Research Article
BibTex RIS Cite

Sentiment Analysis-Driven Approach for Enhancing Arabic Fake News Detection Using Machine and Deep Learning

Year 2026, Volume: 8 Issue: 2, 19 - 36, 15.01.2026
https://doi.org/10.53508/ijiam.1838771

Abstract

The rapid spread of misleading Arabic news stories threatens societal harmony and facts-based choices, yet determining what is truthful remains complicated because of the language's distinctive linguistic qualities. Current techniques generally focus solely on surface textual patterns, neglecting the combined potential of merging advanced sentiment metrics with hybrid machine learning and deep learning frameworks. We introduce an innovative system for identifying deceptive Arabic news that combines sentiment analysis and several approaches, including both machine learning (RF, Naive Bayes, SVM, LR) as well as deep learning (LSTM, RNN). Experiments on a comprehensive corpus of over 6100 Arabic news show that our sentiment-analysis enhanced hybrid model achieves notably superior performance, with SVM attaining 96 % accuracy, surpassing all baseline methods. These insights provide both a practical solution for detecting Arabic misinformation and a framework that can be adapted to other under-resourced languages.

References

  • Abdul-Mageed, A., Elmadany, A., & Nagoudi, E. M. B. (2020). ARBERT & MARBERT: Deep bidirectional transformers for Arabic. In Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics.
  • Ajao, O., Bhowmik, D., & Zargari, S. (2019a). Sentiment aware fake news detection on online social networks. In ICASSP 2019 – IEEE International Conference on Acoustics, Speech and Signal Processing (pp. 2507–2511). IEEE. https://doi.org/10.1109/ICASSP.2019.8683170
  • Ajao, O., Bhowmik, D., & Zargari, S. (2019b). Sentiment aware fake news detection on online social networks. In ICASSP 2019 – IEEE International Conference on Acoustics, Speech and Signal Processing. IEEE.
  • Al-Yahya, M., Al-Khalifa, H., Al-Baity, H., AlSaeed, D., & Essam, A. (2021). Arabic fake news detection: Comparative study of neural networks and transformer-based approaches. Complexity, 2021, 5516945. https://doi.org/10.1155/2021/5516945
  • AlRubaian, M., Al-Qurishi, M., Al-Rakhami, M., Rahman, S. M. M., & Alamri, A. (2015). A multistage credibility analysis model for microblogs. In Proceedings of the IEEE/ACM International Conference on Advances in Social Networks Analysis and Mining (pp. 1434–1440). IEEE.
  • Bhutani, B., Rastogi, N., Sehgal, P., & Purwar, A. (2019). Fake news detection using sentiment analysis. In 12th International Conference on Contemporary Computing (IC3) (pp. 1–5). IEEE.
  • Cui, L., Wang, S., & Lee, D. (2019). SAME: Sentiment-aware multi-modal embedding for detecting fake news. In Proceedings of the IEEE/ACM International Conference on Advances in Social Networks Analysis and Mining (pp. 41–48).
  • Davis, J., & Goadrich, M. (2020). The relationship between precision–recall and ROC curves in multi-label classification. In Proceedings of the 23rd International Conference on Machine Learning.
  • Dey, A., Rafi, R. Z., Parash, S. H., Arko, S. K., & Chakrabarty, A. (2018). Fake news pattern recognition using linguistic analysis. In 2018 Joint 7th International Conference on Informatics, Electronics & Vision (ICIEV) and 2nd International Conference on Imaging, Vision & Pattern Recognition (icIVPR) (pp. 305–309). IEEE.
  • Do Nascimento, I. J. B., Pizarro, A. B., Almeida, J. M., Azzopardi-Muscat, N., Gonçalves, M. A., Björklund, M., & Novillo-Ortiz, D. (2022). Infodemics and health misinformation: A systematic review of reviews. Bulletin of the World Health Organization, 100(9), 544–561. https://doi.org/10.2471/BLT.21.287654
  • Habash, N. (2022). Introduction to Arabic natural language processing. Morgan & Claypool.
  • Hassan, N., Arslan, F., Li, C., & Tremayne, M. (2017). Toward automated fact-checking: Detecting check-worthy factual claims by ClaimBuster. In Proceedings of the 23rd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining (pp. 1803–1812). ACM.
