In recent time, some mixed types of alphabets have been considered for constructing error correcting codes. These constructions include $\bbbz_{2}\bbbz_{4}-$additive codes, $\bbbz_{2}\bbbz_{2}[u]-$linear codes et cetera. In this paper, we studied a class of codes over a mixed ring $\bbbz_{p}R$ where $R=\bbbz_{p}+v\bbbz_{p}+v^{2}\bbbz_{p}, v^{3}=v.$ We determined an algebraic structure of these codes under certain conditions. We have also constructed a class of LCD cyclic codes over $\bbbz_{p}R$. A necessary and sufficient condition for a cyclic code to be a complementary dual (LCD) code has been obtained.
P. Delsarte. An algebraic approach to the association schemes of coding theory.
PhD thesis, Universite Catholique de Louvain, 1973.
T. Abualrub, I. Siap, and N. Aydin. $ZZ_{2}$ $ZZ_{4}$ additive cyclic codes. IEEE Trans. Inf. Theory, 3:1508-1514, 2014.
J. Borges, C. Fernandez-Cordoba, and R. Ten-Valls. $ZZ_{2}$ $ZZ_{4}$ additive cyclic codes, generator polynomials and dual codes. IEEE Trans. Inf. Theory, 11:6348-6354, 2016.
I. Aydogdu and T. Abualrub. The structure of $ZZ_{2}$ $ZZ_{2^{8}}$additive cyclic codes. Discrete Math. Algorithms Appl., 4:1850048-1850060, 2018.
I. Aydogdu and I. Siap. On $ZZ_{p^{r}}$ $ZZ_{p^{s}}$additive codes. Linear Multilinear Algebra, 10:2089-2102, 2014.
I. Aydogdu and T. Abualrub. The structure of $ZZ_{2}$ $ZZ_{2}[u]$ cyclic and constacyclic codes. IEEE Trans. Inf. Theory, 63(8):4883-4893, 2017.
L. Diao and J. Gao. $ZZ_{p}$ $ZZ_{p}[u]$additive cyclic codes. Int. J. Inf. Coding Theory, 1:1-17, 2018.
B. Srinivasulu and B. Maheshanand. $ZZ_{2}$($ZZ_{2}$ + $uZZ_{2}$) additive cyclic codes and their duals. Discrete Math. Algorithms Appl., 2:1650027-1650045, 2016.
Z. Hebbache, A. Kaya, N. Aydin, and K. Guenda. On some skew codes over $ZZ_{q}$ + $uZZ_{q}$. Discrete Mathematics Algorithms and Applications, 2022.
J-L. Massey. Linear codes with complementary duals. Discrete Math., 106-107:337-342, 1992.
C. Carlet. Boolean Functions for Cryptography and Error Correcting Codes. Cambridge University Press, Cambridge, U.K., 2010.
X. Liu and H. Liu. Lcd codes over finite chain rings. Finite Fields Appl., 34:1-19, 2015.
C. Li, C. Ding, and S. Li. Lcd cyclic codes over finite fields. IEEE Trans. Inf. Theory, 63:4344-4356, 2017.
X. Yang and J-L. Massey. The condition for a cyclic code to have a complementary dual. Discrete Math., 126:391-393, 1994.
L. Diao, J. Gao, and J. Lu. Some results on $ZZ_{p}$$ZZ_{p}[v]$ additive cyclic codes. Adv. Math. Commun., 4:555-572, 2020.
M. Bhaintwal and S-K. Wasan. On quasi-cyclic codes over $ZZ_{p}$:. Appl. Algebra Engrg. Comm. Comput., 20:459-480, 2009.
P. Delsarte. An algebraic approach to the association schemes of coding theory.
PhD thesis, Universite Catholique de Louvain, 1973.
T. Abualrub, I. Siap, and N. Aydin. $ZZ_{2}$ $ZZ_{4}$ additive cyclic codes. IEEE Trans. Inf. Theory, 3:1508-1514, 2014.
J. Borges, C. Fernandez-Cordoba, and R. Ten-Valls. $ZZ_{2}$ $ZZ_{4}$ additive cyclic codes, generator polynomials and dual codes. IEEE Trans. Inf. Theory, 11:6348-6354, 2016.
I. Aydogdu and T. Abualrub. The structure of $ZZ_{2}$ $ZZ_{2^{8}}$additive cyclic codes. Discrete Math. Algorithms Appl., 4:1850048-1850060, 2018.
