Economic Co-operation and Development Health at a Glance 2019: OECD Indicators. Paris: OECD Publishing; 2019. doi:10.1787/4dd50c09-en.
  • TURKSTAT. (2022, Nov. 11). Turkish Statistical Institute. [Online]. Available: https://www.tuik.gov.tr/
  • Republic of Turkey Ministry of Health .(2022, Nov. 11). Health Statistics Yearbook [Online]. Available: https://dosyasb.saglik.gov.tr/Eklenti/36134,siy2018trpdf.pdf?0
  • World Health Organization (WHO). (2022, Agus.7) Ten threats to global health in 2019 [Online]. Available: https://www.who.int/emergencies/ten-threats-to-global-health-in-2019
  • Gavin, B., Hayden, J., Adamis, D., & McNicholas, F. “Caring for the psychological well-being of healthcare professionals in the Covid-19 pandemic crisis”. Ir Med J, 113(4), 51, 2020.
  • Intel.(2023,Jan.11).HealthTransformation.[Online].Available: https://www.intel.com.tr/content/www/tr/tr/healthcare-it/healthcare-overview.html
  • T.C. Ministry of Health. (2023, Jan.11). General Directorate of Health Information Systems, FİTAS (Filiation and Isolation Tracking System). [Online]. Available: https://sbsgm.saglik.gov.tr/TR,73584/ fitas.html
  • Yan, Y., “MCI progression classification for early diagnosis of Alzheimer's disease using machine learning and deep learning methods”. pic. Biomed. (36):311–331, 2021.
  • Larson, D.B., Chen, M.C., Lungren, M.P., Halabi, S.S., Stence, N.V., Langlotz, C.P., “Performance of a deep-learning neuralnetwork model in assessing skeletal maturity on pediatric hand radiographs”. Radiology 287, 313–322, 2018.
  • Gerke, S., Babic, B., Evgeniou, T., Cohen, I. G., “The need for a system view to regulate artificial intelligence/machine learning- based software as a medical device”. NPJ Digital Medicine, 3(1), 1-4, 2020.
  • Adler Jr, J. R., Chang, S. D., Murphy, M. J., Doty, J., Geis, P, Hancock., S. L., “The Cyberknife: A frameless robotic system for radiosurgery”. Stereotactic and Functional Neurosurgery, 69(1-4), 124-128, 2000.
  • Clipper, B., Batcheller, J., Thomaz, A. L., Rozga, A. “, Artificial intelligence and robotics: A nurse leader'sprimer”. Nurse Leader, 16(6), 379-384, 2018.
  • Somashekhar, S.P., Sepulveda, M.J., Puglielli, S., Norden, A.D., Shortliffe, E.H., Rohit Kumar, C., Rauthan, A., Arun Kumar, N., Patil, P., Rhee, K., Ramya, Y., “Watson for Oncology and breast cancer treatment recommendations: agreement with an expert multidisciplinary tumor board”. Ann. Oncol. 29, 418–423, 2018.
  • Long, E., Lin, H., Liu, Z., et al. “An artificial intelligence platform for the multihospital collaborative management of congenital cataracts”. Nat Biomed Eng; 1. Article number 2, 2017.
  • Ting, D. S. W., Pasquale, L. R., Peng, L., Campbell, J. P., Lee, A. Y., Raman, R., Wong, T. Y., “Artificial intelligence and deep learning in ophthalmology”. British Journal of Ophthalmology, 103(2), 167-175, 2019.
  • Thadatritharntip, W., & Vongurai, R. “Artificial Intelligence Healthcare: An Empirical Study on Users' Attitude and Intention to Use toward a Personal Home Healthcare Robot to Improve Health and Wellness Conditions in Bangkok”, Thailand. UTCC International Journal of Business & Economics, 12(1), 3–25, 2020.
  • Guo, J., Li, B., “The application of medical artificial intelligence technology in rural areas of developing countries”, Health Equity, 2(1), 174–181, 2018.
  • Zheng, L., Lin, F., Zhu, C., Liu, G., Wu, X., Wu, Z., Zheng, J., Xia, H., Cai, Y., & Liang, H. “Machine Learning Algorithms Identify Pathogen-Specific Biomarkers of Clinical and Metabolomic Characteristics in Septic Patients with BacterialInfections”. BioMed Research International, 1–11, 2020.
  • Pedrosa, T. Í., Vasconcelos, F. F., Medeiros, L., Silva, D., “Machine Learning Application to Quantify the TremorLevel for Parkinson's Disease Patients.” Procedia Computer Science, 138, 215–220, 2018.
  • Muraro, C., Polato, M., Bortoli, M., Aiolli, F., Orian, L., “Radical scavenging activity of natural antioxidants and drugs: Development of a combined machine learning and quantum chemistry protocol”. Journal of Chemical Physics, 153(11), 1, 2020.
  • Strickland, E., “IBM Watson, heal thyself: How IBM overpromised and underdelivered on AI health care”. IEEE Spectrum, 56(4), 24-31, 2019.
  • Hall, A., Mitchell, A. R. J., Wood, L. & Holland, C., “Effectiveness of a single lead Alive Cor electrocardiogram application for the screening of atrial fibrillation: A systematic review”. Medicine , 99(30), e21388, 2020.
  • Porter, P., Abeyratne, U., Swarnkar, V., Tan, J., Ng, T.W., Brisbane, J. M., . . .& Kosasih, K. “A prospective multicentre study testing the diagnostic accuracy of an automated cough sound centered analytic system for the identification of common respiratory disorders in children.” Respiratory Research, 20(1), 1-10, 2019.
  • Kalil, A. J., Dias, V. M. D. C. H., Rocha, C. D. C., Morales, H. M. P., Fressatto, J. L. & Faria, R. A. D., “Sepsis risk assessment: A retrospective analysis after a cognitive risk management robot (Robot Laura®) implementation ina clinical-surgical unit”. Research on Biomedical Engineering,34(4), 310-316, 2018.