  • Himdi, H., Weir, G., Assiri, F., & Al-Barhamtoshy, H. (2022). Arabic fake news detection based on textual analysis. Arabian Journal for Science and Engineering, 47(8), 10453–10469. https://doi.org/10.1007/s13369-022-06825-1
  • Horne, B. D., & Adali, S. (2017). This just in: Fake news packs a lot in title, uses simpler, repetitive content in text body, more similar to satire than real news. In Proceedings of the Workshops of the 11th International AAAI Conference on Web and Social Media (pp. 759–766). AAAI Press.
  • Iwendi, C., Mohan, S., Ibeke, E., Ahmadian, A., & Ciano, T. (2022). COVID-19 fake news sentiment analysis. Computers & Electrical Engineering, 101, 107967. https://doi.org/10.1016/j.compeleceng.2022.107967
  • Khalil, A., Jarrah, M., Aldwairi, M., & Jaradat, M. (2022). AFND: Arabic fake news dataset for the detection and classification of articles credibility. Data in Brief, 42, 108141. https://doi.org/10.1016/j.dib.2022.108141
  • LeCun, Y., Bengio, Y., & Hinton, G. (2015). Deep learning. Nature, 521(7553), 436–444. https://doi.org/10.1038/nature14539
  • Leyva, R., & Beckett, C. (2020). Testing and unpacking the effects of digital fake news: On presidential candidate evaluations and voter support. AI & Society, 35, 969–980. https://doi.org/10.1007/s00146-020-00989-6
  • Li, C., Xie, Z., & Wang, H. (2025). Short text classification based on enhanced word embedding and hybrid neural networks. Applied Sciences, 15(9), 5102. https://doi.org/10.3390/app15095102
  • Mustafa, M., Eldeen, A. S., Bani-Ahmad, S., & Elfaki, A. O. (2017). A comparative survey on Arabic stemming: Approaches and challenges. Intelligent Information Management, 9(2), 39–67. https://doi.org/10.4236/iim.2017.92004
  • Mubarak, H. (2017). Build fast and accurate lemmatization for Arabic (pp. 1128–1132).
  • Perez, E., Ringer, T., & Bowman, S. (2023). When accuracy lies: Misleading metrics in text classification. In Proceedings of the 61st Annual Meeting of the Association for Computational Linguistics (pp. 10245–10260). https://doi.org/10.18653/v1/2023.acl-long.571
  • Popat, K., Mukherjee, S., Strötgen, J., & Weikum, G. (2017). Where the truth lies: Explaining the credibility of emerging claims on the web and social media. In Proceedings of the 26th International Conference on World Wide Web Companion (pp. 1003–1012).
  • Powers, D. M. W. (2020). Evaluation metrics for multi-label classification: A unified perspective. Journal of Machine Learning Technologies, 11(1), 1–25.
  • Rashkin, H., Choi, E., Jang, J. Y., Volkova, S., & Choi, Y. (2017). Truth of varying shades: Analyzing language in fake news and political fact-checking. In Proceedings of the Conference on Empirical Methods in Natural Language Processing (pp. 2931–2937).
  • Reis, J. C., Correia, A., Murai, F., Veloso, A., & Benevenuto, F. (2019). Supervised learning for fake news detection. IEEE Intelligent Systems, 34(2), 76–81. https://doi.org/10.1109/MIS.2019.2899143
  • Ross, J., & Thirunarayan, K. (2016). Features for ranking tweets based on credibility and newsworthiness. In International Conference on Collaboration Technologies and Systems (CTS) (pp. 18–25). IEEE.
  • Sokolova, M., & Lapalme, G. (2020). A systematic analysis of performance measures for classification tasks. Information Processing & Management, 56(4), 1020–1035. https://doi.org/10.1016/j.ipm.2019.102055
  • Touahri, I., & Mazroui, A. (2024). Survey of machine learning techniques for Arabic fake news detection. Artificial Intelligence Review, 57(6), 157. https://doi.org/10.1007/s10462-023-10536-x
  • Vicario, M. D., Quattrociocchi, W., Scala, A., & Zollo, F. (2019). Polarization and fake news: Early warning of potential misinformation targets. ACM Transactions on the Web, 13(2), 1–22. https://doi.org/10.1145/3316809
  • Vosoughi, S., Roy, D., & Aral, S. (2018). The spread of true and false news online. Science, 359(6380), 1146–1151. https://doi.org/10.1126/science.aap9559
  • Yang, Y., Zheng, L., Zhang, J., Cui, Q., Li, Z., & Yu, P. S. (2018). TI-CNN: Convolutional neural networks for fake news detection. arXiv preprint arXiv:1806.00749.
  • Zhang, X., Cao, J., Li, X., Sheng, Q., Zhong, L., & Shu, K. (2021). Mining dual emotion for fake news detection. In Proceedings of The Web Conference (pp. 3465–3476).