I. Aydogdu and I. Siap. On $ZZ_{p^{r}}$ $ZZ_{p^{s}}$additive codes. Linear Multilinear Algebra, 10:2089-2102, 2014.
I. Aydogdu and T. Abualrub. The structure of $ZZ_{2}$ $ZZ_{2}[u]$ cyclic and constacyclic codes. IEEE Trans. Inf. Theory, 63(8):4883-4893, 2017.
L. Diao and J. Gao. $ZZ_{p}$ $ZZ_{p}[u]$additive cyclic codes. Int. J. Inf. Coding Theory, 1:1-17, 2018.
B. Srinivasulu and B. Maheshanand. $ZZ_{2}$($ZZ_{2}$ + $uZZ_{2}$) additive cyclic codes and their duals. Discrete Math. Algorithms Appl., 2:1650027-1650045, 2016.
Z. Hebbache, A. Kaya, N. Aydin, and K. Guenda. On some skew codes over $ZZ_{q}$ + $uZZ_{q}$. Discrete Mathematics Algorithms and Applications, 2022.
J-L. Massey. Linear codes with complementary duals. Discrete Math., 106-107:337-342, 1992.
C. Carlet. Boolean Functions for Cryptography and Error Correcting Codes. Cambridge University Press, Cambridge, U.K., 2010.
X. Liu and H. Liu. Lcd codes over finite chain rings. Finite Fields Appl., 34:1-19, 2015.
C. Li, C. Ding, and S. Li. Lcd cyclic codes over finite fields. IEEE Trans. Inf. Theory, 63:4344-4356, 2017.
X. Yang and J-L. Massey. The condition for a cyclic code to have a complementary dual. Discrete Math., 126:391-393, 1994.
L. Diao, J. Gao, and J. Lu. Some results on $ZZ_{p}$$ZZ_{p}[v]$ additive cyclic codes. Adv. Math. Commun., 4:555-572, 2020.
M. Bhaintwal and S-K. Wasan. On quasi-cyclic codes over $ZZ_{p}$:. Appl. Algebra Engrg. Comm. Comput., 20:459-480, 2009.
Hebbache, Z., & Sharma, A. (2024). A Class of LCD Codes Through Cyclic Codes Over $ZpR$. International Journal of Informatics and Applied Mathematics, 6(2), 8-19. https://doi.org/10.53508/ijiam.1213801
AMA
Hebbache Z, Sharma A. A Class of LCD Codes Through Cyclic Codes Over $ZpR$. IJIAM. January 2024;6(2):8-19. doi:10.53508/ijiam.1213801
Chicago
Hebbache, Zineb, and Amit Sharma. “A Class of LCD Codes Through Cyclic Codes Over $ZpR$”. International Journal of Informatics and Applied Mathematics 6, no. 2 (January 2024): 8-19. https://doi.org/10.53508/ijiam.1213801.
EndNote
Hebbache Z, Sharma A (January 1, 2024) A Class of LCD Codes Through Cyclic Codes Over $ZpR$. International Journal of Informatics and Applied Mathematics 6 2 8–19.
IEEE
Z. Hebbache and A. Sharma, “A Class of LCD Codes Through Cyclic Codes Over $ZpR$”, IJIAM, vol. 6, no. 2, pp. 8–19, 2024, doi: 10.53508/ijiam.1213801.
ISNAD
Hebbache, Zineb - Sharma, Amit. “A Class of LCD Codes Through Cyclic Codes Over $ZpR$”. International Journal of Informatics and Applied Mathematics 6/2 (January 2024), 8-19. https://doi.org/10.53508/ijiam.1213801.
JAMA
Hebbache Z, Sharma A. A Class of LCD Codes Through Cyclic Codes Over $ZpR$. IJIAM. 2024;6:8–19.
MLA
Hebbache, Zineb and Amit Sharma. “A Class of LCD Codes Through Cyclic Codes Over $ZpR$”. International Journal of Informatics and Applied Mathematics, vol. 6, no. 2, 2024, pp. 8-19, doi:10.53508/ijiam.1213801.
Vancouver
Hebbache Z, Sharma A. A Class of LCD Codes Through Cyclic Codes Over $ZpR$. IJIAM. 2024;6(2):8-19.