Araştırma Makalesi
BibTex RIS Kaynak Göster

Existence Results for Anti-periodic of a Generalized Fractional Derivative Differential Equations

Yıl 2022, Cilt: 5 Sayı: 1, 74 - 83, 28.06.2022
https://doi.org/10.53508/ijiam.1076598

Öz

We study in the present work the existence of solutions to antiperiodic boundary value problem for differential equations involving generalized fractional derivative via fixed point methods.

Destekleyen Kurum

-

Proje Numarası

-

Kaynakça

  • R.P. Agarwal , B. Ahmad, Existence theory for anti-periodic boundary value problems of fractional differential equations and inclusions
  • B. Ahmad, J.J. Nieto, Existence of solutions for impulsive anti-periodic boundary value problems of fractional order
  • M. Ashordia, On the solvability of the antiperiodic boundary value problem for systems of linear generalized differential equations
  • M. Benchohra, K. Maazouz, Existence and uniqueness results for implicit fractional differential equations with integral boundary conditions, Communications in Applied Analysis,20(2016),355-366.
  • A. Cabada, K. Maazouz, Results for Fractional Differential Equations with Integral Boundary Conditions Involving the Hadamard Derivative. In: Area I. et al. (eds) Nonlinear Analysis and Boundary Value Problems. NABVP 2018. Springer Proceedings in Mathematics & Statistics, vol 292. Springer, Cham (2019).
  • G. Chai, Anti-periodic boundary value problems of fractional differential equations with the Riemann-Liouville fractional derivative Fractional Differential Equations
  • R. Hakl, A. Lomtatidze, and J.???Sremr, On a boundary-value problem of antiperiodic type for first-order nonlinear functional differential equations of nonVolterra type
  • U.N. Katugampola, New approach to generalized fractional integral, Appl. Math. Comput. 218(3) (2011), 860-865.
  • U.N Katugampola, New approach to generalized fractional derivative, Bull. Math. Anal. Appl. 6 (4) (2014), 1-15.
  • D. R. Smart, Fixed Point Theorems, Cambridge University Press, Cambridge 1974.
  • D. Vivek, K. Kanagarajan, S. Harikrishnan, Theory and analysis of impulsive type pantograph equations with Katugampola fractioanl derivative, J. Vabration Testing and System Dynamic, 2 (1) 2018, 9-20.
  • D. Vivek, E.M. Elsayed, K. Kanagarajan, Theory of fractional implicit differential equations with complex order, Journal of Universal Mathematics, 2 (2) (2019), 154-165.
  • X. Li, F. Chen, Xuezhu Li, Generalized anti-periodic boundary value problems of impulsive fractional differential equations
  • X. Wang X. Guo G. Tang, Anti-periodic fractional boundary value problems for nonlinear differential equations of fractional order
Yıl 2022, Cilt: 5 Sayı: 1, 74 - 83, 28.06.2022
https://doi.org/10.53508/ijiam.1076598