Year 2026, Volume: 8 Issue: 2, 19 - 36, 15.01.2026
https://doi.org/10.53508/ijiam.1838771

Abstract

References

  • Abdul-Mageed, A., Elmadany, A., & Nagoudi, E. M. B. (2020). ARBERT & MARBERT: Deep bidirectional transformers for Arabic. In Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics.
  • Ajao, O., Bhowmik, D., & Zargari, S. (2019a). Sentiment aware fake news detection on online social networks. In ICASSP 2019 – IEEE International Conference on Acoustics, Speech and Signal Processing (pp. 2507–2511). IEEE. https://doi.org/10.1109/ICASSP.2019.8683170
  • Ajao, O., Bhowmik, D., & Zargari, S. (2019b). Sentiment aware fake news detection on online social networks. In ICASSP 2019 – IEEE International Conference on Acoustics, Speech and Signal Processing. IEEE.
  • Al-Yahya, M., Al-Khalifa, H., Al-Baity, H., AlSaeed, D., & Essam, A. (2021). Arabic fake news detection: Comparative study of neural networks and transformer-based approaches. Complexity, 2021, 5516945. https://doi.org/10.1155/2021/5516945
  • AlRubaian, M., Al-Qurishi, M., Al-Rakhami, M., Rahman, S. M. M., & Alamri, A. (2015). A multistage credibility analysis model for microblogs. In Proceedings of the IEEE/ACM International Conference on Advances in Social Networks Analysis and Mining (pp. 1434–1440). IEEE.
  • Bhutani, B., Rastogi, N., Sehgal, P., & Purwar, A. (2019). Fake news detection using sentiment analysis. In 12th International Conference on Contemporary Computing (IC3) (pp. 1–5). IEEE.
  • Cui, L., Wang, S., & Lee, D. (2019). SAME: Sentiment-aware multi-modal embedding for detecting fake news. In Proceedings of the IEEE/ACM International Conference on Advances in Social Networks Analysis and Mining (pp. 41–48).
  • Davis, J., & Goadrich, M. (2020). The relationship between precision–recall and ROC curves in multi-label classification. In Proceedings of the 23rd International Conference on Machine Learning.
  • Dey, A., Rafi, R. Z., Parash, S. H., Arko, S. K., & Chakrabarty, A. (2018). Fake news pattern recognition using linguistic analysis. In 2018 Joint 7th International Conference on Informatics, Electronics & Vision (ICIEV) and 2nd International Conference on Imaging, Vision & Pattern Recognition (icIVPR) (pp. 305–309). IEEE.
  • Do Nascimento, I. J. B., Pizarro, A. B., Almeida, J. M., Azzopardi-Muscat, N., Gonçalves, M. A., Björklund, M., & Novillo-Ortiz, D. (2022). Infodemics and health misinformation: A systematic review of reviews. Bulletin of the World Health Organization, 100(9), 544–561. https://doi.org/10.2471/BLT.21.287654
  • Habash, N. (2022). Introduction to Arabic natural language processing. Morgan & Claypool.
  • Hassan, N., Arslan, F., Li, C., & Tremayne, M. (2017). Toward automated fact-checking: Detecting check-worthy factual claims by ClaimBuster. In Proceedings of the 23rd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining (pp. 1803–1812). ACM.
  • Himdi, H., Weir, G., Assiri, F., & Al-Barhamtoshy, H. (2022). Arabic fake news detection based on textual analysis. Arabian Journal for Science and Engineering, 47(8), 10453–10469. https://doi.org/10.1007/s13369-022-06825-1
  • Horne, B. D., & Adali, S. (2017). This just in: Fake news packs a lot in title, uses simpler, repetitive content in text body, more similar to satire than real news. In Proceedings of the Workshops of the 11th International AAAI Conference on Web and Social Media (pp. 759–766). AAAI Press.
  • Iwendi, C., Mohan, S., Ibeke, E., Ahmadian, A., & Ciano, T. (2022). COVID-19 fake news sentiment analysis. Computers & Electrical Engineering, 101, 107967. https://doi.org/10.1016/j.compeleceng.2022.107967
