Research Article
BibTex RIS Cite

Year 2026, Volume: 8 Issue: 2, 37 - 52, 15.01.2026
https://doi.org/10.53508/ijiam.1838971

Abstract

References

  • Ahmed, M. R., Ali, M. A., Roy, J., Ahmed, S., & Ahmed, N. (2020). Breast cancer risk prediction based on six machine learning algorithms. In 2020 IEEE Asia-Pacific Conference on Computer Science and Data Engineering (CSDE) (pp. 1–5). IEEE. https://doi.org/10.1109/CSDE50874.2020.9411572
  • Alomar, K., Aysel, H. I., & Cai, X. (2023). Data augmentation in classification and segmentation: A survey and new strategies. Journal of Imaging, 9(2), 46. https://doi.org/10.3390/jimaging9020046
  • Aly, G. H., Marey, M., El-Sayed, S. A., & Tolba, M. F. (2021). YOLO-based breast masses detection and classification in full-field digital mammograms. Computer Methods and Programs in Biomedicine, 200, 105823. https://doi.org/10.1016/j.cmpb.2020.105823
  • Balasubramanian, A. A., Al-Heejawi, S. M. A., Singh, A., Breggia, A., Ahmad, B., Christman, R., Ryan, S. T., & Amal, S. (2024). Ensemble deep learning-based image classification for breast cancer subtype and invasiveness diagnosis from whole slide image histopathology. Cancers, 16(12), 2222. https://doi.org/10.3390/cancers16122222
  • Bakirarar, B. (2023). Class weighting technique to deal with imbalanced class problem in machine learning: Methodological research. Turkiye Klinikleri Journal of Biostatistics, 15(1), 19–29. https://www.turkiyeklinikleri.com/article/en-class-weighting-technique-to-deal-with-imbalanced-class-problem-in-machine-learning-methodological-research-101599.html
  • Breast cancer. (2025). World Health Organization. https://www.who.int/news-room/fact-sheets/detail/breast-cancer
  • Buda, S., Maki, A., & Mazurowski, M. (2023). A systematic study of the class imbalance problem in convolutional neural networks. Machine Learning, 112, 4431–4460. https://doi.org/10.1007/s10994-022-06268-8
  • Chilumukuru, N. S., Priyadarshini, P., & Ezunkpe, Y. (2025). Deep learning for the early detection of invasive ductal carcinoma in histopathological images: Convolutional neural network approach with transfer learning. JMIR Formative Research, 9, e62996. https://doi.org/10.2196/62996
  • Cruz-Roa, A., et al. (2014). Automatic detection of invasive ductal carcinoma in whole slide images with convolutional neural networks. In Medical Imaging 2014: Digital Pathology (Vol. 9041, p. 904103). SPIE. https://doi.org/10.1117/12.2043872
  • Datwani, S., Khan, H., Niazi, M. K. K., Parwani, A. V., & Li, Z. (2025). Artificial intelligence in breast pathology: Overview and recent updates. Human Pathology, 162, 105819. https://doi.org/10.1016/j.humpath.2025.105819
  • Goceri, E. (2023). Medical image data augmentation: Techniques, comparisons and interpretations. Artificial Intelligence Review, 1–45. https://doi.org/10.1007/s10462-023-10453-z
  • Guleria, H. V., Luqmani, A. M., Kothari, H. D., Phukan, P., Patil, S., Pareek, P., Kotecha, K., Abraham, A., & Gabralla, L. A. (2023). Enhancing the breast histopathology image analysis for cancer detection using variational autoencoder. International Journal of Environmental Research and Public Health, 20(5), 4244. https://doi.org/10.3390/ijerph20054244
  • Hassan, E., Shams, M. Y., Hikal, N. A., et al. (2023). The effect of choosing optimizer algorithms to improve computer vision tasks: A comparative study. Multimedia Tools and Applications, 82, 16591–16633. https://doi.org/10.1007/s11042-022-13820-0