Öz

Proje Numarası

-

Kaynakça

  • R.P. Agarwal , B. Ahmad, Existence theory for anti-periodic boundary value problems of fractional differential equations and inclusions
  • B. Ahmad, J.J. Nieto, Existence of solutions for impulsive anti-periodic boundary value problems of fractional order
  • M. Ashordia, On the solvability of the antiperiodic boundary value problem for systems of linear generalized differential equations
  • M. Benchohra, K. Maazouz, Existence and uniqueness results for implicit fractional differential equations with integral boundary conditions, Communications in Applied Analysis,20(2016),355-366.
  • A. Cabada, K. Maazouz, Results for Fractional Differential Equations with Integral Boundary Conditions Involving the Hadamard Derivative. In: Area I. et al. (eds) Nonlinear Analysis and Boundary Value Problems. NABVP 2018. Springer Proceedings in Mathematics & Statistics, vol 292. Springer, Cham (2019).
  • G. Chai, Anti-periodic boundary value problems of fractional differential equations with the Riemann-Liouville fractional derivative Fractional Differential Equations
  • R. Hakl, A. Lomtatidze, and J.???Sremr, On a boundary-value problem of antiperiodic type for first-order nonlinear functional differential equations of nonVolterra type
  • U.N. Katugampola, New approach to generalized fractional integral, Appl. Math. Comput. 218(3) (2011), 860-865.
  • U.N Katugampola, New approach to generalized fractional derivative, Bull. Math. Anal. Appl. 6 (4) (2014), 1-15.
  • D. R. Smart, Fixed Point Theorems, Cambridge University Press, Cambridge 1974.
  • D. Vivek, K. Kanagarajan, S. Harikrishnan, Theory and analysis of impulsive type pantograph equations with Katugampola fractioanl derivative, J. Vabration Testing and System Dynamic, 2 (1) 2018, 9-20.
  • D. Vivek, E.M. Elsayed, K. Kanagarajan, Theory of fractional implicit differential equations with complex order, Journal of Universal Mathematics, 2 (2) (2019), 154-165.
  • X. Li, F. Chen, Xuezhu Li, Generalized anti-periodic boundary value problems of impulsive fractional differential equations
  • X. Wang X. Guo G. Tang, Anti-periodic fractional boundary value problems for nonlinear differential equations of fractional order
Toplam 14 adet kaynakça vardır.

Ayrıntılar

Birincil Dil İngilizce
Konular Uygulamalı Matematik
Bölüm Makaleler
Yazarlar

Kadda Maazouz

Dvivek Vivek

Elsayed Elsayed 0000-0003-0894-8472

Proje Numarası -
Yayımlanma Tarihi 28 Haziran 2022
Kabul Tarihi 31 Mayıs 2022
Yayımlandığı Sayı Yıl 2022 Cilt: 5 Sayı: 1

Kaynak Göster

APA Maazouz, K., Vivek, D., & Elsayed, E. (2022). Existence Results for Anti-periodic of a Generalized Fractional Derivative Differential Equations. International Journal of Informatics and Applied Mathematics, 5(1), 74-83. https://doi.org/10.53508/ijiam.1076598
AMA Maazouz K, Vivek D, Elsayed E. Existence Results for Anti-periodic of a Generalized Fractional Derivative Differential Equations. IJIAM. Haziran 2022;5(1):74-83. doi:10.53508/ijiam.1076598
Chicago Maazouz, Kadda, Dvivek Vivek, ve Elsayed Elsayed. “Existence Results for Anti-Periodic of a Generalized Fractional Derivative Differential Equations”. International Journal of Informatics and Applied Mathematics 5, sy. 1 (Haziran 2022): 74-83. https://doi.org/10.53508/ijiam.1076598.
EndNote Maazouz K, Vivek D, Elsayed E (01 Haziran 2022) Existence Results for Anti-periodic of a Generalized Fractional Derivative Differential Equations. International Journal of Informatics and Applied Mathematics 5 1 74–83.
IEEE K. Maazouz, D. Vivek, ve E. Elsayed, “Existence Results for Anti-periodic of a Generalized Fractional Derivative Differential Equations”, IJIAM, c. 5, sy. 1, ss. 74–83, 2022, doi: 10.53508/ijiam.1076598.
ISNAD Maazouz, Kadda vd. “Existence Results for Anti-Periodic of a Generalized Fractional Derivative Differential Equations”. International Journal of Informatics and Applied Mathematics 5/1 (Haziran 2022), 74-83. https://doi.org/10.53508/ijiam.1076598.
JAMA Maazouz K, Vivek D, Elsayed E. Existence Results for Anti-periodic of a Generalized Fractional Derivative Differential Equations. IJIAM. 2022;5:74–83.
MLA Maazouz, Kadda vd. “Existence Results for Anti-Periodic of a Generalized Fractional Derivative Differential Equations”. International Journal of Informatics and Applied Mathematics, c. 5, sy. 1, 2022, ss. 74-83, doi:10.53508/ijiam.1076598.
Vancouver Maazouz K, Vivek D, Elsayed E. Existence Results for Anti-periodic of a Generalized Fractional Derivative Differential Equations. IJIAM. 2022;5(1):74-83.

International Journal of Informatics and Applied Mathematics