  • Khalil, A., Jarrah, M., Aldwairi, M., & Jaradat, M. (2022). AFND: Arabic fake news dataset for the detection and classification of articles credibility. Data in Brief, 42, 108141. https://doi.org/10.1016/j.dib.2022.108141
  • LeCun, Y., Bengio, Y., & Hinton, G. (2015). Deep learning. Nature, 521(7553), 436–444. https://doi.org/10.1038/nature14539
  • Leyva, R., & Beckett, C. (2020). Testing and unpacking the effects of digital fake news: On presidential candidate evaluations and voter support. AI & Society, 35, 969–980. https://doi.org/10.1007/s00146-020-00989-6
  • Li, C., Xie, Z., & Wang, H. (2025). Short text classification based on enhanced word embedding and hybrid neural networks. Applied Sciences, 15(9), 5102. https://doi.org/10.3390/app15095102
  • Mustafa, M., Eldeen, A. S., Bani-Ahmad, S., & Elfaki, A. O. (2017). A comparative survey on Arabic stemming: Approaches and challenges. Intelligent Information Management, 9(2), 39–67. https://doi.org/10.4236/iim.2017.92004
  • Mubarak, H. (2017). Build fast and accurate lemmatization for Arabic (pp. 1128–1132).
  • Perez, E., Ringer, T., & Bowman, S. (2023). When accuracy lies: Misleading metrics in text classification. In Proceedings of the 61st Annual Meeting of the Association for Computational Linguistics (pp. 10245–10260). https://doi.org/10.18653/v1/2023.acl-long.571
  • Popat, K., Mukherjee, S., Strötgen, J., & Weikum, G. (2017). Where the truth lies: Explaining the credibility of emerging claims on the web and social media. In Proceedings of the 26th International Conference on World Wide Web Companion (pp. 1003–1012).
  • Powers, D. M. W. (2020). Evaluation metrics for multi-label classification: A unified perspective. Journal of Machine Learning Technologies, 11(1), 1–25.
  • Rashkin, H., Choi, E., Jang, J. Y., Volkova, S., & Choi, Y. (2017). Truth of varying shades: Analyzing language in fake news and political fact-checking. In Proceedings of the Conference on Empirical Methods in Natural Language Processing (pp. 2931–2937).
  • Reis, J. C., Correia, A., Murai, F., Veloso, A., & Benevenuto, F. (2019). Supervised learning for fake news detection. IEEE Intelligent Systems, 34(2), 76–81. https://doi.org/10.1109/MIS.2019.2899143
  • Ross, J., & Thirunarayan, K. (2016). Features for ranking tweets based on credibility and newsworthiness. In International Conference on Collaboration Technologies and Systems (CTS) (pp. 18–25). IEEE.
  • Sokolova, M., & Lapalme, G. (2020). A systematic analysis of performance measures for classification tasks. Information Processing & Management, 56(4), 1020–1035. https://doi.org/10.1016/j.ipm.2019.102055
  • Touahri, I., & Mazroui, A. (2024). Survey of machine learning techniques for Arabic fake news detection. Artificial Intelligence Review, 57(6), 157. https://doi.org/10.1007/s10462-023-10536-x
  • Vicario, M. D., Quattrociocchi, W., Scala, A., & Zollo, F. (2019). Polarization and fake news: Early warning of potential misinformation targets. ACM Transactions on the Web, 13(2), 1–22. https://doi.org/10.1145/3316809
  • Vosoughi, S., Roy, D., & Aral, S. (2018). The spread of true and false news online. Science, 359(6380), 1146–1151. https://doi.org/10.1126/science.aap9559
  • Yang, Y., Zheng, L., Zhang, J., Cui, Q., Li, Z., & Yu, P. S. (2018). TI-CNN: Convolutional neural networks for fake news detection. arXiv preprint arXiv:1806.00749.
  • Zhang, X., Cao, J., Li, X., Sheng, Q., Zhong, L., & Shu, K. (2021). Mining dual emotion for fake news detection. In Proceedings of The Web Conference (pp. 3465–3476).
There are 33 citations in total.