  • Jiang, Y., Chen, L., Zhang, H., & Xiao, X. (2019). Breast cancer histopathological image classification using convolutional neural networks with small SE-ResNet module. PLOS ONE, 14(3), e0214587. https://doi.org/10.1371/journal.pone.0214587
  • Kaddes, M., Ayid, Y. M., Elshewey, A. M., et al. (2025). Breast cancer classification based on hybrid CNN with LSTM model. Scientific Reports, 15, 4409. https://doi.org/10.1038/s41598-025-88459-6
  • Korkmaz, M., & Kaplan, K. (2025). Effectiveness analysis of deep learning methods for breast cancer diagnosis based on histopathology images. Applied Sciences, 15(3), 1005. https://doi.org/10.3390/app15031005
  • Li, J., Chen, J., Tang, Y., Wang, C., Landman, B. A., & Zhou, S. K. (2023). Transforming medical imaging with transformers? A comparative review of key properties, current progress, and future perspectives. Medical Image Analysis, 85, 102762. https://doi.org/10.1016/j.media.2023.102762
  • Litjens, G., Kooi, T., Bejnordi, B. E., et al. (2017). A survey on deep learning in medical image analysis. Medical Image Analysis, 42, 60–88. https://doi.org/10.1016/j.media.2017.07.005
  • Mahesh, T. R., Gupta, M., Anupama, T. A., Kumar, V. K., Geman, O., Kumar, D., & An. (2024). An XAI-enhanced EfficientNetB0 framework for precision brain tumor detection in MRI imaging. Journal of Neuroscience Methods, 410, 110227. https://doi.org/10.1016/j.jneumeth.2024.110227
  • Mooney, P. T. (2018). Breast histopathology images [Data set]. Kaggle. https://www.kaggle.com/datasets/paultimothymooney/breast-histopathology-images/data
  • Panayides, A. S., Amini, A., Filipovic, N. D., et al. (2020). AI in medical imaging informatics: Current challenges and future directions. IEEE Journal of Biomedical and Health Informatics, 24(7), 1837–1857. https://doi.org/10.1109/JBHI.2020.2991043
  • Rajaraman, S., Zamzmi, G., & Antani, S. K. (2021). Novel loss functions for ensemble-based medical image classification. PLOS ONE, 16(12), e0261307. https://doi.org/10.1371/journal.pone.0261307
  • Salem, — (already covered previously)
  • Thaalbi, O., & Akhloufi, M. A. (2024). Deep learning for breast cancer diagnosis from histopathological images: Classification and gene expression: Review. Network Modeling Analysis in Health Informatics and Bioinformatics, 13, 52. https://doi.org/10.1007/s13721-024-00489-8
  • Xu, Y., Ghosh, S., & Goldfarb, D. (2020). Class-weighted classification: Trade-offs and robust approaches. In Proceedings of the 37th International Conference on Machine Learning (ICML) (Vol. 119, pp. 10462–10472). PMLR. https://proceedings.mlr.press/v119/xu20b.html
  • Yu, J. (2022). Predicting invasive ductal carcinoma based on convolutional neural network. In 2022 3rd International Conference on Electronic Communication and Artificial Intelligence (IWECAI) (pp. 388–391). IEEE. https://doi.org/10.1109/IWECAI55315.2022.00082
  • Zeid, M. A.-E., El-Bahnasy, K., & Abo-Youssef, S. E. (2021). Enhanced CNN architecture for invasive ductal carcinoma detection in breast histopathology images. In 2021 Tenth International Conference on Intelligent Computing and Information Systems (ICICIS) (pp. 154–159). IEEE. https://doi.org/10.1109/ICICIS52592.2021.9694114

DL-Driven Model for Accurate Detection of Breast Cancer from Histopathology Images: Clinically Validated on Algerian Medical Data