  • Ward, N., “Technology in the fight against COVID-19: Implications on human rights and recommendations (Thesis)”. Fordham University, New York.2020.
  • Vaishya, R., Javaid, M., Khan, IH., Haleem, A., “Artificial Intelligence (AI) applications for COVID-19 pandemic. Diabetes” Metab Syndr. 14(4):337–9, 2020.
  • Google . (2022, June. 06). See how your community is acting differently due to COVID-19. 2020 [Online]. Available: https://www.google.com/covid19/mobility/
  • Pan X-B. “Application of personal-oriented digital technology in preventing transmission of COVID-19”, China. Ir J Med Sci. March 27, 1–2, 2020.
  • Lu, Wang L., Lo, K., Chandrasekhar, Y., Reas, R., Yang, J., Eide, D., et al. CORD-19: The Covid-19 Open Research Dataset. ArXiv. 2020.
  • World Health Organization. (2022, June. 28). WHO Health Alert brings COVID-19 facts to billions via [Online]. Available: https://www.who.int/news-room/feature-stories/detail/who-health-alert-brings-covid-19-facts-to-billions-via-whatsap.
  • Gozes, O., Frid-Adar, M., Greenspan, H., Browning, PD., Zhang, H., Ji, W., et al. “Rapid ai development cycle for the coronavirus (covid-19) pandemic: Initial results for automated detection & patient monitoring using deep learning ct image analysis”. arXiv Prepr arXiv200305037. 2020.
  • Wang, Y., Hu, M., Zhou, Y., Li, Q., Yao, N., Zhai, G., et al. “Unobtrusive and Automatic Classification of Multiple People's Abnormal Respiratory Patterns in Real Time Using Deep “ Neural Network and Depth Camera. IEEE Internet Things J. 7(9):8559–71, 2020.
  • Alimadadi, A., Aryal, S., Manandhar, I., Munroe, PB., Joe, B., Cheng. X., “Artificial intelligence and machine learning to fight COVID-19 19”. Physiol Genomics, 52(4):200–2, 2020
  • Itkonen, P., “Artificial Intelligence in Home Care Settings in South Karelia Social and Healthcare District in Finland”. 2019IEEE World Congress on Services , 2642–939X, 238–239, 2019.
  • Thomas, C.,” Artificial intelligence and nursing: The future is now.” The Journal of Nursing Administration, 50(3), 125-127, 2020.
  • Amunts, K., Ebell, C., Muller, J., Telefont, M., Knoll, A, Lippert., “The human brain project: Creating a European research infrastructure to decode the human brain”. Neuron, 92(3), 574-581, 2016.
  • Kulshreshth, A., Anand, A., Lakanpal, A., “Neuralink-an Elon Musk start-up achieve symbiosis with artificial intelligence (Conference paper, pp. 105-109)”. International Conference on Computing, Communication, and Intelligent Systems, India. 2018.
  • Contreras, I., Vehi, J., “Artificial intelligence for diabetes management and decision support: A literature review”. Journal of Medical Internet Research, 20(5), e10775, 2018.
  • GoogleDeepmind. (2023, Jan. 12), Artificial Intelligence, [Online]. Available: https://www.deepmind.com/blog/announcing-google-deepmind
  • IBM Watson Health. (2023, Jan. 12). How ai is impacting healthcare, [Online]. Available: https://www.ibm.com/watson-health
  • CareSkore. (2023, Jan. 12). Hospital Reports and Ratings [Online]. Available: https://www.careskore.com/hospital-ratings/
  • Zephyr Health. (2023, Jan. 12). Bussineswiew anju software harnesses the power of line sciences data through the acquisition of zephyr health [Online]. Available: https://twitter.com/zephyrhealth
  • Oncora Medicine. (2023, Jan. 12). We strive to hare our work with the scientific and academic communities. Check out some of our recent research below [Online]. Available: https://www.oncora.ai/research
  • Enlitic. (2023, Jan. 12). Comprehensively impact your medical imaging data with the enlitic curie framework, [Online]. Available: https://enlitic.com/solutions/
  • Butterfly Network. (2023, Jan. 12). Tient assessment, transformed [Online]. Available: https://www.butterflynetwork.com/
  • Lunit. (2023, Jan. 12). How our al products help conquer cancer [Online]. Available: https://www.lunit.io/en/products
  • Arteries. (2023, Jan. 12). The future of precision medicine that only humans + al can achieve [Online]. Available: https://www.arterys.com/
  • Caption Health. (2023, Jan. 12). Smart technology to inform human decisions [Online]. Available: https://captionhealth.com/technology
  • Sensu, S., Erdogan, N., Gurbuz, YS., “The Digital Age and Artificial Intelligence in Pathology:” Fundamentals. Turkiye Klinikleri J Med Sci., 40(1),104-12, 2020.
  • Önder, M., & Uzun, M. “Artificial intelligence strategies and Türkiye”. Ankara Yıldırım Beyazıt University International Relations and Strategic Research Institute, 12(2), 1-10, 2020.
  • Tamer, H. Y., Övgün, B., “Office of digital transformation in the context of artificial intelligence”. Ankara University Journal of SBF, 75(2), 775-803, 2020.
  • A First in Turkey: Turkish Brain Project Implemented with the Cooperation of Presidency Digital Transformation Office and Gazi University https://mf.gazi.edu.tr/view/news/255338/turkiye-de-bir-ilk-turk -brain-project-presidential-digital-transformation-office-ve-gazi-university-i
  • Akgün, B., D, Aktaç., A, Yorulmaz, O., “Mobile applications in mental health: A systematic review of efficacy”, Current Approaches in Psychiatry, 11(4), 519-531, 2019
There are 84 citations in total.