Details

Primary Language English
Subjects Natural Language Processing
Journal Section Research Article
Authors

Asma Chatta

Mustapha Bouakkaz

Boubakeur Latreche

Submission Date December 9, 2025
Acceptance Date December 31, 2025
Publication Date January 15, 2026
Published in Issue Year 2026 Volume: 8 Issue: 2

Cite

APA Chatta, A., Bouakkaz, M., & Latreche, B. (2026). Sentiment Analysis-Driven Approach for Enhancing Arabic Fake News Detection Using Machine and Deep Learning. International Journal of Informatics and Applied Mathematics, 8(2), 19-36. https://doi.org/10.53508/ijiam.1838771
AMA Chatta A, Bouakkaz M, Latreche B. Sentiment Analysis-Driven Approach for Enhancing Arabic Fake News Detection Using Machine and Deep Learning. IJIAM. January 2026;8(2):19-36. doi:10.53508/ijiam.1838771
Chicago Chatta, Asma, Mustapha Bouakkaz, and Boubakeur Latreche. “Sentiment Analysis-Driven Approach for Enhancing Arabic Fake News Detection Using Machine and Deep Learning”. International Journal of Informatics and Applied Mathematics 8, no. 2 (January 2026): 19-36. https://doi.org/10.53508/ijiam.1838771.
EndNote Chatta A, Bouakkaz M, Latreche B (January 1, 2026) Sentiment Analysis-Driven Approach for Enhancing Arabic Fake News Detection Using Machine and Deep Learning. International Journal of Informatics and Applied Mathematics 8 2 19–36.
IEEE A. Chatta, M. Bouakkaz, and B. Latreche, “Sentiment Analysis-Driven Approach for Enhancing Arabic Fake News Detection Using Machine and Deep Learning”, IJIAM, vol. 8, no. 2, pp. 19–36, 2026, doi: 10.53508/ijiam.1838771.
ISNAD Chatta, Asma et al. “Sentiment Analysis-Driven Approach for Enhancing Arabic Fake News Detection Using Machine and Deep Learning”. International Journal of Informatics and Applied Mathematics 8/2 (January2026), 19-36. https://doi.org/10.53508/ijiam.1838771.
JAMA Chatta A, Bouakkaz M, Latreche B. Sentiment Analysis-Driven Approach for Enhancing Arabic Fake News Detection Using Machine and Deep Learning. IJIAM. 2026;8:19–36.
MLA Chatta, Asma et al. “Sentiment Analysis-Driven Approach for Enhancing Arabic Fake News Detection Using Machine and Deep Learning”. International Journal of Informatics and Applied Mathematics, vol. 8, no. 2, 2026, pp. 19-36, doi:10.53508/ijiam.1838771.
Vancouver Chatta A, Bouakkaz M, Latreche B. Sentiment Analysis-Driven Approach for Enhancing Arabic Fake News Detection Using Machine and Deep Learning. IJIAM. 2026;8(2):19-36.

International Journal of Informatics and Applied Mathematics