Year 2026, Volume: 8 Issue: 2, 37 - 52, 15.01.2026
https://doi.org/10.53508/ijiam.1838971

Abstract

Accurate and early detection of high-risk breast cancers significantly affects treatment success and patient prognosis. Invasive Ductal Carcinoma (IDC) is the most prevalent and aggressive subtype, highlighting the need for improved diagnostic strategies. Motivated by this clinical challenge, we propose a deep learning-driven model for automatic IDC detection from histopathological images, aimed at assisting pathologists and enhancing diagnostic precision. The model extends the EfficientNetB0 architecture with additional domain-specific convolutional layers and is trained on the publicly available Breast Histopathology Images dataset. The model achieved strong performance, with an AUC of 96.13 %, accuracy of 89.26 %, recall of 90.89%, and F1-score of 82.54 %. Its clinical relevance was further assessed through validation on real Algerian histopathological slides, where the model reached 95.46\% accuracy under routine laboratory conditions. These results demonstrate the potential of our clinically validated deep learning model as a reliable tool for IDC detection and breast cancer diagnosis, bridging the gap between AI research and practical medical application.

References

  • Ahmed, M. R., Ali, M. A., Roy, J., Ahmed, S., & Ahmed, N. (2020). Breast cancer risk prediction based on six machine learning algorithms. In 2020 IEEE Asia-Pacific Conference on Computer Science and Data Engineering (CSDE) (pp. 1–5). IEEE. https://doi.org/10.1109/CSDE50874.2020.9411572
  • Alomar, K., Aysel, H. I., & Cai, X. (2023). Data augmentation in classification and segmentation: A survey and new strategies. Journal of Imaging, 9(2), 46. https://doi.org/10.3390/jimaging9020046
  • Aly, G. H., Marey, M., El-Sayed, S. A., & Tolba, M. F. (2021). YOLO-based breast masses detection and classification in full-field digital mammograms. Computer Methods and Programs in Biomedicine, 200, 105823. https://doi.org/10.1016/j.cmpb.2020.105823
  • Balasubramanian, A. A., Al-Heejawi, S. M. A., Singh, A., Breggia, A., Ahmad, B., Christman, R., Ryan, S. T., & Amal, S. (2024). Ensemble deep learning-based image classification for breast cancer subtype and invasiveness diagnosis from whole slide image histopathology. Cancers, 16(12), 2222. https://doi.org/10.3390/cancers16122222
  • Bakirarar, B. (2023). Class weighting technique to deal with imbalanced class problem in machine learning: Methodological research. Turkiye Klinikleri Journal of Biostatistics, 15(1), 19–29. https://www.turkiyeklinikleri.com/article/en-class-weighting-technique-to-deal-with-imbalanced-class-problem-in-machine-learning-methodological-research-101599.html
  • Breast cancer. (2025). World Health Organization. https://www.who.int/news-room/fact-sheets/detail/breast-cancer
  • Buda, S., Maki, A., & Mazurowski, M. (2023). A systematic study of the class imbalance problem in convolutional neural networks. Machine Learning, 112, 4431–4460. https://doi.org/10.1007/s10994-022-06268-8
  • Chilumukuru, N. S., Priyadarshini, P., & Ezunkpe, Y. (2025). Deep learning for the early detection of invasive ductal carcinoma in histopathological images: Convolutional neural network approach with transfer learning. JMIR Formative Research, 9, e62996. https://doi.org/10.2196/62996
  • Cruz-Roa, A., et al. (2014). Automatic detection of invasive ductal carcinoma in whole slide images with convolutional neural networks. In Medical Imaging 2014: Digital Pathology (Vol. 9041, p. 904103). SPIE. https://doi.org/10.1117/12.2043872
  • Datwani, S., Khan, H., Niazi, M. K. K., Parwani, A. V., & Li, Z. (2025). Artificial intelligence in breast pathology: Overview and recent updates. Human Pathology, 162, 105819. https://doi.org/10.1016/j.humpath.2025.105819
  • Goceri, E. (2023). Medical image data augmentation: Techniques, comparisons and interpretations. Artificial Intelligence Review, 1–45. https://doi.org/10.1007/s10462-023-10453-z