Details

Primary Language English
Subjects Health Care Administration
Journal Section Review
Authors

Sebla Ak 0000-0003-4691-8100

Publication Date August 30, 2023
Submission Date May 16, 2023
Acceptance Date August 14, 2023
Published in Issue Year 2023

Cite

IEEE S. Ak, “USE OF ARTIFICIAL INTELLIGENCE IN HEALTH SERVICES MANAGEMENT IN TÜRKİYE”, IJHSRP, vol. 8, no. 2, pp. 139–161, 2023, doi: 10.33457/ijhsrp.1298068.

DOAJ_logo.png   scholar_logo_64dp.pngcrossref-logo-landscape-200.pnglogo.pnglogo-minik.png  CenterLogo.png researchgate-vector-logo.png SciLit logo ile ilgili görsel sonucuicon.png?w=170&fakeurl=1Medical Reads

https://upload.wikimedia.org/wikipedia/commons/2/20/DOAJ_logo.pnghttps://upload.wikimedia.org/wikipedia/commons/2/20/DOAJ_logo.pnghttps://upload.wikimedia.org/wikipedia/commons/2/20/DOAJ_logo.pnghttps://upload.wikimedia.org/wikipedia/commons/2/20/DOAJ_logo.png    Creative Commons License

This work is licensed under a Creative Commons Attribution-NonCommercial -NoDerivatives 4.0 International License.