  • Guleria, H. V., Luqmani, A. M., Kothari, H. D., Phukan, P., Patil, S., Pareek, P., Kotecha, K., Abraham, A., & Gabralla, L. A. (2023). Enhancing the breast histopathology image analysis for cancer detection using variational autoencoder. International Journal of Environmental Research and Public Health, 20(5), 4244. https://doi.org/10.3390/ijerph20054244
  • Hassan, E., Shams, M. Y., Hikal, N. A., et al. (2023). The effect of choosing optimizer algorithms to improve computer vision tasks: A comparative study. Multimedia Tools and Applications, 82, 16591–16633. https://doi.org/10.1007/s11042-022-13820-0
  • Jiang, Y., Chen, L., Zhang, H., & Xiao, X. (2019). Breast cancer histopathological image classification using convolutional neural networks with small SE-ResNet module. PLOS ONE, 14(3), e0214587. https://doi.org/10.1371/journal.pone.0214587
  • Kaddes, M., Ayid, Y. M., Elshewey, A. M., et al. (2025). Breast cancer classification based on hybrid CNN with LSTM model. Scientific Reports, 15, 4409. https://doi.org/10.1038/s41598-025-88459-6
  • Korkmaz, M., & Kaplan, K. (2025). Effectiveness analysis of deep learning methods for breast cancer diagnosis based on histopathology images. Applied Sciences, 15(3), 1005. https://doi.org/10.3390/app15031005
  • Li, J., Chen, J., Tang, Y., Wang, C., Landman, B. A., & Zhou, S. K. (2023). Transforming medical imaging with transformers? A comparative review of key properties, current progress, and future perspectives. Medical Image Analysis, 85, 102762. https://doi.org/10.1016/j.media.2023.102762
  • Litjens, G., Kooi, T., Bejnordi, B. E., et al. (2017). A survey on deep learning in medical image analysis. Medical Image Analysis, 42, 60–88. https://doi.org/10.1016/j.media.2017.07.005
  • Mahesh, T. R., Gupta, M., Anupama, T. A., Kumar, V. K., Geman, O., Kumar, D., & An. (2024). An XAI-enhanced EfficientNetB0 framework for precision brain tumor detection in MRI imaging. Journal of Neuroscience Methods, 410, 110227. https://doi.org/10.1016/j.jneumeth.2024.110227
  • Mooney, P. T. (2018). Breast histopathology images [Data set]. Kaggle. https://www.kaggle.com/datasets/paultimothymooney/breast-histopathology-images/data
  • Panayides, A. S., Amini, A., Filipovic, N. D., et al. (2020). AI in medical imaging informatics: Current challenges and future directions. IEEE Journal of Biomedical and Health Informatics, 24(7), 1837–1857. https://doi.org/10.1109/JBHI.2020.2991043
  • Rajaraman, S., Zamzmi, G., & Antani, S. K. (2021). Novel loss functions for ensemble-based medical image classification. PLOS ONE, 16(12), e0261307. https://doi.org/10.1371/journal.pone.0261307
  • Salem, — (already covered previously)
  • Thaalbi, O., & Akhloufi, M. A. (2024). Deep learning for breast cancer diagnosis from histopathological images: Classification and gene expression: Review. Network Modeling Analysis in Health Informatics and Bioinformatics, 13, 52. https://doi.org/10.1007/s13721-024-00489-8
  • Xu, Y., Ghosh, S., & Goldfarb, D. (2020). Class-weighted classification: Trade-offs and robust approaches. In Proceedings of the 37th International Conference on Machine Learning (ICML) (Vol. 119, pp. 10462–10472). PMLR. https://proceedings.mlr.press/v119/xu20b.html
  • Yu, J. (2022). Predicting invasive ductal carcinoma based on convolutional neural network. In 2022 3rd International Conference on Electronic Communication and Artificial Intelligence (IWECAI) (pp. 388–391). IEEE. https://doi.org/10.1109/IWECAI55315.2022.00082
  • Zeid, M. A.-E., El-Bahnasy, K., & Abo-Youssef, S. E. (2021). Enhanced CNN architecture for invasive ductal carcinoma detection in breast histopathology images. In 2021 Tenth International Conference on Intelligent Computing and Information Systems (ICICIS) (pp. 154–159). IEEE. https://doi.org/10.1109/ICICIS52592.2021.9694114
There are 27 citations in total.

Details

Primary Language English
Subjects Artificial Intelligence (Other)
Journal Section Research Article
Authors

Ranya Hadjadj

Abdelkrim Bouramoul 0000-0002-8628-6817

Submission Date December 9, 2025
Acceptance Date January 6, 2026
Publication Date January 15, 2026
Published in Issue Year 2026 Volume: 8 Issue: 2

Cite

APA Hadjadj, R., & Bouramoul, A. (2026). DL-Driven Model for Accurate Detection of Breast Cancer from Histopathology Images: Clinically Validated on Algerian Medical Data. International Journal of Informatics and Applied Mathematics, 8(2), 37-52. https://doi.org/10.53508/ijiam.1838971
AMA Hadjadj R, Bouramoul A. DL-Driven Model for Accurate Detection of Breast Cancer from Histopathology Images: Clinically Validated on Algerian Medical Data. IJIAM. January 2026;8(2):37-52. doi:10.53508/ijiam.1838971
Chicago Hadjadj, Ranya, and Abdelkrim Bouramoul. “DL-Driven Model for Accurate Detection of Breast Cancer from Histopathology Images: Clinically Validated on Algerian Medical Data”. International Journal of Informatics and Applied Mathematics 8, no. 2 (January 2026): 37-52. https://doi.org/10.53508/ijiam.1838971.
EndNote Hadjadj R, Bouramoul A (January 1, 2026) DL-Driven Model for Accurate Detection of Breast Cancer from Histopathology Images: Clinically Validated on Algerian Medical Data. International Journal of Informatics and Applied Mathematics 8 2 37–52.
IEEE R. Hadjadj and A. Bouramoul, “DL-Driven Model for Accurate Detection of Breast Cancer from Histopathology Images: Clinically Validated on Algerian Medical Data”, IJIAM, vol. 8, no. 2, pp. 37–52, 2026, doi: 10.53508/ijiam.1838971.
ISNAD Hadjadj, Ranya - Bouramoul, Abdelkrim. “DL-Driven Model for Accurate Detection of Breast Cancer from Histopathology Images: Clinically Validated on Algerian Medical Data”. International Journal of Informatics and Applied Mathematics 8/2 (January2026), 37-52. https://doi.org/10.53508/ijiam.1838971.
JAMA Hadjadj R, Bouramoul A. DL-Driven Model for Accurate Detection of Breast Cancer from Histopathology Images: Clinically Validated on Algerian Medical Data. IJIAM. 2026;8:37–52.
MLA Hadjadj, Ranya and Abdelkrim Bouramoul. “DL-Driven Model for Accurate Detection of Breast Cancer from Histopathology Images: Clinically Validated on Algerian Medical Data”. International Journal of Informatics and Applied Mathematics, vol. 8, no. 2, 2026, pp. 37-52, doi:10.53508/ijiam.1838971.
Vancouver Hadjadj R, Bouramoul A. DL-Driven Model for Accurate Detection of Breast Cancer from Histopathology Images: Clinically Validated on Algerian Medical Data. IJIAM. 2026;8(2):37-52.

International Journal of Informatics and Applied Mathematics